
HAL Id: tel-03941163
https://pastel.hal.science/tel-03941163

Submitted on 16 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Large scale Bayesian inference
Inass Sekkat

To cite this version:
Inass Sekkat. Large scale Bayesian inference. Statistics [math.ST]. École des Ponts ParisTech, 2022.
English. �NNT : 2022ENPC0031�. �tel-03941163�

https://pastel.hal.science/tel-03941163
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT
de l’École des Ponts ParisTech

Large Scale Bayesian Inference
École doctorale N532, Mathématiques et STIC (MSTIC)

Spécialité : Mathématiques

Thèse préparée au sein du :
CENTRE D’ENSEIGNEMENT ET DE RECHERCHE EN MATHEMA-
TIQUES ET CALCUL SCIENTIFIQUE

Thèse soutenue le 21 Septembre 2022, par
Inass SEKKAT

Composition du jury:

M. Fabien PANLOUP Président
LAREMA, Université d’Angers

M. Arnak DALALYAN Rapporteur
ENSAE / CREST

M. Konstantinos ZYGALAKIS Rapporteur
School of Mathematics, University of Edinburgh

Mme Marylou GABRIÉ Examinatrice
École Polytechnique (CMAP)

Mme Sophie LARUELLE Examinatrice
University Paris-Est Créteil

M. Gabriel STOLTZ Directeur de thèse
École nationale des ponts et chaussées

REMERCIEMENTS

J’aimerais avant tout adresser ma reconnaissance et mes remerciements à mon directeur de
thèse Gabriel Stoltz. Je lui suis redevable pour sa présence, sa disponibilité et ses encourage-
ments, sans lesquels ce travail n’aurait pas été possible. Je le remercie de m’avoir donné cette
opportunité, de m’avoir accompagné et guidé durant cette thèse. J’ai beaucoup apprécié et
énormément appris durant ces 4 années.

Je tiens aussi à exprimer ma reconnaissance à Arnak Dalalyan et à Konstantinos Zygalakis
pour avoir accepté d’être les rapporteurs de ma thèse et pour l’intérêt présenté aux questions
abordées dans ce manuscrit. Je voudrais également remercier les membres du jury qui ont
accepté de participer à ma soutenance : Marylou Gabrié, Sophie Laruelle et Fabien Panloup.

Je tiens à exprimer mes sincères remerciements à l’Université Mohammed VI Polytech-
nique pour avoir financé ma thèse. Je remercie particulièrement Salma Lahbabi et Abdellah
Chkifa pour toutes les discussions intéressantes que nous avons eues.

Je voudrais aussi remercier Rajaa Aboulaich qui m’a initié à la recherche et sans qui
cette thèse n’aurait pas vu le jour. Je tiens tout particulièrement à remercier Tony Lelièvre
et Geneviève Robin avec qui j’ai eu l’occasion de collaborer pendant le CEMRACS, je les
remercie pour m’avoir accompagné et conseillé pour ce projet. Un grand merci évidement
à Ben Leimkuhler et Tiffany Vlaar qui m’ont accueillie pendant deux mois à l’université
d’Edimbourg. Grâce à eux, mon séjour en Ecosse fut une très belle expérience scientifique et
humaine.

Mes remerciements vont de soi pour l’ensemble du CERMICS et toutes les personnes que
j’ai pu y côtoyer tout au long de ces années. Je dois particulièrement remercier Isabelle Simunic
et Stéphanie Bonnel pour leur accompagnement et leurs aides pendant ces années. Ces années
au CERMICS ont été une expérience inoubliable, et c’est en grande partie grâce à tout ces
doctorants et docteurs qui sont devenus de vrais amis. J’aimerais remercier infiniment les
anciens : Grégoire, Lingling, Rafael, Pierre-Loïk, Oumaima, William, Adel, Benoît, Mouad,
Sami, les contemporains : Dylan, Gaspard, Michel, Rémi, Raed, Cyrille, Sébastien, Thomas,
Jean, Laurent, Rutger, Roberta, Etienne, Mohamed, et les nouveaux : Alfred, Coco, Éloïse,
Emanuele, Régis, Renato, Zoe, Noé, Alberic. . .

Je tiens également à remercier tout mes amis qui ont toujours été là pour moi, d’abord
Salma Salimixx, Mahmoud (et ses bolognaises du soir), Ayoub2, Zineb (Khojii), YounOus,
Oumama (H), Houssam, Khansae et Hicham. Mes amis de prépa : Dina, Achraf, et Bounouar.
Je remercie de même mes amis de toujours : Zineb, Salima et Achraf, notamment pour nos
brunchs du Dimanche qui m’ont tant apporté. Et bien-sur merci à Zakaria d’avoir égayé mes
deux dernières années de thèse.

Pour finir, je voudrais dédier cette thèse à ma chère famille que je ne remercierai jamais
assez. D’abord à mes parents maman et papa à qui je dois tout et qui m’ont toujours soutenue,
et bien-sur à Sophia et Ghali, mes piliers qui ont toujours cru en moi et qui ont su me redonner

4

le sourire dans les moments difficiles, les mots ne serons jamais assez forts pour exprimer ma
reconnaissance, enfin à ma grand mère Aicha qui ne m’oublie jamais dans ses prières, et à
toutes mes tantes et cousins au Maroc et ailleurs.

5

Résumé

Cette thèse s’intéresse à divers problèmes d’échantillonnage. La première partie de ce travail
est consacrée au problème de l’inférence Bayésienne. Dans ce contexte, les méthodes de Monte
Carlo habituelles ont un coût de calcul qui croît linéairement avec le nombre de points de
données. L’échantillonnage par des discrétisations de dynamiques de type Langevin, avec une
estimation de la force par minibatching pour limiter le coût de calcul, permet une simulation
plus efficace, mais induit un biais sur la mesure de probabilité effectivement échantillonnée. La
dynamique de Langevin adaptative corrige automatiquement le bruit supplémentaire résul-
tant du minibatching. Nous étudions la pertinence pratique des hypothèses qui sous-tendent
la dynamique de Langevin adaptative (notamment covariance de l’estimateur de la force
constante), qui ne sont pas satisfaites pour certains modèles typiques d’inférence Bayésienne,
et nous quantifions le biais induit par le minibatching dans ce cas. Nous montrons également
comment étendre la dynamique de Langevin adaptative afin de réduire systématiquement le
biais sur la distribution postérieure en considérant une friction dynamique dépendant de la
valeur courante du paramètre à échantillonner. La deuxième partie de ce travail étudie l’erreur
de minibatching lors de l’échantillonnage de la distribution a posteriori des paramètres d’un
réseau de neurones Bayésien. Nous étudions numériquement la matrice de covariance de l’es-
timateur stochastique de la force, qui s’avère être de rang faible, suggérant qu’elle peut être
efficacement approchée. Ceci ouvre la voie au développement d’algorithmes à coût de calcul
raisonnable basés sur la dynamique de Langevin adaptative pour réduire le biais. La dernière
partie de cette thèse considère l’échantillonnage des chemins de transition reliant un état mé-
tastable à un autre, difficiles à échantillonner par des méthodes numériques directes. Nous
explorons certaines techniques d’apprentissage automatique pour générer plus efficacement
lesdits chemins de transition.

6

Abstract

This thesis is concerned with various sampling problems. The first part of this work is ded-
icated to Bayesian inference problems where usual Monte Carlo methods scale linearly with
the number of data points. Resorting to minibatching in conjunction with discretizations of
Langevin-like dynamics to circumvent this issue induces bias on the invariant probability mea-
sure. Using Adaptive Langevin dynamics automatically corrects for the extra noise arising
from minibatching. We investigate the practical relevance of the assumptions underpinning
Adaptive Langevin dynamics (in particular, constant covariance for the estimation of the gra-
dient), which are not satisfied in typical models of Bayesian inference, and quantify the bias
induced by minibatching in this case. We also show how to extend Adaptive Langevin dy-
namics in order to systematically reduce the bias on the posterior distribution by considering
a dynamical friction depending on the current value of the parameter to sample. The second
part of this work studies the error arising from minibatching error when sampling the poste-
rior distribution of parameters of Bayesian neural networks. We numerically investigate the
covariance matrix of the stochastic estimator of the force, which turns out to be of low rank,
suggesting that it can efficiently be approximated. This opens the way to the development of
scalable algorithms based on the adaptive Langevin dynamics to reduce the bias. The final
part of this thesis is concerned with sampling transition paths linking one metastable state
to another, which can be difficult by direct numerical methods. We explore some machine
learning techniques to more efficiently generate transition paths.

7

Preamble

One of the main challenges in problems of machine learning and computational statistics is
the estimation of parameters of some model and the description of their behavior. In the
Bayesian framework, the parameters are considered as random variables distributed accord-
ing to a probability measure. The goal is to sample these parameters with respect to their
posterior probability measure, obtained as the product of a prior distribution and the likeli-
hood of the data points at hand under the model associated with the value of the parameters.
Typical quantities of interest are expectations with respect to the posterior distribution of
the parameters. Methods based on Markov Chain Monte Carlo are among the most popu-
lar techniques to sample from high-dimensional and complex probability measures, such as
the a posteriori measures on parameters encountered in the Bayesian context. Two major
classes can be distinguished: (i) Metropolis based algorithms; (ii) algorithm based on the
discretization of stochastic differential equations. One can also mix both, as for example in
the Metropolis-adjusted Langevin algorithm.

We tackle in this thesis three problems: (i) Bayesian inference problems; (ii) training
Bayesian neural networks; (iii) sampling transition paths. We give below a more precise
overview of the organization of this manuscript.

Chapter 1. This chapter is intended to provide a general introduction to the manuscript.
First, in Section 1.1, we set the motivation for the three main considered problems. In
Section 1.2, we give a review of some of the most popular Markov chain Monte Carlo methods
to sample from a given probability measure. We recall in Section 1.3 methods to sample from
probability distributions in a large data context, namely the minibatching procedure. The
main contributions of this thesis are summarized in Section 1.4.

Chapter 2. The material for this chapter has been preprinted in [137] (submitted to The
Journal of Machine Learning Research, currently under review). In this chapter, we tackle the
problem of sampling a probability measure in a Bayesian inference problem. More precisely,
we consider the case when minibatching induces bias on the invariant probability measure. We
first provide refined weak error error estimates on the invariant probability measure sampled
by discretizations of Langevin-like dynamics when using minibatching. The second part of
Chapter 2 is dedicated to a careful (numerical) analysis of Adaptive Langevin dynamics. We
provide quantitative estimates of the error arising from minibatching and discretization on
the invariant measure actually sampled by the numerical algorithm, even in the case when the
usual assumptions underpinning Adaptive Langevin are not satisfied. The last contribution
of this chapter is the introduction of an extended version of Adaptive Langevin that allows
to systemically reduce the bias.

Chapter 3. The work reported in this chapter started during a two month research visit to
Edinburgh, where I worked with Ben Leimkuhler and Tiffany Vlaar (School of Mathematics,
University of Edinburgh). We present in this chapter the preliminary results of this work
on which we are currently still working. The aim is to analyze the minibatching error when
sampling from the posterior distribution of the parameters of a Bayesian neural network.
To this end, we numerically analyze the structure of the covariance matrix of the stochastic
estimator of the gradient for some toy models. The average isotropic shape of this matrix,
and the fact that it is of low rank suggest that it can efficiently be approximated in an

8

unexpensive way. This opens the way to scalable Adaptive Langevin-like algorithms to reduce
the minibatching bias.

Chapter 4. The material for this chapter has been preprinted in [92] (submitted to ESAIM
Proceedings in the special issue gathering contributions from the research projects initiated
during the 6 week long summer research school CEMRACS 2021). The aim of this work is
to use recent methods in machine learning, in particular generative methods such as varia-
tional auto-encoders and reinforcement learning techniques, to sample rare events in molecular
dynamics. These rare events are typically transition paths linking one metastable state to
another, which can be difficult to simulate by direct numerical methods.

9

List of publications

Here is a list of works written during this thesis:

- [137] (with Gabriel Stoltz) Removing the mini-batching error in Bayesian inference
using Adaptive Langevin dynamics, arXiv:2105.10347

- [92] (with Tony Lelièvre, Geneviève Robin, Gabriel Stoltz and Gabriel Victorino
Cardoso) Generative methods for sampling transition paths in molecular dynamics,
arXiv:2205.02818

Oral presentations in conferences and seminars

Below is a list of conferences where I presented the above mentioned works:

- Bézout-Facebook scientific workshop, Université Paris–Est, November 4th, 2019.

- International Conference in Monte Carlo & Quasi-Monte Carlo Methods in Scientific
Computing MCQMC 2020, online, August 10-14, 2020.

- Bernoulli-IMS One World Symposium, online, August 2020.

- PhD students’ seminar, LJLL, Sorbonne université, April 2021.

- SIAM Materials Science 2021, online, May 2021.

- ML/MD seminar, Edinburgh University, October 2021.

- Journées MAS, Rouen, August 2022.

Poster presentations

Below is a list of posters I presented :

- Doctoral school UM6P, Morocco, November 2019.

- Bayes Comp, University of Florida, January 2020.

- Bernoulli-IMS One World Symposium, online, August 2020.

CONTENTS

1 Introduction 15
1.1 Motivating sampling problems . 16

1.1.1 General presentation of Bayesian inference problems 16
1.1.2 Bayesian neural networks . 17
1.1.3 Sampling rare events: transition paths 20

1.2 Review of some sampling techniques . 20
1.2.1 Metropolis–Hastings algorithms . 21
1.2.2 Stochastic differential equations . 23

1.2.2.1 Some elements on stochastic differential equations 23
1.2.2.2 Overdamped Langevin dynamics 25
1.2.2.3 Langevin dynamics . 26
1.2.2.4 Adaptive Langevin dynamics 29

1.2.3 Other algorithms . 33
1.3 Sampling methods in the large data context 33

1.3.1 Methods based on estimators of the log-likelihood gradient 33
1.3.1.1 Minibatching . 34
1.3.1.2 Minibatching error for stochastic differential equations 36

1.3.2 Metropolis–Hastings based algorithms for large data sets 36
1.4 Contributions . 37

1.4.1 Removing the mini-batching error in Bayesian inference using Adaptive
Langevin dynamics . 37

1.4.2 Bayesian neural networks . 38
1.4.3 Generative methods for sampling transition paths in molecular dynamics 39

2 Removing the mini-batching error with AdL 41
2.1 Introduction . 43
2.2 Stochastic gradient Markov Chain Monte Carlo 45

2.2.1 Some elements on error analysis for discretizations of SDEs 46
2.2.2 Mini-Batching procedure . 47
2.2.3 Stochastic Gradient Langevin Dynamics 49

2.2.3.1 Description of the method . 49
2.2.3.2 Effective SGLD . 51

2.2.4 Langevin dynamics with mini-batching 52
2.2.4.1 Standard Langevin dynamics 52
2.2.4.2 Error estimates for Langevin dynamics with mini-batching . 53
2.2.4.3 Effective dynamics for Langevin dynamics with mini-batching 54

12 CONTENTS

2.2.5 Numerical illustration . 55
2.2.5.1 Gaussian posterior . 55
2.2.5.2 Mixture of Gaussians . 57

2.3 Adaptive Langevin dynamics . 58
2.3.1 General formulation of Adaptive Langevin dynamics 58
2.3.2 Adaptive Langevin dynamics for gradient estimators with constant co-

variance . 59
2.3.2.1 Invariant probability measure of AdL 60
2.3.2.2 Numerical scheme . 61
2.3.2.3 Numerical illustration for Gaussian likelihoods 63

2.3.3 Impact of a non constant covariance matrix 64
2.3.3.1 Mini-batching bias for Adaptive Langevin dynamics and non

constant covariance . 64
2.3.3.2 Mixture of Gaussians . 66

2.4 Extended Adaptive Langevin Dynamics . 66
2.4.1 Presentation of the dynamics . 68
2.4.2 Numerical scheme and estimates on the bias 70
2.4.3 Choice the basis functions . 71

2.5 Numerical illustrations . 72
2.5.1 One dimensional toy model . 72
2.5.2 Mixture of Gaussians . 73
2.5.3 Logistic regression . 74

2.6 Discussion and perspectives . 78
Appendices . 79
2.A Proof of some technical estimates . 79

2.A.a Proof of (2.18) . 79
2.A.b Proof of (2.28), (2.29) and (2.30) . 80
2.A.c Proof of (2.55) . 80

2.B Unbiasedness of the mean for Langevin dynamics with mini-batching and Gaus-
sian posterior . 81

3 Minibatching error for Bayesian Neural Networks 83
3.1 Introduction . 84
3.2 Presentation of the models . 85

3.2.1 Mathematical framework . 85
3.2.2 Numerical toy models . 87
3.2.3 Neural network architectures . 88

3.3 Analysis of the covariance matrix . 89
3.3.1 Adaptive Langevin for neural networks 89
3.3.2 Numerical results . 90

3.4 Sampling of the posterior distribution . 100
3.5 Perspectives . 100

4 Generative methods for transition paths 103
4.1 Introduction . 104
4.2 Sampling transition paths of metastable processes 105
4.3 Generating transition paths with Variational AutoEncoders 106

4.3.1 Presentation of Variational AutoEncoders 107
4.3.2 Convolutional neural networks . 109
4.3.3 Data set for training . 110
4.3.4 "Naive" Variational AutoEncoders to generate transition paths 110
4.3.5 VAEs with larger embedding space . 112

CONTENTS 13

4.4 Generating transition paths with reinforcement learning 114
4.4.1 Overview of reinforcement learning . 114
4.4.2 Application to sampling transition paths 116
4.4.3 Numerical results . 117

4.5 Discussion and perspectives . 119
Appendices . 120
4.A Architecture of CNN-A used in Section 4.3 . 120
4.B Architecture of the neural networks used for TD3 algorithm 120
4.C Parameters for the TD3 algorithm . 121

5 Résumé de la thèse en français 123
5.1 Réduction systématique de l’erreur de minibatching dans l’inférence Bayésienne

à l’aide de la dynamique de Langevin adaptative 123
5.1.1 Motivation pour l’inférence Bayésienne 123
5.1.2 Contributions . 124

5.2 Réseaux de neurones Bayésiens . 125
5.2.1 Motivations pour les réseaux de neurones Bayésien 125
5.2.2 Contributions . 127

5.3 Méthodes génératives pour les chemins de transition 127
5.3.1 Motivations . 127
5.3.2 Contributions . 128

CHAPTER 1

INTRODUCTION

Contents
1.1 Motivating sampling problems . 16

1.1.1 General presentation of Bayesian inference problems 16
1.1.2 Bayesian neural networks . 17
1.1.3 Sampling rare events: transition paths 20

1.2 Review of some sampling techniques 20
1.2.1 Metropolis–Hastings algorithms . 21
1.2.2 Stochastic differential equations . 23
1.2.3 Other algorithms . 33

1.3 Sampling methods in the large data context 33
1.3.1 Methods based on estimators of the log-likelihood gradient 33
1.3.2 Metropolis–Hastings based algorithms for large data sets 36

1.4 Contributions . 37
1.4.1 Removing the mini-batching error in Bayesian inference using Adap-

tive Langevin dynamics . 37
1.4.2 Bayesian neural networks . 38
1.4.3 Generative methods for sampling transition paths in molecular dy-

namics . 39

This chapter introduces the three problems considered in this thesis and the mathemati-
cal tools used to tackle them, namely Markov Chain Monte Carlo (MCMC) methods based
on the discretization of stochastic differential equations. The introduction of this thesis is
organized as follows. We first give a brief overview of the various sampling problems we con-
sider in Section 1.1. We then present in Section 1.2 some classical methods to sample from
a given probability measure, alongside with some elements on the mathematical framework
to characterize the errors on the quantities of interest. We next recall in Section 1.3 methods
to sample from probability distributions in a large data context. Finally, we summarize the
main contributions of this thesis in Section 1.4.

16 Chapter 1. Introduction

1.1 Motivating sampling problems

In this section, we briefly present the main settings of the various sampling problems we
address in this manuscript: Bayesian inference in Section 1.1.1, Bayesian Neural Networks in
Section 1.1.2 and sampling transition paths in Section 1.1.3.

1.1.1 General presentation of Bayesian inference problems

We first present the context of Bayesian inference [127, 84]. Let us consider a set of Ndata

independent and identically distributed (i.i.d.) data points denoted by x = (x1, ..., xNdata
) ∈

(Rddata)Ndata . We assume that the elements of the data set are distributed according to a
probability measure with density Pelem(·|θ), parametrized by the unknown vector θ ∈ Rd.
The likelihood of the data set is then given by

Plikelihood(x|θ) =
N∏
i=1

Pelem(xi|θ).

Maximum likelihood. A standard approach in the frequentist setting to determine the
parameters of the model is to consider the maximum likelihood estimator. It consists in
finding the vector of parameters which maximizes the likelihood of the data. The problem
reads

θ∗ ∈ arg max
θ∈Rd

Plikelihood(x|θ) = arg max
θ∈Rd

Ndata∑
i=1

logPelem(xi|θ).

However, the maximum likelihood estimator suffers in some cases from the phenomenon of
overfitting. To understand this issue, we refer to the example of coin tossing given in [111,
Section 1.1]. The considered data set is composed of results of coin tosses (heads or tails).
The likelihood is a Bernoulli distribution of parameter θ ∈ [0, 1]. If the data set is composed
of 3 points, all landing head, the maximum likelihood algorithm will lead to θ = 1, predicting
that all the following coin tosses will certainly lead to heads. It is clear that the problem
comes from the fact that the dataset is too small. The issue of overfitting is also detailed
in Section 1.1.2 in the framework of Bayesian Neural Networks. A common idea to mitigate
this issue is to add a penalty term to the objective function, to prevent the parameters from
taking large values. We focus instead in this work on the Bayesian approach.

Bayesian approach. The Bayesian approach is based on the idea that the parameters
should be considered as random variables, and that by capturing their uncertainty/dispersion,
one can avoid over-fitting the data set. A prior distribution on the vector of parameters,
denoted by Pprior(θ), expresses the initial beliefs on the parameters. The proper choice of the
prior distribution is still an active research area. To simplify, one possible choice for instance
is a Gaussian distribution. Using Bayes’ theorem, the posterior distribution π(θ|x) of the
vector of parameters θ is given by

π(θ|x) =
Pprior(θ)Plikelihood(x|θ)

Z
, Z =

∫
Rd
Pprior(θ)Plikelihood(x|θ) dθ, (1.1)

where Z is the normalization constant. It is in most cases intractable, for example when d is
large so that standard quadrature methods cannot be used to compute this quantity. The main
goal in the Bayesian approach is to sample from π. The quantities of interest are expectations
with respect to the target measure π. Note that to sample from π, one need methods that only
require computing π up to a normalization constant since Z is intractable. In Section 1.2, we
recall some methods to this end, which provide a basis for the extended version of Adaptive
Langevin dynamics [137] introduced in Chapter 2. Sampling from π generally requires the

1.1. Motivating sampling problems 17

computation of ∇θ log π(·|x) at each iteration, which is computationally expensive. This issue
can be mitigated by resorting minibatching, as discussed in Section 1.3.

Remark 1.1. Instead of sampling from π, an alternative approach consists in finding the
vector of parameters maximizing the posterior distribution:

θ∗ = arg max
θ∈Rd

π(θ|x) = max
θ∈Rd

{
Ndata∑
i=1

logPelem(xi|θ) + logPprior(θ)

}
.

The extra term log(Pprior(θ)) can be seen in this context as a regularizer for the maximum
likelihood. For standard Gaussian priors, it amounts to a `2 regularizer.

1.1.2 Bayesian neural networks

The second problem we consider is the simulation of Bayesian Neural Networks (BNNs).
Let us denote by y = (y1, ..., yNdata

) ∈ YNdata the labels associated to the data set x =
(x1, ..., xNdata

) ∈ XNdata = (Rddata)Ndata . In general, one can distinguish two types of problems.
The first type is classification problems, where each input xi is classified into one of two or
more classes. Binary classification corresponds to the case where YNdata = {0, 1}Ndata (0
corresponds to the first class and 1 to the second one). Multi label classification corresponds
to the case where YNdata = {0, ..., dlabel}Ndata , where dlabel is the number of classes. The
second type of problems is regression problems where the labels y are continuous outputs. In
this case YNdata = (Rdlabel)Ndata , where dlabel represents the dimension of the outputs.

We assume that the elements of the data set are independent samples of an intractable
distribution denoted by φ, namely (xi, yi) ∼ φ for any 1 6 i 6 Ndata. In machine learning, the
goal of supervised learning is, given a data set (x,y), to construct a predictor which will predict
an output y from a new given input x. The idea is to learn a function f : X → Y, mapping
inputs to outputs, such that the expectation with respect to φ of some loss function, denoted
by Lf , is minimized. The loss function quantifies the quality of the prediction provided by f .
Since the distribution φ is intractable, and we only have access to a sample of φ, a reasonable
approximation to the expectation of the loss function with respect to the distribution φ is
given by

Eφ[Lf (X,Y)] ≈ 1

Ndata

Ndata∑
i=1

Lf (xi, yi).

This approximation is justified by the law of large numbers. For example, in a regression
problem, one can consider the least square loss function, given by

Lf (x, y) =
1

2
(f(x)− y)2, (1.2)

for x ∈ X and y ∈ Y. For a binary classification problem, a well adapted loss function is the
binary cross entropy loss, which reads

Lf (x, y) = y log(f(x)) + (1− y) log(1− f(x)), (1.3)

for x ∈ X and y ∈ Y. One way to understand this loss is by considering that the output of
the predictor f represents the probability for an input x ∈ X to be in class 1. The binary
cross entropy loss is the negative of the log of the likelihood of the data point. For multi label
classification, one can use the generalization given by categorical cross entropy. In this case,
the predictor’s output are probabilities to be in each one of the classes.

Neural networks [81, 82, 16] are a class of functions (predictors) that have shown a great
ability to solve machine learning problems. They can be defined as parametric functions
Nθ : X → Y parametrized by θ ∈ Rd. In this work we focus on feed–forward, fully connected

18 Chapter 1. Introduction

neural networks. These can be defined as successive compositions of linear transformation
and non–linear activation functions. A neural network is typically composed of K stacked
hidden layers. Each layer ` ∈ {1, ...,K} takes an input xin,` ∈ Rd` and produce an output
xout,` ∈ Rd`+1 such that

xout,` = σ`(b` +W`xin,`),

where b` ∈ Rd`+1 is referred to as bias, W` ∈ Rd`+1×d` is refered to as weight and σ` : Rd`+1 →
Rd`+1 is a non linear function called the activation function. For example one can use the
rectified linear function ReLU, which, for a vector z ∈ Rd`+1 , act componentwise as

(σ`(z))i = max(0, zi), (1.4)

for i ∈ {1, ..., d`+1}. It is clear that for ` = 1, the dimension of the input is d1 = ddata so that
the matrix W 1 should have ddata columns. The last layer depend on the problem at hand: (i)
for a regression problem, dK+1 = dlabel; (ii) for a binary classification problem dK+1 = 1; (iii)
for a multi label classification problem dK+1 = dlabel. The map Nθ can be recursively defined
as 

z1 = x,

zk = σ(bk−1 +W k−1zk−1), 2 6 k 6 K

Nθ(x) = σK(bK +WKzK).

(1.5)

The neural network’s parameters are composed of all the matrices and the biases, i.e. θ =
(W `, b`)16`6K . For neural networks, we denote the loss function by L(x, y, θ) instead of
LNθ(x, y).

Remark 1.2. Backpropagation [134] allows to easily compute the gradients of loss functions
with respect to the parameters. This makes neural networks a popular supervised learning
methods, since optimization algorithms (or sampling ones) requires the computation of the
gradient at each iteration.

Remark 1.3. If we use a neural network for binary classification, the activation function
used in the last layer is often chosen to be the sigmoid function given by

σK(z) =
exp(z)

1 + exp(z)
. (1.6)

This function is useful to encode probabilities as it has values in [0, 1]. For a new input x, the
predicted label is assigned as

y =

{
1 if Nθ(x) > 1/2,

0 if Nθ(x) < 1/2.
(1.7)

It can be generalized to a softmax function for multi label classification. Note however that
sigmoid functions should not be used as activation function for hidden layers because of the
so–called vanishing gradient problem: in the region where the sigmoid is flat, the gradient
vanishes, and the learning stops.

Remark 1.4. We should emphasize that other types of neural networks exist. Among the
most important ones, one can cite convolutional neural networks (CNNs) [81, 134] that are
more adapted to image processing, and recurrent neural networks [134, 159] that are more
adapted to sequential data as encountered for example in speech recognition and natural lan-
guage processing. We introduce CNNs more precisely and use them in Chapter 4.

1.1. Motivating sampling problems 19

Optimization. In the neural network context, one way to determine a good predictor is to
solve the following optimization problem

θ∗ = arg min
θ∈Rd

Eφ[L(X,Y, θ)].

A reasonable approximation to θ∗ is to minimize the empirical loss, which reads

θ∗ ≈ θ̂∗Ndata
= arg min

θ∈Rd

1

Ndata

Ndata∑
i=1

L(xi, yi, θ). (1.8)

Once the parameters of the neural network are defined, for a given input x, the predicted label
is given by y = N

θ̂∗Ndata

(x), where by an abuse of notation we denote by θ̂∗Ndata
an approximate

solution of problem (1.8). Popular algorithms to approximate the solution of (1.8) are stochas-
tic gradient descent (also known as the Robbins-Monro algorithm) [126] and Adam [70]. The
data set is generally split in two parts: a first part is used to train the model parameters, while
the second one allows to test the results and confirm that the minimum obtained for (1.8)
generalizes well to unseen data. Splitting the data set also allows to test different hyperpa-
rameters for a model and select the one that generalizes best. To compensate for the limited
data size, one can use cross validation techniques, see [16]. One of the main issues when
considering predictors based on (1.8) is overfitting. The network can perform very poorly
outside the training set x even when the problem (1.8) is solved perfectly. Several ways to
avoid overfitting have been introduced. One can cite for example early stopping [27] where the
algorithm is stopped once the loss function starts increasing on the test set. Another popular
method is Dropout [141], where units (elements of the matrices and the biases) are randomly
dropped during the training. One can also use regularization techniques, by adding a penalty
term to the problem (1.8). This term can be the `1 or `2 norm of the training parameters.
This approach is known as weight decay [78, 62].

Sampling. The Bayesian paradigm has been introduced in the neural network framework
as an alternative to optimization to avoid overfitting and asses the uncertainty of the param-
eters [111]. The idea is to consider the parameters of the neural network as random variables
and to infer their posterior distribution π(θ|x,y) which is given, considering Bayes’ rule, by

π(θ|x,y) ∝ Pprior(θ)
N∏
i=1

Pelem(yi, xi|θ), (1.9)

where Pprior(θ) is the prior distribution on the vector of parameters and Plikelihood the likeli-
hood of the data, given in term of loss function by

Pelem(x, y|θ) ∝ exp(−L(x, y, θ)).

In this context, for a given input x, the label is predicted for a binary classification problem
based on the quantity

p(y|x,x) =

∫
Θ
Nθ(x)π(θ|x) dθ,

as

y =

{
1 if p(y|x,x) > 1/2,

0 if p(y|x,x) < 1/2.
(1.10)

For regression problems,

y =

∫
Θ
Nθ(x)π(θ|x) dθ.

20 Chapter 1. Introduction

As in Section 1.1.1, the goal here is to sample from the posterior probability density and to
compute averages with respect to it. We refer to Section 1.2 for an overview of some sampling
methods, and to Chapter 3 for an analysis of minibatching error on the posterior distribution
through the numerical analysis of the covariance matrix of the stochastic estimator of the
gradient and the use adaptive Langevin dynamics to sample from the posterior probability
measure in the BNNs framework.

1.1.3 Sampling rare events: transition paths

The last problem we consider in this manuscript is the sampling of certain trajectories of
stochastic dynamics. Consider a stochastic differential equation given by{

dyt = b(t, yt) dt+ σ(t, yt)dWt,

y0 given,
(1.11)

where yt ∈ Rd, b : R×Rd → Rd, σ : R×Rd → Rd×d′ andWt ∈ Rd′ is a standard d′-dimensional
Wiener process. Under mild conditions on b and σ, one can prove the existence of a unique
solution of (1.11) (see for instance [69, 123]).

A trajectory is a realization of the stochastic process (yt)06t6T . For certain choices of b
and σ, that will be made explicit first in Section 1.2.2.2 and with more details in Chapter 4,
a trajectory such that y0 ∈ A ⊂ Rd and yT ∈ B ⊂ Rd can be a rare event, and hence can be
difficult to simulate in practice. In our setting, we consider that σ is constant and b = −∇θV ,
where V represent some potential energy function. In this case, the system tends to stay
trapped in some regions of the phase space, namely in the vicinity of local minima of V .
Typically, A and B would be neighborhoods of two distinct local minima of V . The goal is
then to efficiently simulate transition paths, defined as trajectories which, from a fixed initial
condition y0 located in the initial potential well A, reach the set B before time T > 0.

This problem has attracted a lot of attention and many methods have been developed
to efficiently sample transition paths. One can distinguish two major classes: importance
sampling techniques [47, 25, 94] and splitting techniques [34, 8, 28, 29]. We applied generative
methods from machine learning literature to sample transition paths. More details are given
in Section 4.1 (with a summary of the contributions of this thesis in Section 1.4.3).

1.2 Review of some sampling techniques

In this section, we review some of the most popular Markov chain Monte Carlo methods
to simulate from a given probability measure. We only consider probability distributions
having a density with respect to the Lebesgue measure. The stochastic differential equations
presented in this section were originally introduced in the context of molecular dynamics to
sample from the Boltzmann–Gibbs distribution given by

µ(dθ) =
1

Z
exp (−βV (θ)) dθ, (1.12)

where Z is the normalization constant, V the potential energy of the system and β is propor-
tional to the inverse temperature of the system. The normalization constant Z is generally
intractable. All the methods presented in this section however have the advantage of only
requiring the knowledge of µ up to a normalization constant. We therefore keep the notation
µ for the target probability measure in this section for convenience. For a given probability
measure π with a density with respect to the Lebesgue measure, the reader can set β = 1 and
V = − log π to recover the desired probability measure.

This section is organized as follows. We start in Section 1.2.1 by recalling some mathe-
matical tools for Markov chains, and then introduce the Metropolis–Hastings algorithm. In

1.2. Review of some sampling techniques 21

Section 1.2.2, we recall some mathematical tools for stochastic differential equations and in-
troduce important building blocks for the extended Adaptive Langevin dynamics (Chapter 2),
namely the overdamped Langevin dynamics (Section 1.2.2.2), the Langevin dynamics (Sec-
tion 1.2.2.3) and the adaptive Langevin dynamics (Section 1.2.2.4). Finally, in Section 1.2.3,
we briefly list other popular sampling methods.

1.2.1 Metropolis–Hastings algorithms

Background material on Markov chains. Let us first recall some important definitions
and properties for Markov chains. A Markov chain is a discrete-time sequence of random
variables (θm)m∈N taking values in some space Θ, and which satisfies the Markov property,
namely the future state θm+1 is independent of the past and only depend on the present
stateθm. More precisely a Markov chain should satisfy

P(θm+1 ∈ A|θm, ..., θ0) = P(θm+1 ∈ A|θm).

In this case θm+1 is distributed according to the transition kernel P (θm, dθ) defined as
P (θ,A) = P(θm+1 ∈ A|θ) for a measurable set A ⊂ Θ. The transition kernel of the Markov
chain is a probability measure, meaning that it is normalized∫

Θ
P (θ, dθ′) = 1, (1.13)

and positive: for any bounded measurable function φ such that φ(θ) > 0 for P -almost all θ,
it holds ∫

φ(θ′)P (θ, dθ′) > 0. (1.14)

For a probability measure µ, the probability µP is defined as

(µP)(dθ′) =

∫
Θ
P (θ, dθ′)µ(dθ). (1.15)

The probability measure µ is said to be invariant for the Markov chain with the transition
kernel P if µP = µ. In other words, µ is invariant if, for any θ0 ∼ µ, one has θm ∼ µ for
all m > 0. For two transition kernels Q,R, we define RQ(θ,A) =

∫
ΘQ(θ′, A)R(θ, dθ′) for a

measurable set A ⊂ Θ. The transition kernel Pn for n > 1 is then defined as Pn = PPn−1 =
Pn−1P . To prove the uniqueness of an invariant probability measure, one needs to prove
that the Markov chain is (aperiodically) irreducible, meaning that, for any θ0 ∈ Θ and for all
measurable sets A ⊂ Θ such that µ(A) > 0, there exist n for which Pn(θ0, A) > 0. In other
worlds, starting from a given state, every state can be reached.

Before presenting the Metropolis–Hasting algorithm, let us recall two important results
(see for instance [106]).

Theorem 1.5. Let µ be a probability measure. If µ satisfies the detailed balance condition,
that is

P (θ, dθ′)µ(dθ) = P (θ′, dθ)µ(dθ′), (1.16)

then µ is an invariant probability measure for the Markov chain.

The following theorem can be seen as an equivalent of the law of large numbers for Markov
chains.

Theorem 1.6 (pathwise ergodicity). Let µ be a probability density. If µ is invariant and the
Markov chain is aperiodic and irreducible, then, for any bounded measurable function φ and
for µ-almost all initial conditions θ0,

lim
n→∞

1

n

n∑
i=1

φ(θi) = Eµ[φ(θ)], a.s.

22 Chapter 1. Introduction

Note that the expectations on the right hand side of the previous equality is computed
with respect to the probability measure µ.

Metropolis–Hastings algorithm. The Metropolis–Hastings algorithm was introduced in [104,
58] to sample from a given probability measure µ. It compound to a Markov chain (θn)n∈N
reversible with respect to µ. This requires a transition kernel T (θ, dθ) with respect to which
we can generate random variables. The pseudo-code of the Metropolis–Hastings algorithm is
given in Algorithm 1. The main idea of the algorithm is, at each step, to propose moves θ̃k+1

according to T (θk, ·), which are then accepted with probability r(θ̃k+1, θk) given by

r(θk, θ̃k+1) = min

(
1,
T (θ̃k+1, dθk)µ(dθ̃k+1)

T (θk, dθ̃k+1)µ(dθk)

)
. (1.17)

When a move is not accepted, the previous one is recounted contrarily to the "classical"
rejection method.

Algorithm 1 Metropolis-Hastings algorithm
Require: θ0

for k > 0 do
Generate θ̃k+1 from θk according to the transition kernel T (θk, ·)
Compute r(θ̃k+1, θk) as defined in (1.17)
Draw a random variable Uk following a uniform law on [0, 1]
if Uk < r(θk, θ̃k+1) then
θk+1 = θ̃k+1

else
θk+1 = θk

end if
end for

The transition kernel of the resulting Markov chain is given by

P (θ, dθ′) = r(θ, θ′)T (θ, θ′)µ(dθ′) +R(θ)δθ(dθ
′), (1.18)

where
R(θ) =

∫
Rd

(1− r(θ, θ′))T (θ, θ′)µ(dθ′).

One can prove (see for instance [93]) that the transition kernel of the Markov chain obtained
by the Metropolis–Hastings algorithm satisfies the detailed balance defined in (1.16) for µ.
Using Theorem 1.5, one can prove that µ is an invariant probability measure for the transition
kernel (1.18). The detailed balance with respect to µ is ensured by the fact that the function
g(u) = min(1, u) satisfies the property g(u) = ug(1

u). The choice g(u) = min(1,u) is optimal
in terms of asymptotic variance [119]. Irreducibility, and therefore pathwise ergodicity depends
on the choice of the transition kernel T .

The efficiency of the Metropolis–Hastings algorithm is a trade off between large moves
that allow to efficiently explore the phase space but are more likely to be rejected, and small
moves that are more likely to be accepted but are more correlated to previous ones.

A key element in the Metropolis–Hastings algorithm is the transition kernel T . We briefly
present the transition kernel similar to the one used in the original paper [104], which cor-
responds to what is nowadays called the random walk algorithm. We also present in Sec-
tion 1.2.2.2 a more recent transition kernel, leading to the so-called Metropolis adjusted
Langevin dynamics. Another popular option is the Hamiltonian Monte Carlo algorithm [43]
for which the proposals are generated by a numerical integration of the Hamiltonian dynamics.

1.2. Review of some sampling techniques 23

Random Walk. The random walk Metropolis algorithm uses a Gaussian centered on the
current state as a proposal distribution, namely the proposal probability kernel is given by

T (θ, dθ′) =
1

(σ
√

2π)d
exp

(
−|θ

′ − θ|2

2σ2

)
dθ′,

where σ > 0 is a given parameter. In this case, the proposed moves are

θ′ = θ + σG,

where G is a standard d-dimensional Gaussian random variables. The (one-step) irreducibility
of the associated chain is easily proved for connected domains. We refer to [130] and references
therein for insights on the optimal choice of σ and optimal acceptance rate, in the simple
situation where the target measure is tensorized. In this very specific case, the optimal
acceptance/rejection rate should 0.234 and σ scales as the inverse of the dimension.

1.2.2 Stochastic differential equations

In this section, we start by giving some elements on stochastic differential equations (SDE) in
Section 1.2.2.1. We then recall various SDEs used to sample from probability measure, namely
the overdamped Langevin dynamics (Section 1.2.2.2), the Langevin dynamics (Section 1.2.2.3)
and the adaptive Langevin dynamics (Section 1.2.2.4).

1.2.2.1 Some elements on stochastic differential equations

We describe in this section some general features of stochastic differential equations, elements
on discretization and weak errors taken from Chapter 2.

We consider a stochastic differential equation of the general form [114, 74, 49]{
dθt = b(θt) dt+ σ(θt)dWt,

θ0 given,
(1.19)

where θt ∈ Rd, b : R×Rd → Rd, σ : R×Rd → Rd×d′ andWt ∈ Rd′ is a standard d-dimensional
Wiener process. We define the evolution operator of the Markov process (1.19) as follows: for
a given test function φ,

Ptφ(θ) = E[φ(θt)|θ0 = θ],

where the expectation is over all realizations of (1.19) starting from the initial condition θ.
We recall that the generator of the semi-group satisfies

lim
t→0

Pt − Id

t
φ = Lφ.

One can prove that the generator of (1.19) is the differential operator

L = b · ∇θ +
1

2
σσT : ∇2

θ =

d∑
i=1

bi∂θi +
1

2

d∑
i,j=1

(σσT)i,j∂θi∂θj ,

where ∇θ stands for the gradient with respect to the variable θ, ∇2
θ stands for the Hessian

with respect to the variable θ and : stands for the Frobenius inner product. An appropriate
domain for the unbounded operator L is for instance C2(Rd). In particular, using the Itô
formula, one can show that the generator satisfies, for φ ∈ C2(Rd) with compact support,

d

dt
E[φ(θt)|θ0 = θ] = Lφ(θ). (1.20)

24 Chapter 1. Introduction

Invariant probability measure. Let us denote by ψ(t, θ) the law of the process defined
by (1.19) at time t. The Fokker Planck equation (which can be derived from (1.20)) charac-
terizes the evolution of the law of the process:

∂tψ = L†ψ, (1.21)

where L† is the adjoint of L on L2(Rd). From this equality follows an important characteri-
zation of an invariant probability measure. For a given test function φ, µ is invariant for the
SDE (1.19) if ∫

Rd
Lφdµ = 0. (1.22)

This equality can be obtained by noticing that for µ an invariant probability measure, ∂tµ = 0
so that L†µ = 0 by (1.21). A useful property to characterize an invariant probability measure is
reversibility. The SDE (1.19) is said to be reversible with respect to the probability measure µ
if the generator is self-adjoint on L2(µ), i.e. for two test functions φ1, φ2,∫

Rd
φ1(Lφ2) dµ =

∫
Rd

(Lφ1)φ2 dµ. (1.23)

We can recover (1.22) by setting φ1 = 1 in (1.23). Under appropriate conditions on b and σ
(for example d = d′ and σ is of full rank), one can prove pathwise ergodicity [73]: for a given
test function φ and an initial condition θ0,

lim
t→+∞

φ̂t = lim
t→+∞

1

t

∫ t

0
φ(θs)ds = Eµ[φ(θ)] a.s. (1.24)

A central limit theorem for the time averages φ̂t holds as soon as the Poisson equation −LΦ =
φ − Eµ[φ] such that

∫
Rd Φ dµ has a solution in L2(µ) for an observable φ ∈ L2(µ) (see [14]).

Using Itô’s formula, one can show that the asymptotic variance in the central limit theorem
can be written as

σ2
φ = −2

∫
Rd

Φφdµ

Discretization and error estimates. In general, SDEs such as (1.19) cannot be solved
exactly and need to be discretized. Denote by (θm)m>0 a time discretization of the SDE with a
fixed time step ∆t (so that θm is an approximation of θm∆t). We assume that the Markov chain
corresponding to the time discretization of the SDE admits a unique invariant probability
measure, denoted by µ∆t. This is for instance the case for Langevin-type dynamics when the
drift of the dynamics is globally Lipschitz or when Lyapunov conditions are satisfied [101].
For a given observable φ, the target expectation

Eµ(φ) =

∫
Rd
φ(θ)µ(θ) dθ

is approximated by Eµ∆t(φ), which is itself typically estimated by the trajectory average

φ̂∆t,Niter =
1

Niter

Niter∑
m=1

φ(θm).

The total error on averages with respect to µ can then be written as:

φ̂∆t,Niter − Eµ(φ) = (Eµ∆t(φ)− Eµ(φ)) +
(
φ̂∆t,Niter − Eµ∆t(φ)

)
.

The first term on the right hand side corresponds to the bias on the invariant probability
measure resulting from taking finite step sizes. The second term in the error has two origins:

1.2. Review of some sampling techniques 25

(i) a bias coming from the initial distribution of θ0 when this random variable is not distributed
according to µ∆t; (ii) a statistical error, which is dictated by the central limit theorem for Niter

large.
We typically focus in this manuscript on the bias on the invariant probability measure,

which can be bounded using the weak order of the scheme, provided some ergodicity conditions
are satisfied. Recall that a numerical scheme is of weak order s if for any smooth and compactly
supported function φ and final time T > 0, there exists C ∈ R+ such that

∀m ∈ {1, . . . , dT/∆te}, |E[φ(θm∆t)]− E[φ(θm)]| 6 C∆ts. (1.25)

When this condition holds, and under appropriate ergodicity conditions (see [146] for a pio-
neering work, as well as [145, 101, 2, 87, 22] for subsequent works on Langevin-like dynamics),
the following bound is obtained on the bias on the invariant probability measure of the nu-
merical scheme: For any smooth and compactly supported function φ, there exists ∆t? > 0
and L such that

∀∆t ∈ (0,∆t?], |Eµ∆t(φ)− Eµ(φ)| 6 L∆ts. (1.26)

In order to write a sufficient local consistency condition to obtain an estimate such as (1.26),
we introduce the evolution operator P∆t associated with the numerical scheme at hand, defined
as follows: For any smooth and compactly supported function φ,

(P∆tφ) (θ) = E
[
φ
(
θm+1

) ∣∣ θm = θ
]
.

Under appropriate technical conditions, including moment conditions on the iterates of the nu-
merical scheme (see [107, Theorem 2.1] for a precise statement), a sufficient but not necessary
condition for (1.26) to hold is

P∆t = e∆tL +O(∆ts+1), (1.27)

where (etLφ)(θ) = E[φ(θt) | θ0 = θ] is the evolution operator associated with the underlying
SDE. Let us emphasize that (1.27) is not a necessary condition for (1.26) to hold. For instance,
some of the schemes suggested in [3] or the so–called Geometric Langevin algorithm [22] are of
weak order 1 but satisfy (1.26) with s > 2. Here and in all this manuscript, the above equality
has to be understood as follows: For any smooth and compactly supported function φ, there
exist ∆t? > 0 and K ∈ R+ such that, for any ∆t ∈ (0,∆t?], there is a function Rφ,∆t for
which

P∆tφ = e∆tLφ+ ∆ts+1Rφ,∆t, sup
∆t∈(0,∆t?]

sup
θ∈Rd
|Rφ,∆t(θ)| 6 K;

see for instance [94, Section 3.3] for a more precise discussion of this point.

Remark 1.7. Let us emphasize that one can also analyze the strong error which characterizes
the error on the trajectory between the discretized and the continuous processes. However, we
focus in this thesis on weak error estimates instead of strong errors since we are interested in
averages with respect to the invariant measure.

1.2.2.2 Overdamped Langevin dynamics

The overdamped Langevin dynamics is introduced in the molecular dynamics context to
describe the evolution of positions θ ∈ Rd of a system. It is given by

dθt = −∇V (θt) dt+
√

2β−1 dWt, (1.28)

where Wt is a standard d-dimensional Wiener process. We refer to [93, 86, 118, 94] for more
details about the overdamped Langevin dynamics. We recall here some important properties.
The generator associated with (1.28) reads

L =
1

β
∆−∇V · ∇. (1.29)

26 Chapter 1. Introduction

A simple calculation shows that the Boltzmann–Gibbs distribution µ(dθ) = Z−1 exp(−βV (θ)) dθ
is invariant under the dynamics (1.28). This can be seen as a consequence of the fact that
the generator (1.29) is self adjoint on L2(µ): for any smooth functions φ1, φ2 with compact
support, it holds∫

Rd
φ1(Lφ2) e−βV =

1

β

∫
Rd
φ1div

(
e−βV∇φ2

)
= − 1

β

∫
Rd
∇φT1∇φ2 e−βV .

Using the fact that the generator is elliptic, one can prove the pathwise ergodicity expressed
as (1.24). We refer to [10, 94] for mathematical properties of the dynamics, in particular the
convergence in L2(µ) of the semi-group etL. In practice, the overdamped Langevin dynamics
is often discretized using the well-known Euler–Maruyama numerical scheme with a fixed time
step ∆t > 0, which reads

θm+1 = θm −∇V (θm)∆t+
√

2∆tGm, (1.30)

where Gm is a vector of i.i.d. standard d-dimensional Gaussian random variables. One
can prove that the discretization of the overdamped Langevin dynamics has a weak error of
order 1, see [74, 107]. As a consequence, assuming that the dynamics (1.30) admits an invariant
probability measure µ∆t (see for instance [102]), and under some technical conditions, there
exists, for any test function φ, a constant Cφ ∈ R+ such that∣∣∣∣∫

Θ
φ(θ)µ∆t(dθ)−

∫
Θ
φ(θ)µ(dθ)

∣∣∣∣ 6 Cφ∆t.

Metropolis Adjusted Langevin algorithm. One way to avoid the numerical bias due
to the finiteness of the time step is to use a Metropolis–Hastings acceptance/rejection at each
time-step [23]. The resulting algorithm is known as Metropolis adjusted Langevin algorithm
(MALA) [131]. In this case, the Markov chain admits µ as an invariant probability measure
whatever the choice of time step ∆t > 0. This can be seen as a Metropolis–Hastings algorithm
for which the transition kernel T is given by

T (θ, dθ′) =

(
β

4π∆t

)d/2
exp

(
−β ‖θ

′ − θ + ∆t∇θV (θ)‖2

4∆t

)
dθ′.

In this case, the acceptance/rejection ratio is given by

r(θ, θ′) = exp(β(V (θ)− V (θ′))).

It is clear that if the proposed move θ′ is such that V (θ′) 6 V (θ), the movement is always
accepted. Other ways transition are less likely. In [130] (see also references therein), provided
that we start under the stationary distribution, and that it is tensorized and satisfies some
technical conditions, the authors give insights on the optimal choice of ∆t and rules about the
acceptance rate. Concretely, one should aim for a rate 0.574 and ∆t scales as d−1/3, leading
to a faster convergence to stationarity than the random walk because the optimal time step
can be chosen much larger than for the random walk Metropolis algorithm as the dimension
increases.

1.2.2.3 Langevin dynamics

It has been observed in practice that a better sampling of the Boltzmann–Gibbs probability
measure µ is provided by the Langevin dynamics [26]. This dynamics introduces some extra
inertia in the evolution. It is formulated for an extended configuration space with a momentum
vector p conjugated to θ. Let

τ(dq dp) = Z−1 exp(−βH(θ, p))dθ dp = µ(dθ)κ(dp),

1.2. Review of some sampling techniques 27

where

κ(dp) =

(
β

2π

)d/2
exp

(
−β p

TM−1p

2

)
dp.

A motivation to sample from τ is that its marginal in the variable θ is µ. The marginal in
the variable p is a standard normal distribution from which one can easily sample. Langevin
dynamics can be seen as a perturbation of Hamiltonian dynamics. The latter describe the
time evolution of mechanical systems as

dθ

dt
= ∇pH(θ(t), p(t)),

dp

dt
= −∇θH(θ(t), p(t)),

(1.31)

where H is the Hamiltonian function which corresponds to the total energy of the system. It
is typically the sum of the standard kinetic energy and the potential energy V :

H(θ, p) =
pTM−1p

2
+ V (θ),

where M ∈ Rd×d is called the mass matrix. We say in this case that the Hamiltonian is
separable. One of the properties of (1.31) is that the Hamiltonian is preserved, in other
words H(θ0, p0) = H(θt, pt) for all t > 0. We refer to for example to [89, 55] for more
details on properties of Hamiltonian dynamics and its discretization. In order to sample the
probability measure τ with density proportional to e−βH(q,p), which admits µ as marginal
distribution in the variable θ, we recall the Langevin dynamics, which is a perturbation of
the Hamiltonian dynamics where some fluctuation/dissipation mechanism is added to the
evolution of the momenta. It is given by

dθt = pt dt,

dpt = −∇V (θt) dt− ΓM−1pt dt+

√
2

β
Γ1/2 dWt,

(1.32)

where Γ ∈ Rd×d is a positive definite symmetric matrix which represents the friction param-
eter. We refer to [118, 86, 94] for more details and a complete analysis of the dynamics. We
recall here some important properties of the dynamics. From now on, we set M = Id to
simplify the presentation. The generator of the dynamics (1.32) can be written as

Llan = Lham + γLFD , (1.33)

where
Lham = −∇V T∇p + pT∇θ, LFD = −pTΓ∇p + Γ : ∇2

p. (1.34)

A simple calculation reveals that

L∗ham =
1

β

d∑
i=1

∂θi∂
∗
pi − ∂pi∂

∗
θi

= −Lham,

L∗FD = − 1

β

d∑
i=1

∂∗pi∂pi = LFD,

when all operators are considered as operators on L2(τ). The probability measure τ is then
invariant for the dynamics (1.32) in view of (1.23). Pathwise ergodicity is proved for τ using
the fact that the generator is hypoelliptic [73]. This allows to deduce that for a given test
function φ,

lim
t→∞

1

t

∫ t

0
φ(θs) ds =

∫
Rd
φ(θ)µ(θ) dθ, a.s.

28 Chapter 1. Introduction

Remark 1.8. Let us mention that overdamped Langevin dynamics can be obtained from
Langevin dynamics by two limiting processes: (i) when the friction Γ = γId and γ → ∞
with time rescaled as γt; (ii) when M = mId and m→ 0. See [93, Section 2.2] for precisions.

Discretization of the dynamics. To discretize Langevin dynamics, one can use splitting
schemes [3, 87, 86]. The idea is to split the generator into elementary parts whose associated
elementary evolution dynamics can be analytically integrated. The weak error order of nu-
merical schemes is determined by establishing estimates such as (1.27). The Baker–Campbell–
Hausdorff formula [55] is generally used to obtain such estimations. For two operators A, B,
this formula reads

e∆tAe∆tB = e∆tC∆t

where

C∆t = ∆t(A+B) +
∆t2

2
[A,B] +O(∆t3),

with
[A,B] = AB −BA

the commutator between the operators A and B. For the Langevin dynamics, the generator
can be separated into three parts as

Llan = L1 + L2 + L3, (1.35)

with
L1 = −∇θV T∇p, L2 = pT∇θ, L3 = −pTΓ∇p +

1

β
Γ : ∇2. (1.36)

The elementary generator L1 is associated with the elementary differential equation dpt =
−∇θV (θt) dt, and can be analytically integrated over a time ∆t as

pm+1 = pm −∆t∇V (θm) .

The elementary generator L2 is associated with the elementary differential equations dθt =
pt dt and can be analytically integrated over a time ∆t as

θm+1 = θm + ∆t pm.

The elementary generator L3 is associated with the Ornstein–Uhlenbeck process dpt = −Γpt dt+√
2β−1Γ1/2 dWt, and can also be analytically integrated over a time t as

pt = e−Γtp0 +

√
2

β

t∫
0

e−(t−s)ΓΓ1/2 dWs ∼ N
(
αtp0,

Id − α2t

β

)
, αt = e−Γt.

First order schemes are based on a Lie-Trotter splitting, encoded by evolution operators such
as

P∆t = e∆tL3e∆tL2e∆tL1 . (1.37)

Of course other choices of orderings of L1, L2 and L3 are possible. The numerical scheme
associated with (1.37) reads

pm+ 1
2 = pm −∆t∇V (θm) ,

θm+1 = θm + ∆t pm+ 1
2 ,

pm+1 = α∆t p
m+ 1

2 +

(
Id − α2∆t

β

)1/2

Gm,

(1.38)

1.2. Review of some sampling techniques 29

where Gm is a vector of i.i.d. standard d-dimensional Gaussian random variables. Second-
order schemes are obtained by a Strang splitting of the elementary evolutions, such as

P∆t = e∆tL3/2e∆tL2/2e∆tL1e∆tL2/2e∆tL3/2. (1.39)

Here as well, various other choices of orderings can be considered, see for instance [85, 87, 86]
for a detailed analysis of the merits of the various options. The numerical scheme associated
with (1.39) reads 

pm+ 1
3 = α∆t/2 p

m +

(
Id − α∆t

β

)1/2

Gm,

θm+ 1
2 = θm +

∆t

2
pm+ 1

3 ,

pm+ 2
3 = pm+ 1

3 −∆t∇V
(
θm+ 1

2

)
,

θm+1 = θm+ 1
2 +

∆t

2
pm+ 2

3 ,

pm+1 = α∆t/2 p
m+ 2

3 +

(
Id − α∆t

β

)1/2

Gm+ 1
2 ,

where Gm+ 1
2 and Gm are vectors of i.i.d. standard d-dimensional Gaussian random variables.

Remark 1.9. In fact, one can reach second order accuracy on the invariant measure using a
first order splitting between the Hamiltonian part (for which one uses a Verlet scheme [152])
and the Ornstein–Uhlenbeck part [22, 3]. These schemes, known as Geometric Langevin Algo-
rithm, are encoded by evolution operators such as P∆t = e∆tL1/2e∆tL2e∆tL1/2e∆tL3. As pointed
out before, such schemes do not satisfy (1.27).

1.2.2.4 Adaptive Langevin dynamics

We recall in this section the adaptive Langevin dynamics (AdL) [65, 39] which allows to sample
from the Boltzmann–Gibbs distribution when the magnitude of diffusion in the Brownian
motion is unknown. The extended version of Adaptive Langevin dynamics introduced in [137]
(see Chapter 2) is build upon AdL.

AdL was first introduced in [65] to address the problem of sampling the canonical mea-
sure in computational statistical physics, i.e. the Boltzmann-Gibbs measure (1.12), while
correcting for extra fluctuation terms leading to a spurious heating of the system. It is a
combination of Nosé–Hoover (NH) dynamics [112, 63] and Langevin dynamics. We first recall
NH dynamics, then motivate AdL and discuss some of its properties, and finally give elements
on its numerical discretization.

Nosé–Hoover dynamics. Let us first introduce and recall some important properties of
NH dynamics. The NH thermostat allows to dissipate the extra kinetic energy of the system,
or on the contrary increase the missing kinetic energy, by adding a control variable ξ ∈ R that
follows a negative feedback loop. This variable can be interpreted as some variable friction
coefficient (which can take negative values). More precisely, the Nosé–Hoover dynamics is
given by 

dθt = pt dt,

dpt = −∇V (θt) dt− ξtpt dt,

dξt =
1

η

(
|p|2 − d

β

)
dt.

(1.40)

One way to interpret the dynamics (1.40) is to see it as the superposition of a Hamiltonian
dynamics to which an (anti)friction term is added to the evolution of momenta thanks to the

30 Chapter 1. Introduction

control variable ξ. The friction is adjusted following a negative feedback loop to preserve the
Boltzmann–Gibbs measure. Namely, if |p|2 > d/β, the kinetic energy is larger than what it
should be in average under the probability measure (1.12), so the friction is increased, which
ends up decreasing p and decreasing the kinetic energy. We can use the same line of argument
for the opposite case when the kinetic energy is smaller than the target average value, in
which case antifriction makes sure that the kinetic energy increases.

In order to make the above formal discussion more rigorous, we prove using the generators
of (1.40) that the Nosé–Hoover dynamics preserves the Boltzmann–Gibbs distribution, as
made precise in the following result.

Lemma 1.10. The probability measure

νNH(dθ dp dξ) = µ(θ)κ(dp)%(dξ) dθ, (1.41)

with κ is redefined as

κ(dp) =

(
β

2π

)d/2
exp

(
−β |p|

2

2

)
dp,

and

%(dξ) =

√
η

2π
exp

(
−ηξ

2

2

)
dξ,

is invariant by the Nosé–Hoover dynamics (1.40).

The marginal of νNH in the variable θ is µ, so that the Nosé–Hoover dynamics preserves
the Boltzmann–Gibbs measure. Let us emphasize that, although the dynamics leaves the
probability measure (1.41) invariant, it is in general not ergodic for this measure, see [65, 83].
We give some elements of the proof following the approach used in [90, Section 2], remaining
however brief since a very similar proof is written with more details in Section 2.3.2.1 of
Chapter 2. To write the proof of lemma 1.10, we introduce the generator of the dynamics,
which can be decomposed as

LNHd = Lham + LNH, (1.42)

where Lham is given in (1.34), and

LNH = −pT ξ∇p +
1

η

(
|p|2 − d

β

)
∂ξ.

Proof. We use the characterization of invariant probability measure given by (1.22). It suffices
to show that, for all smooth and compactly supported functions φ,∫

Θ
LNHdφdνNHd =

∫
Θ
φ (L∗NHd1) dνNHd = 0, (1.43)

and a similar equality with LNHd replaced by Lham. In these equalities, L∗NHd is the adjoint
of LNHd on L2(νNH). Simple computations based on integration by parts show that ∂∗θi =
−∂θi − ∂θiV , ∂∗pi = −∂pi + pi, ∂∗ξ = −∂ξ + ηξ. It can then be easily shown that Lham and
LNHd are antisymmetric. Moreover, LNHd1 = Lham1 = 0. The invariance of νNH therefore
follows from (1.43).

General formulation and motivation for Adaptive Langevin dynamics. Langevin
dynamics given by (1.32) is ergodic with respect to the Boltzmann–Gibs measure but cannot
dissipate excess kinetic energy, or add missing kinetic energy, because the friction coefficient
is fixed. The idea in [65] was to combine Langevin dynamics (with a scalar friction, namely

1.2. Review of some sampling techniques 31

Γ = γId, to simplify the discussion) and a Nosé–Hoover thermostat to sample from µ with a
variable friction. AdL as introduced in [65] reads

dθt = pt dt,

dpt = −∇V (θt) dt− ξtpt dt+
√

2σ dWt,

dξt =
1

η

(
|p|2 − d

β

)
dt.

(1.44)

One important property of AdL, which motivates its use in machine learning context [39], is
that one can sample from the Boltzmann–Gibbs distribution even when the diffusion term σ
is unknown (as discussed below). This is useful when the computation of the gradient is
corrupted in a way that extra noise of unknown magnitude is introduced. This extra noise
can be combined with the Brownian motion in Langevin dynamics as a single Brownian
motion of unknown magnitude σ. This explains why AdL is sometimes called stochastic
gradient Nosé–Hoover thermostat [39] in the machine learning literature. In this manuscript,
we consider a matricial version of AdL, where ξt ∈ Rd×d, namely

dθt = pt dt,

dpt = −∇V (θt) dt− ξtpt dt+
√

2A1/2 dWt,

d[ξt]i,j =
1

η

(
pi,tpj,t −

δi,j
β

)
dt, 1 6 i, j 6 d.

(1.45)

with A ∈ Rd×d an unknown positive definite symmetric matrix.

Invariant probability measure. The generator of the Adaptive Langevin dynamics (1.45)
can be decomposed as

LAdL,A = Lham + LFD + LNH, (1.46)

where Lham and LFD are given by (1.34) (upon replacing Γ by A in LFD) and

LNH = −pT (ξ −A)∇p +
1

η

∑
16i,j6d

(
pipj −

δi,j
β

)
∂ξi,j .

An easy adapation of Lemma 1.10 allows to prove that the AdL dynamics (1.45) admits the
following invariant probability measure (see [65, 39] for a proof, as well as Section 2.3.2.1 in
Chapter 2):

ν(dθ dp dξ) = µ(θ)κ(dp)ρ(dξ), (1.47)

where ρ has a form similar to % in (1.41) (upon shifting ξ by A):

ρ(dξ) =
∏

16i,j6d

√
η

2π
exp

(
−η

2
(ξi,j −Ai,j)2

)
dξi,j .

Here as well, the marginal probability measure of ν in the variable θ is µ. In contrast to
Nosé–Hoover dynamics, ergodicity can be proved here. Pathwise ergodicity holds by the
results of [73] since the generator (1.46) can be shown to be hypoelliptic. The mathematical
properties of AdL are investigated in [90] in the scalar case (namely, for the dynamics (1.44)).
The main result of the latter work is the exponential convergence in L2(ν) of the semi–group
etLAdL,A . Namely, under some growth assumptions on derivatives of the potential energy
function V , and assuming that µ satisfies Poincaré inequality, the following result holds: there
exist λ > 0 (depending on η and A) and a constant C ∈ R+ such that, for any φ ∈ L2(ν),

∀t > 0,

∥∥∥∥etLAdL,Aφ−
∫
φdν

∥∥∥∥
L2(ν)

6 Ce−tλ
∥∥∥∥φ− ∫ φdν

∥∥∥∥
L2(ν)

.

32 Chapter 1. Introduction

This implies in particular the uniquess of the invariant probability measure, and allows to
derive a central limit theorem for time averages along one realization of the dynamics with
bounds on the asymptotic variance of order O(max(σ, σ−1, ση, σ−1η−1)) for the scalar case of
AdL (1.44).

Discretization of the dynamics. We now describe how to construct a numerical scheme
to approximate the solution of AdL when A is known. We refer to Chapter 2 for numerical
schemes in the more interesting case when A is not known, for instance when the computation
of the gradient of the potential function is polluted by random errors. We consider the sym-
metric splitting scheme introduced in [90], which is based on the decomposition of (1.46) into
four elementary operators that can be analytically integrated. More precisely, we decompose
the generator as

LAdL,A = L1 + L2 + T3 + T4,

where L1 and L2 are given in (1.36), and

T3 =
1

η

∑
16i,j6d

(
pipj −

δi,j
β

)
∂[ξ]i,j , T4 = −pT ξ∇p +A : ∇2.

We consider the following evolution operator

P∆t = e∆tT4/2e∆tT3/2e∆tL2/2e∆tL1e∆tL2/2e∆tT3/2e∆tT4/2.

When A = aId, the numerical scheme is given by

pm+ 1
2 = e−∆tξm/2pm +

[
a(ξm)−1

(
Id − e−∆tξm

)]1/2
Gm,

ξm+ 1
2 = ξm +

∆t

2η

(
pm+ 1

2

(
pm+ 1

2

)T
− Id

)
,

θm+ 1
2 = θm +

∆t

2
pm+ 1

2 ,

p̃m+ 1
2 = pm+ 1

2 −∆t∇V
(
θm+ 1

2

)
,

θm+1 = θm+ 1
2 +

∆t

2
p̃m+ 1

2 ,

ξm+1 = ξm+ 1
2 +

∆t

2η

(
p̃m+ 1

2

(
p̃m+ 1

2

)T
− Id

)
,

pm+1 = e−∆tξm+1/2p̃m+ 1
2 +

[
a(ξm+1)−1

(
Id − e−∆tξm+1

)]1/2
Gm+ 1

2 ,

(1.48)

where Gm+ 1
2 and Gm are vectors of i.i.d. standard d-dimensional Gaussian random variables.

Remark 1.11. Let us emphasize that the term (ξm+1)−1
(

Id − e−∆tξm+1
)
in the integration

of the Ornstein–Uhlenbeck process is only valid when ξ is invertible. When ξ is singular or
close to singular, this should be understood through a limiting procedure as explained for the
scalar case in [90] and in Chapter 2. The procedure can be generalized to the matricial case
by spectral calculus.

Remark 1.12. Using the matricial version of AdL requires evolving a matricial friction in
Rd×d. This can be computationally expensive when d is large, especially since one needs to
compute the inverse of this matrix at each time step.

1.3. Sampling methods in the large data context 33

1.2.3 Other algorithms

The problem of sampling from a given probability measure is still a very active research
area, and a myriad of other algorithms than Metropolis–Hastings and discretization of SDEs
exist. Other MCMC algorithms include for example Gibbs samplers introduced in [52]. It is
based on updating separately the components of the Markov chain. The main disadvantage
of this method is that one needs to be able to sample from some marginals distributions of
the target probability measure. Another popular algorithm is the Hamiltonian Monte Carlo
method (initially named Hybrid Monte Carlo), introduced in [43], which uses a numerical
integration of the Hamiltonian dynamics as proposal for the Metropolis–Hastings algorithm.
The momenta are sampled at each iteration from the standard normal distribution. We refer
for example to [13, 26, 96, 45] for a mathematical analysis of the algorithm.

Another class of algorithms is variational inference [66], see also [17] for a review. The
main idea of variational inference algorithms is to approximate the target probability measure
by a simpler one, from which one can easily sample. The sampling problem becomes an
optimization problem. These types of algorithms are generally faster than MCMC methods,
but give no guarantee that one is sampling from the exact desired distribution. A less explored
area is to mix MCMC methods and variational inference algorithms, see for example [135].
Variational inference is also popular for to generative methods in machine learning community.
This is discussed in Chapter 4, where we use variational autoencoders as a generative method
to produce transition paths as discussed in 1.4.3.

1.3 Sampling methods in the large data context

All the methods introduced in Section 1.2 require the computation of either V or ∇V at
each iteration. In the Bayesian context where V = − log π, this means that either π and/or
its gradient need to be estimated at each iteration. The cost of computing these quantities
scales as the number of data points O(Ndata), and is often the computational bottleneck in
implementations of MCMC algorithms. In this section, we recall some methods from the
literature to reduce the computational time of MCMC methods in the Bayesian context when
the number of data points is large. The aim is to cut the cost of one iteration from O(Ndata)
to only a fraction of this cost. We first recall in Section 1.3.1 the minibatching method
used for MCMC methods based on the discretization of SDEs, and recall some important
results on the error introduced by minibatching on the target measure. We then briefly
review in Section 1.3.2 some methods to reduce the computational cost of Metropolis–Hastings
algorithms.

1.3.1 Methods based on estimators of the log-likelihood gradient

Using MCMC methods based on the discretization of SDEs to sample from the posterior
probability measure (as those presented in Section 1.2.2) requires, at each time step, the
computation of ∇θ log π(·|x). For π given by (1.1) or (1.9), the gradient reads

∇θ [log π(θ|x)] = ∇θ [logPprior(θ)] +

Ndata∑
i=1

∇θ [logPelem(xi|θ)] . (1.49)

The evaluation of this gradient has a computational cost scaling as O(Ndata), which is com-
putationally demanding when Ndata is large. We present an approach called minibatching, to
limit the cost to a fraction of O(Ndata) by approximating the gradient; and then discuss the
bias due to minibatching induced on the invariant probability measure actually sampled by
the numerical methods.

34 Chapter 1. Introduction

1.3.1.1 Minibatching

One way to limit the cost of evaluating (1.49) is to use an unbiased estimator based on a
mini-batch [126] of the complete data set to approximate the exact gradient. More precisely,
considering a minibatch of n points out of Ndata, the gradient of the posterior distribution is
approximated by

F̂n(θ) = ∇θ [logPprior(θ)] +
Ndata

n

∑
i∈In

∇θ [logPelem(xi|θ)] , (1.50)

where In is a random subset of size n generated by sampling uniformly indices from {1, ..., Ndata}.
There are various strategies to do so, which we now make precise. In the discussion below, all
expectations are with respect to realizations of In, the values of the parameters θ being fixed.

Sampling with replacement. If In is generated by sampling indices with replacement
from the set {1, ..., Ndata}, the computation of the variance of the estimator of the gradient
is straightforward: denoting by gi = ∇θ [logPelem(xi|θ)], it follows that

cov
(
F̂n(θ)

)
=
N2

data

n2
cov

(∑
i∈In

∇θ [logPelem(xi|θ)]

)
=
Ndata(Ndata − 1)

n
cov(g1). (1.51)

When sampling with replacement, it can occur that the same data point is used twice in the
computations of the gradient estimator F̂n. In this case, even for n = Ndata the gradient
estimator is noisy.

Sampling without replacement. If In is generated by sampling n indices without re-
placement from the set {1, ..., Ndata}, one can show that

cov
(
F̂n(θ)

)
=
Ndata(Ndata − n)

n
var(g1). (1.52)

When sampling without replacement, no data point can be used twice in the computations of
the gradient estimator F̂n. In this case, for n = Ndata the covariance matrix is zero and the
gradient estimator is exact. To prove (1.52), we introduce the random variable 1i∈In which
represents whether i is in In or not. A simple computation shows that

var(1i∈In) =
n

Ndata
− n2

N2
data

.

For i 6= j, the random variable 1i∈In1j∈In corresponds to the probability of drawing the set of
indices {i, j} among the n indices. Events where it has value 1 can be obtained by computing
the probability of drawing i among the n indices out of Ndata points, and then the probability
to have j among the remaining n−1 indices out of the remaining Ndata−1 points. Therefore,
E[1i∈In1j∈In] = n(n−1)

Ndata(Ndata−1) , so that

cov(1i∈In ,1j∈In) =
n(n− 1)Ndata − n2(Ndata − 1)

N2
data(Ndata − 1)

= − n(Ndata − n)

N2
data(Ndata − 1)

.

1.3. Sampling methods in the large data context 35

Using these equalities, one can then compute the covariance of the estimator of the gradient
of the log-likelihood as

cov
(
F̂n(θ)

)
=
N2

data

n2
cov

(
Ndata∑
i=1

∇θ [logPelem(xi|θ)]1i∈In

)

=
N2

data

n2

Ndata∑
i=1

var
(
∇θ [logPelem(xi|θ)]1i∈In

)
+

2N2
data

n2

∑
16i<j6Ndata

cov
(
∇θ [logPelem(xi|θ)]1i∈In ,∇θ [logPelem(xj |θ)]1j∈In

)
.

Denoting by g = 1
Ndata

Ndata∑
i=1

gi to alleviate the notation, it follows that

cov
(
F̂n(θ)

)
=
N2

data

n2

Ndata∑
i=1

gig
T
i var (1i∈In) + 2

∑
16i<j6Ndata

gig
T
j cov(1i∈In ,1j∈In)


=
N2

data

n2

Ndata∑
i=1

gig
T
i

n(Ndata − n)

N2
data

− 2
∑

16i<j6Ndata

gig
T
j

n(Ndata − n)

N2
data(Ndata − 1)


=
N2

data

n2

n(Ndata − n)

N2
data

Ndata∑
i=1

gig
T
i −

2

Ndata − 1

∑
16i<j6Ndata

gig
T
j


=
Ndata − n

n

(1 +
1

Ndata − 1

)Ndata∑
i=1

gig
T
i −

1

Ndata − 1

Ndata∑
i,j=1

gig
T
j


=
Ndata − n

n

(
Ndata

Ndata − 1

Ndata∑
i=1

gig
T
i −

N2
data

Ndata − 1
ggT

)

=
Ndata − n

n

N2
data

Ndata − 1

(
1

Ndata

Ndata∑
i=1

gig
T
i − ggT

)

=
Ndata(Ndata − n)

n
var(g1).

Reshuffling. A popular way to perform minibatching while ensuring that all data points are
considered is reshuffling [12]. In this framework, the algorithm proceeds by epochs (cycles).
Each epoch is composed ofNdata/n iterations of the numerical method (assuming thatNdata/n
is an integer), so that all data points are seen once during each epoch. At each epoch e, one
draws a permutation σe of {1, ..., Ndata}. At each iteration ` ∈ {1, . . . , Ndata/n}, the estimator
of the gradient is computed as

F̂n(θ) = ∇θ [logPprior(θ)] +
Ndata

n

n(`+1)∑
i=n`+1

∇θ(logPelem(xσe(i)|θ)).

This method is popular in the machine learning community, in particular for training neural
networks. We will use it in Chapter 3. However, it does not easily allow to discuss the
statistical properties of the gradient estimator, in contrast to estimators based on sampling
with or without replacement (see the next paragraph), which is why we restrict ourselves to
the latter case in the mathematical analysis we perform in Chapter 2.

36 Chapter 1. Introduction

Properties of minibatching estimators when sampling with(out) replacement.
When sampling with or without replacement, a straightforward computation shows that F̂n is
a unbiased estimator of ∇θ log π(·|x). One can rewrite (1.50) as (see Section 2.2.2 in Chapter 2
for more details and comments on the computations)

F̂n(θ) = ∇θ(log π(θ|x)) +
√
ε(n)Σ

1
2
x (θ)Zx,Ndata,n, (1.53)

where Zx,Ndata,n is a centered random variable with covariance Id, and Σx(θ) is the empirical
covariance of the gradient estimator for n = 1:

Σx(θ) = covI [∇θ(logPelem(xI |θ))] , (1.54)

where the expectation is taken over I uniformly distributed in {1, ..., Ndata}. The term ε(n)
in (1.53) represents the noise magnitude. Its expression depend on the way the sampling is
performed: for sampling with replacement, it holds, in view of [30, 154] (recall (1.51)),

ε(n) =
Ndata(Ndata − 1)

n
, (1.55)

while, for sampling without replacement (see [30, 154]) (recall (1.52)),

ε(n) =
Ndata(Ndata − n)

n
. (1.56)

When Ndata and n are sufficiently large, the random variable Zx,Ndata,n approximately follows
a centered reduced normal distribution; but this may not be the case in the nonasymptotic
regime, see Section 2.2.2 for more details.

1.3.1.2 Minibatching error for stochastic differential equations

Using minbatching to sample from a probability measure induces an extra bias due to the noise
term in (1.53). When using a gradient estimator F̂n in conjunction with a discretization of
overdampled Langevin dynamics, one obtains the the so-called Stochastic Gradient Langevin
Dynamics (SGLD) introduced in [157] and inspired by the Stochastic Gradient Dynamics
(SGD), used for optimization [126]. In [157] the authors suggest to use decreasing time step
to remove the extra bias; see [147] for a mathematical analysis. For fixed time steps, an
analysis of the asymptotic and non-asymptotic bias is provided in [154]. The results show
that SGLD has a weak error of order one, similarly to the Euler–Maruyama discretization of
overdamped Langevin dynamics, but with an extra term in the leading error arising from the
mini-batching procedure.

Quantifying the bias due to minibatching, and reducing it as much as possible, is one im-
portant contribution of this thesis. We refer to Section 1.4.1 for a summary of the contributions
in this direction, and to Chapter 2 for: (i) a more detailed literature review; (ii)refinements
on the analysis of the bias for SGLD and the discretization of Langevin dynamics with mini-
batching; (iii) an analysis of the (reduced) minibatching bias when using AdL.

1.3.2 Metropolis–Hastings based algorithms for large data sets

A key step in the Metropolis–Hastings algorithm is the computation of the ratio r in (1.17)
at each time step. In the context of Bayesian inference, this ratio involves the computation of

T (θ̃k+1, dθk)π(dθ̃k+1)

T (θk, dθ̃k+1)π(dθk)
=
T (θ̃k+1, dθk)Pprior(dθ̃k+1)

T (θk, dθ̃k+1)Pprior(dθk)

Ndata∏
i=1

Pelem(xi|θ̃k+1)

Pelem(xi|θk)
. (1.57)

The evaluation of this quantity (or its logarithm) has a computational cost scaling asO(Ndata).
When the number of data points is large, one may be willing to introduce some bias on the

1.4. Contributions 37

invariant probability measure which is sampled in order to reduce the cost of an iteration,
and hence increase the number of iterations Niter, as a way of reducing the variance of the
average quantities which are computed (in the same spirit as mininatching techniques).

The key step to ensure the unbiasedness of MH algorithms is the acceptance/rejection
decision. When using all the data points to compute the ratio (1.57), the decision which is
taken is always correct. The idea behind most modified MH in the large data setting is to
take decisions which are not always correct, but are correct with a probability as close to 1
as possible. This leads to a bias on the target measure which is effectively sampled, which is
bias which however decreases as the number of data points used in the decision increases.

Let us describe more precisely one way to do so. In [75], the acceptance probability r given
by (1.17) is approximated by a (random) acceptance probability r∗, computed as (1.57) but
with only a random subset of the data, obtained in practice by sampling without replacement.
The decision is then taken using some sequential hypothesis test. One fixes a threshold that
should separate r∗ and the uniform random variable U used in the acceptance test. As long
as |r∗ − U | is too small compared to the estimated standard deviation of r∗ (obtained by an
empirical estimate based on a rewriting of (1.57) in a logarithmic form), more data points are
added in order to refine the estimate of r∗, until |r∗−U | is sufficiently large for a decision to be
unambiguously taken. An important aspect of the above algorithm is to quantify the threshold
on |r∗ − U | to decide when to take the decision. This can be estimated using concentration
inequalities as in [11], although, from a technical viewpoint, one drawback of these inequalities
is that they require bounds on the random variables, or on their (exponential) moments, which
cannot always be guaranteed. In any case, in all these approaches, the stopping time before a
decision is taken is not controlled, so that one can end up making a number of computations
similar to the one of the standard MH algorithm.

1.4 Contributions

The goal of this final section of the introduction is to briefly present the main results and
contributions of this PhD work.

1.4.1 Removing the mini-batching error in Bayesian inference using Adap-
tive Langevin dynamics

This work, presented in Chapter 2, is preprinted in [137] and submitted to The Journal of
Machine Learning Research.

As pointed in Section 1.3.1, minibatching is a simple way to effectively reduce the com-
putational time of MCMC based on the discretization of SDEs. The noise introduced by the
gradient estimator is encoded in the term (see (1.53))

√
ε(n)Σ

1
2
x (θ)Zx,Ndata,n. For our anal-

ysis, we place ourselves in the case where Zx,Ndata,n is not necessarily a standard Gaussian
random variable. Chapter 2 is first dedicated to the numerical analysis of minibatching error
in Bayesian inference for Langevin-like algorithms. The first contribution is a refinement of
first order weak error estimates on the invariant probability measure in term of ε(n) and
Σx. In particular, we show that the bias on the invariant probability measure is of order
O((1 + ε(n))∆t) for SGLD and for of order O((∆t+ ε(n))∆t) for second order discretizations
of Langevin dynamics.

The second part of Chapter 2 is dedicated to the adaptive Langevin dynamics already
introduced in Section 1.2.2.4. We first numerically challenge the hypothesis of Σx being
constant, in which case minibatching procedure induces no bias on the posterior distribution
when using the discretization of AdL. While one can analytically prove that Σx is constant
in the Gaussian case, we demonstrate by numerical computations that Σx genuinely depends
on θ in some situations (namely when the elementary likelihood is given by a mixture of

38 Chapter 1. Introduction

Gaussians). We provide an analysis of minibatching error for the discretization of AdL in
the case where Σx depends on θ, showing that the error is again linear in ε(n) provided
that ε(n)∆t is small enough. An upper bound for of the error can at dominant order be
summarized as

ε(n)∆t‖Σx − S∗‖L2(π),

where

• S∗ =
1

d
Σx =

∫
Θ

Σx(θ)π(θ|x) dθ for matricial AdL;

• S∗ is a diagonal matrix with entries
∫

Θ
[Σx(θ)]i,i π(θ|x) dθ, where 1 6 i 6 d for diagonal

AdL;

• S∗ =
1

d
Tr(Σx)Id for scalar AdL.

The last contribution of the work is the introduction of an extended version of AdL that
allows to systemically reduce the bias. Under the assumption that the covariance of the force
estimator can be decomposed on a finite basis of functions, the presented dynamics allows to
fully remove the minibatching bias. We show that in this case S∗ corresponds to the L2(π)
projection of Σx onto the vector space of symmetric matrices generated by the basis. We
finally give some insights about the choice of the basis functions.

The results of the Chapter 2 are illustrated by various numerical examples: (i) the Gaussian
case; (ii) the case of mixture of Gaussians; (iii) Bayesian logistic regression.

1.4.2 Bayesian neural networks

This work started at the University of Edinburgh (School of Mathematics) during a two
months PhD mobility program funded by the doctoral school MSTIC, through interactions
with Ben Leimkuhler and Tiffany Vlaar. In Chapter 3, we present the preliminary results of
this work on which we are currently still working.

We tackle the sampling of Bayesian neural network posterior distributions. Following
results from Chapter 2, we start by numerically analyzing the structure of the covariance
matrix of the estimator of the force in this context. For that, we consider two numerical
models: (i) a toy classification model; (ii) a toy spiral data [88]. The main conclusions
obtained by extensive numerical simulations on this models can be summarized as follows.

• The mean of Σx seems to be roughly isotropic, suggesting that the scalar, diagonal and
matricial versions of AdL will exhibit the same bias on the invariant probability measure
that they effectively sample;

• The covariance matrix is of low rank, suggesting that it can efficiently be approximated
in an unexpensive way. This opens the way to an alternative strategy to the full matricial
AdL, where instead of learning the mean of Σx, one would learn the first eigenvalues of
it, thus reducing the bias without resorting to a matricial friction (which is infeasible in
neural networks framework).

• The particular shape of the covariance matrix associated with the last layer suggests
to use AdL only for this particular layer. Note that sampling the last layer only has
already been suggested in [77].

1.4. Contributions 39

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

−3.271

−3.271

−2.549
−2.5

49

−1
.8

28 −1.828

−1.828

−1.107

−1
.1

07

−0
.38

5

−0.385

−0.385
0.3

36

0.3361.
05

7
1.057

1.779 1.
77

9

1.
77

9
1.779

2.5
00

2.500

3.
22

1 3.221

transition path
non transition path

Figure 1.1 – Transition path and non transition path for the 2-dimensional potential given
by (4.3).

1.4.3 Generative methods for sampling transition paths in molecular dy-
namics

The material for the Chapter 4 has been preprinted in [92] (submitted to ESAIM Proceedings
in the special issue gathering contributions from the research projects initiated during the 6
week long summer research school CEMRACS 2021).

We consider the Euler–Maruyama discretization of the overdamped Langevin dynamics in
the context of molecular dynamics. We place ourselves in the case where the potential V has
many local minimas. One main issue in this situation is metastability: the trajectory remains
trapped in restricted subdomains of the phase space, preventing an accurate sampling. Gen-
erating transition paths, that we define as trajectories which, from a fixed initial condition q0

located in an initial potential well A reach a prespecified set B ∈ Rd before time T > 0, is
of particular interest. Take for example the Figure 1.1 where we plot two typical trajectories
using the Euler–Maruyama discretization of the overdamped Langevin dynamics with poten-
tial function (4.3) introduced in Chapter 4. The orange trajectory is not a transition path as
it remains trapped in the first well A; whereas the red one jumps from the well A to B and
therefore is a transition path. Such trajectories are rare, and even more rare as the dimension
increases.

The goal of Chapter 4 is to use generative models from the machine learning literature to
generate transition paths. We start by considering data driven generative approaches, namely
variational autoencoders, first with a bi-dimensional embedding space, which turned out to
be too small to account for the fluctuations of the whole trajectory, leading to too smooth
trajectories (either reconstructed or generated). Incorporating the temporal aspect in the
embedding space allows for better reconstructed trajectories. However generating new ones
requires a refined modeling of the distribution on the latent space, and lead to poor results.
We therefore turn to data free approaches, using reinforcement learning techniques. This
allows to learn a perturbation on the drift of overdamped Langevin dynamics by maximizing
some reward function, making transition from one well to another more likely. The results
obtained this way are more realistic than with data based generative methods.

CHAPTER 2

REMOVING THE MINI-BATCHING ERROR IN BAYESIAN
INFERENCE USING ADAPTIVE LANGEVIN DYNAMICS

Contents
2.1 Introduction . 43

2.2 Stochastic gradient Markov Chain Monte Carlo 45

2.2.1 Some elements on error analysis for discretizations of SDEs 46

2.2.2 Mini-Batching procedure . 47

2.2.3 Stochastic Gradient Langevin Dynamics 49

2.2.4 Langevin dynamics with mini-batching 52

2.2.5 Numerical illustration . 55

2.3 Adaptive Langevin dynamics . 58

2.3.1 General formulation of Adaptive Langevin dynamics 58

2.3.2 Adaptive Langevin dynamics for gradient estimators with constant
covariance . 59

2.3.3 Impact of a non constant covariance matrix 64

2.4 Extended Adaptive Langevin Dynamics 66

2.4.1 Presentation of the dynamics . 68

2.4.2 Numerical scheme and estimates on the bias 70

2.4.3 Choice the basis functions . 71

2.5 Numerical illustrations . 72

2.5.1 One dimensional toy model . 72

2.5.2 Mixture of Gaussians . 73

2.5.3 Logistic regression . 74

2.6 Discussion and perspectives . 78

Appendices . 79

2.A Proof of some technical estimates 79

2.A.a Proof of (2.18) . 79

2.A.b Proof of (2.28), (2.29) and (2.30) . 80

2.A.c Proof of (2.55) . 80

2.B Unbiasedness of the mean for Langevin dynamics with mini-
batching and Gaussian posterior 81

42 Chapter 2. Removing the mini-batching error with AdL

The material for this chapter has been released in [137] and is currently under review.

Abstract. Bayesian inference allows to obtain useful information on the parameters of
models, either in computational statistics or more recently in the context of Bayesian Neural
Networks. The computational cost of usual Monte Carlo methods for sampling a posteriori
laws in Bayesian inference scales linearly with the number of data points. One option to
reduce it to a fraction of this cost is to resort to mini-batching in conjunction with unadjusted
discretizations of Langevin dynamics, in which case only a random fraction of the data is
used to estimate the gradient. However, this leads to an additional noise in the dynamics and
hence a bias on the invariant measure which is sampled by the Markov chain. We advocate
using the so-called Adaptive Langevin dynamics, which is a modification of standard inertial
Langevin dynamics with a dynamical friction which automatically corrects for the increased
noise arising from mini-batching. We investigate the practical relevance of the assumptions
underpinning Adaptive Langevin (constant covariance for the estimation of the gradient),
which are not satisfied in typical models of Bayesian inference, and quantify the bias induced
by minibatching in this case. We also show how to extend AdL in order to systematically
reduce the bias on the posterior distribution by considering a dynamical friction depending
on the current value of the parameter to sample.

2.1. Introduction 43

2.1 Introduction

Bayesian modeling allows to determine the distribution of parameters in statistical models,
and hence to estimate functions of these parameters and their uncertainties. The Bayesian
approach to neural networks in particular has recently gained some attention from the Machine
Learning community; see for instance [155, 64] and references therein. Since the distributions
of parameters are given by (possibly very) high dimensional probability measures, Markov
Chain Monte Carlo (MCMC) techniques [128, 23] are the default method to sample these
target measures. In this work, we only consider probability distributions having a density
with respect to the Lebesgue measure. Quantities of interest are then expectations with
respect to the target distribution, which are approximated by Monte Carlo estimates based
on ergodicity results for the Markov chains under consideration. Let us however mention, that,
beyond using MCMC methods to sample from distributions of parameters, these methods can
also be used for optimization when run at small target temperature, which may be beneficial
to explore complex non-convex energy landscapes (see for instance [99, 88, 38]), or ensure
some form of regularization in an attempt to avoid overfitting (as already noted in [157]).

Two major classes of MCMC techniques can be distinguished. The first one gathers
methods based on the Metropolis–Hastings algorithm [103, 58]. The second class of MCMC
techniques relies on discretizations of stochastic differential equations (SDEs) which are er-
godic with respect to the target measure. The SDEs used to sample from a probability
distribution were originally introduced in molecular dynamics [48, 148, 86, 5], where atomic
configurations in a system are typically distributed according to the Boltzmann–Gibbs dis-
tribution π(dθ) = Z−1 exp (−V (θ)) dθ, where Z is the normalization constant and V the
potential energy function of the system. Two prominent examples of such dynamics are
Langevin dynamics (which we consider in this work as being the underdamped, or kinetic
version) and its overdamped limit. In practice, methods from the two classes can be blended,
as for the Metropolis-adjusted Langevin algorithm [113, 132, 129], which is a Metropolis–
Hastings algorithm whose proposal function is provided by a Euler–Maruyama discretization
of overdamped Langevin dynamics. We focus in this work on the second class of techniques,
namely the discretization of SDEs. Langevin-like dynamics are gaining increasing popularity
in Machine Learning and related application fields (see for instance [31, 109, 54] to quote just
a few works).

Both Metropolis–Hastings methods and discretization of SDEs can be computationally
expensive in the context of Bayesian inference since the log-likelihood and/or its gradient have
to be evaluated at each step, either to perform a Metropolis test or to compute the forces in
the dynamics. The cost of computing the log-likelihood and its gradient scales as O(Ndata),
where Ndata is the size of the data set, which may be large. Some variations of Metropolis-like
algorithms, based on estimates of the log-likelihood obtained from a random subsample of
the data, have been introduced to reduce the computational cost of one iteration; see for
example [75, 11, 122]. These methods however require some prior knowledge on the target
measure, and/or introduce some bias on the measure actually sampled by the algorithm. A
similar approach was proposed for discretizations of SDEs by Welling and Teh in [157], who
suggested to use a mini-batch of the data to construct an estimator of the gradient of the
log-likelihood, leading to the so-called Stochastic Gradient Langevin Dynamics (SGLD).

SGLD however also induces biases on the sampled invariant measure, which have two
origins: the finiteness of the time step and the fact that the mini-batch size n is smaller
than Ndata. It is possible to remove the bias by using decreasing time steps, as initially
suggested in [157] and mathematically analyzed in [147], but this is not practical for the
convergence of longtime averages, in particular when there is some metastability in the system
(i.e. in situations when the posterior probability measure is multimodal, and the numerical
methods remain temporarily stuck in one of the modes before finding their way to another
one). An analysis of the asymptotic bias of SGLD for fixed step sizes is provided in [154]

44 Chapter 2. Removing the mini-batching error with AdL

(together with some analysis of the non-asymptotic bias, following the approach developed
in [102]). The results show that SGLD has a weak error of order one, similarly to the Euler-
Maruyama discretization of overdamped Langevin dynamics, but with an extra term in the
leading error arising from the mini-batching procedure. In fact, the magnitude of this term
makes it the dominant one, unless n is very close to Ndata.

Various extensions and refinements of SGLD were proposed, in an attempt to improve
the performance of the method and/or to reduce its bias. A first trend is to apply the
mini-batching philosophy to dynamics which are more efficient in terms of sampling than
overdamped Langevin dynamics, in particular Langevin dynamics [100], Hybrid Monte Carlo
algorithms [31] and piecewise deterministric Markov processes [116, 15]. A second trend is
to rely on control variate techniques to reduce the covariance of the stochastic estimator of
the gradient of the log-likelihood, computed in practice by Gaussian approximations of the
modes of the target probability measure; see for instance [110, 24, 9]. Of course, both trends
can (should) be combined.

Our emphasis in this work is on the adaptive Langevin dynamics (AdL), introduced
in [65, 39], which provides a way to reduce, and possibly even remove the bias arising from
mini-batching in SGLD. This dynamics is a modification of Langevin dynamics where the
friction is considered as a dynamical variable that adjusts itself so that the distribution of the
velocities is correct. In addition to correcting for the mini-batching bias, it can also be used
to train neural networks [88]. AdL was mathematically studied in [90], and further tested
from a numerical viewpoint in [138]. The method completely removes the mini-batching bias
when the covariance matrix Σx(θ) of the estimator of the gradient is constant in the range
of parameters explored by the method. This assumption is satisfied for Gaussian a posteriori
distributions, as obtained when considering a Gaussian prior and Gaussian likelihoods, or
when the number of data points is large enough and the a posteriori distribution concen-
trates around a Gaussian distribution according to the Bernstein–von Mises theorem (see for
instance [150, Section 10.2]). There are however situations where this assumption does not
hold (as we highlight on a numerical example in Section 2.3.3.2), in which case AdL fails to
correct for the bias arising from mini-batching.

In this paper, we consider the case of extreme mini-batching procedures, corresponding
to n as small as 1, as in initial works on stochastic approximation [126]. In this situation,
no central limit theorem can be invoked to precisely characterize the statistical properties
of the stochastic gradient estimator. This is in contrast with various works which assume
the mini-batching noise to be Gaussian. This is however not needed to make precise the
weak error of numerical methods, and hence the bias on the invariant probability measure,
as we show in our estimates on the bias for SGLD and Langevin dynamics with stochastic
gradient estimators. One of our contributions is to precisely quantify how the bias on the
invariant measure depends on the type (with or without replacement) and amount of mini-
batching, through some key parameter ε(n) defined in Section 2.2.2. We also carefully study
the covariance matrix of the stochastic gradient estimator in illustrative numerical examples,
highlighting that this matrix may exhibit substantial variations in the range of parameters
explored by the dynamics under consideration, so that the key assumption underlying AdL is
not satisfied in general. Nonetheless, our numerical analysis explains why AdL still succeeds
to substantially reduce the bias compared to SGLD and Langevin dynamics. We finally
introduce an extended version of AdL allowing to even further reduce the bias incurred by
non constant covariance matrices. One of our main contributions is to prove that, for all
the Langevin-type SDEs considered in this paper, the bias introduced by the minibatching
procedure is controlled by

ε(n)∆t min
S∈S
‖Σx − S‖L2(π) = ε(n)∆t‖Σx − S∗‖L2(π), (2.1)

where ∆t is the time step used to discretize the SDE at hand, and π is the target posterior

2.2. Stochastic gradient Markov Chain Monte Carlo 45

distribution. The vector space of matrix valued functions S depends on the chosen dynamics.
For discretizations of standard Langevin dynamics, S∗ = 0 (see Sections 2.2.3.2 and 2.2.4.2),
whereas S∗ corresponds to the average of Σx with respect to π for AdL (see Section 2.3.3.1)
and to the L2(π)-projection of Σx onto the vector space of symmetric matrices generated by
some basis of functions for the extended version of AdL we introduce (see Section 2.4.2). We
verify that the reduction in the bias is proportional to the quality of the approximation of the
covariance matrix on a basis of functions (e.g. piecewise constant functions). In its simplest
forms, our extension of AdL is very similar to the original AdL method, but allows for some
extra flexibility which can dramatically reduce the bias.

The paper is organized as follows. We start in Section 2.2 by reviewing various results
related to the numerical analysis of SDEs and the quantification of the bias on the invariant
measure sampled by SGLD and Langevin dynamics with stochastic gradient estimators. We
next turn to AdL in Section 2.3: we illustrate that some residual bias remains present due
to the fact that the covariance of the gradient estimator is not constant in general, and
we quantify it. Section 2.4 is dedicated to the introduction of an extended version of AdL
that allows to accomodate non constant covariance matrices for the gradient estimator. The
theoretical predictions made in Sections 2.3 and 2.4 are illustrated in Section 2.5 on a model
of Gaussian mixtures and logistic regression for the classification of MNIST data. Some
conclusions and perspectives are gathered in Section 2.6.

2.2 Stochastic gradient Markov Chain Monte Carlo

We consider a Bayesian inference problem where we denote by x = (xi)i=1,...,Ndata
∈ XNdata

a set of Ndata data points, with X ⊂ Rddata . The data points are assumed to be indepen-
dent and identically distributed (i.i.d.) with respect to an elementary likelihood probability
measure Pelem(·|θ), parameterized by θ ∈ Θ = Rd. The likelihood of x is then given by

Plikelihood(x|θ) =

Ndata∏
i=1

Pelem(xi|θ).

In the Bayesian framework, a prior distribution Pprior is considered on the parameters. The
aim is to sample from the posterior distribution

π(θ|x) ∝ Pprior(θ)Plikelihood(x|θ), (2.2)

in order, for instance, to compute expectations with respect to this distribution. Sampling
is usually done with MCMC methods. This however requires, at each iteration, to compute
either the log-likelihood π(·|x) or its gradient

∇θ(log π(θ|x)) = ∇θ(logPprior(θ)) +

Ndata∑
i=1

∇θ(logPelem(xi|θ)). (2.3)

The cost of computing these quantities scales as O(Ndata), and is usually the computational
bottleneck in implementations of MCMC algorithms. As discussed in the introduction, we
focus here on stochastic gradient dynamics, which are discretizations of stochastic dynamics
admitting π(·|x) as invariant probability measure, and where the cost of evaluating (2.3) is
reduced by approximating the gradient through some estimator based on a mini-batch of the
complete data set.

We first review in Section 2.2.1 elements on the error analysis of discretization of SDEs,
with some emphasis on the bias induced on the invariant measure, as these results will be
repeatedly used throughout this paper, and are key to understanding the performance and
limitations of all the methods we discuss. We then recall in Section 2.2.2 the mini-batching

46 Chapter 2. Removing the mini-batching error with AdL

method [157] and focus on the case where the size of mini-batch is small, possibly limited
to a single point (as done in stochastic approximation algorithms [126]). We then recall
two classical SDEs upon which our method is based: overdamped Langevin dynamics in
Section 2.2.3 (known as SGLD when using mini-batching), and then Langevin dynamics in
Section 2.2.4. In each of these sections, we analyze how mini-batching affects the posterior
distribution and quantify the bias incurred on it by studying the associated effective dynamics.
These results are illustrated by numerical examples in Section 2.2.5.

2.2.1 Some elements on error analysis for discretizations of SDEs

Consider a SDE (θt)t>0 ⊂ Θ with generator L admitting π(·|x) as invariant probability
measure: For any smooth function φ with compact support,∫

Θ
Lφdπ(·|x) = 0.

Denote by (θm)m>0 a time discretization of the SDE with a fixed time step ∆t (so that θm

is an approximation of θm∆t). We assume that the Markov chain corresponding to the time
discretization of the SDE admits a unique invariant probability measure, denoted by π∆t.
This is for instance the case for Langevin-type dynamics when the drift of the dynamics is
globally Lipschitz or when Lyapunov conditions are satisfied [101]. For a given observable φ,
the target expectation

Eπ(φ) =

∫
Θ
φ(θ)π(θ|x) dθ

is approximated by Eπ∆t(φ), which is itself typically estimated by the trajectory average

φ̂∆t,Niter =
1

Niter

Niter∑
m=1

φ(θm).

The total error on averages with respect to π(·|x) can then be written as:

φ̂∆t,Niter − Eπ(φ) = (Eπ∆t(φ)− Eπ(φ)) +
(
φ̂∆t,Niter − Eπ∆t(φ)

)
.

The first term on the right hand side corresponds to the bias on the invariant probability
measure resulting from taking finite step sizes. The second term in the error has two origins:
(i) a bias coming from the initial distribution of θ0 when this random variable is not distributed
according to π∆t; (ii) a statistical error, which is dictated by the central limit theorem for Niter

large.
We focus in this work on the bias on the invariant probability measure, which can be

bounded using the weak order of the scheme, provided some ergodicity conditions are satisfied.
Recall that a numerical scheme is of weak order s if for any smooth and compactly supported
function φ and final time T > 0, there exists C ∈ R+ such that

∀m ∈ {1, . . . , dT/∆te}, |E[φ(θm∆t)]− E[φ(θm)]| 6 C∆ts. (2.4)

When this condition holds, and under appropriate ergodicity conditions (see [146] for a pio-
neering work, as well as [145, 101, 2, 87, 22] for subsequent works on Langevin-like dynamics),
the following bound is obtained on the bias on the invariant probability measure of the nu-
merical scheme: For any smooth and compactly supported function φ, there exists ∆t? > 0
and L such that

∀∆t ∈ (0,∆t?], |Eπ∆t(φ)− Eπ(φ)| 6 L∆ts. (2.5)

2.2. Stochastic gradient Markov Chain Monte Carlo 47

In order to write a sufficient local consistency condition to obtain an estimate such as (2.4), we
introduce the evolution operator P∆t associated with the numerical scheme at hand, defined
as follows: For any smooth and compactly supported function φ,

(P∆tφ) (θ) = E
[
φ
(
θm+1

) ∣∣ θm = θ
]
.

Under appropriate technical conditions, including moment conditions on the iterates of the
numerical scheme (see [107, Theorem 2.1] for a precise statement), a sufficient condition
for (2.4) to hold is

P∆t = e∆tL +O(∆ts+1), (2.6)

where (etLφ)(θ) = E[φ(θt) | θ0 = θ] is the evolution operator associated with the underlying
SDE. Here and in the sequel, the above equality has to be understood as follows: For any
smooth and compactly supported function φ, there exist ∆t? > 0 and K ∈ R+ such that, for
any ∆t ∈ (0,∆t?], there is a function Rφ,∆t for which

P∆tφ = e∆tLφ+ ∆ts+1Rφ,∆t, sup
∆t∈(0,∆t?]

sup
θ∈Θ
|Rφ,∆t(θ)| 6 K;

see for instance [94, Section 3.3] for a more precise discussion of this point.
Let us conclude this section by introducing the concept of effective dynamics (also called

modified SDEs in [139, 163]), a tool inspired by backward numerical analysis. The idea is
to construct a continuous dynamics, parameterized by the time step, which better coincides
with the numerical scheme than the reference dynamics. More precisely, given a numerical
scheme of weak order s, characterized by the local consistency condition (2.6), we look for a
modified SDE with generator Lmod,∆t such that

P∆t − e∆tLmod,∆t = O(∆ts+2). (2.7)

An alternative reformulation is the following: denoting by (θ̃)t>0 the solution to the SDE with
generator Lmod,∆t, then

E[φ(θ1) | θ0 = θ] = E[φ(θ̃t) | θ0 = θ] + O(∆t3),

while
E[φ(θ1) | θ0 = θ] = E[φ(θt) | θ0 = θ] + O(∆t2).

The prime interest of effective dynamics in our work is to provide some interpretation of the
behavior of numerical schemes. Following the standard philosophy of backward analysis, it is
indeed possible to obtain information on the behavior of numerical schemes by studying the
properties of the effective dynamics, in particular their invariant probability measures. This
is also useful for instance to understand the impact of mini-batching on SGLD and Langevin
dynamics (see respectively [154] and Section 2.2.4), and is also the foundation of Adaptive
Langevin dynamics. In particular, when (2.7) holds with Lmod,∆t = L+ ∆tsAmod, then (2.5)
can be rewritten more precisely in the form of a Talay–Tubaro expansion [146]:

∀∆t ∈ (0,∆t?], |Eπ∆t(φ)− Eπ(φ)−∆tsEπ(fφ)| 6 L̃∆ts+1, (2.8)

with f = (−L∗)−1A∗mod1, adjoints being taken on L2(π) (provided the inverse of L can be
defined on an appropriate subspace of L2(π), see again [94, Section 3.3]).

2.2.2 Mini-Batching procedure

The idea of using mini-batching in the context of SDEs has first been introduced through
SGLD in [157] to reduce the calculation time of one step of the discretization of the over-
damped Langevin dynamics (see (2.16) below) from O(Ndata) to a fraction of this cost. It is

48 Chapter 2. Removing the mini-batching error with AdL

inspired from the classical stochastic gradient descent method [126] in the sense that a con-
sistent approximation of ∇θ(log π(·|x)) is used in the discretization of overdamped Langevin
dynamics; see Section 2.2.3 below.

Mini-batching relies on computing at each iteration an approximation of the gradient
of the log-likelihood using a random subset of size n of the data points, which reduces the
cost from O(Ndata) to O(n). More precisely, the gradient of the posterior distribution is
approximated by

F̂n(θ) = ∇θ(logPprior(θ)) +
Ndata

n

∑
i∈In

∇θ(logPelem(xi|θ)), (2.9)

where In is a random subset of size n generated by sampling uniformly indices from {1, ..., Ndata},
with or without replacement. Sampling with or without replacement produces similar results
when n� Ndata with Ndata large enough. Sampling with replacement however leads to esti-
mators (2.9) with larger variances for a given value of n (as quantified by (2.12) below), and
should therefore be avoided when larger batches are considered. In any case, it is easily shown
that F̂n(θ) in (2.9) is a consistent approximation of ∇θ(log π(·|x)) given by (2.3).

Properties of F̂n(θ). In view of (2.9), the covariance matrix of the stochastic gradient,
which is nonnegative and symmetric, is given by:

cov
(
F̂n(θ)

)
= ε(n)Σx(θ), (2.10)

with Σx(θ) the empirical covariance of the gradient estimator for n = 1 (i.e. with expectations
computed with respect to the random variable I uniformly distributed in {1, ..., Ndata}):

Σx(θ) = covI [∇θ(logPelem(xI |θ))]

=
1

Ndata − 1

Ndata∑
i=1

[∇θ(logPelem(xi|θ))−Fx(θ)] [∇θ(logPelem(xi|θ))−Fx(θ)]T ,

(2.11)
where uvT is the matrix (uivj)16i,j6d ∈ Rd×d for u, v ∈ Rd, the average force reads

Fx(θ) =
1

Ndata

Ndata∑
i=1

∇θ(logPelem(xi|θ)),

and

ε(n) =


Ndata(Ndata − 1)

n
, for sampling with replacement,

Ndata(Ndata − n)

n
, for sampling without replacement.

(2.12)

We refer for instance to [30] for more details. We will see in the next sections that, for all the
methods we consider, the bias due to mini-batching is controlled by ε(n) whether sampling
is performed with our without replacement. It is really this parameter (in fact, ε(n)∆t)
which needs to be small in order for the asymptotic analysis on the bias to be correct. Note
that ε(n) > Ndata − 1 for sampling with replacement, which means that a bias is necessarily
observed in this case. Values of ε(n) of order Ndata are obtained only when the mini-batch
size n is a fraction of the total number of data points Ndata. To obtain values of order 1,
sampling has to be done without replacement with n close to Ndata. In contrast, ε(n) is of
order N2

data when the mini-batch size is small, whether sampling is performed with or without
replacement.

The above definitions allow to rewrite (2.9) as

F̂n(θ) = ∇θ(log π(θ|x)) +
√
ε(n)Σ

1
2
x (θ)Zx,Ndata,n, (2.13)

2.2. Stochastic gradient Markov Chain Monte Carlo 49

−3 −2 −1 0 1 2 3
Zx,Ndata, n

0.0

0.2

0.4

0.6

0.8

1.0
pr
ob

ab
ilit

y

(a) n = 1

−4 −3 −2 −1 0 1 2 3 4
Zx,Ndata, n

0.0

0.1

0.2

0.3

0.4

pr
ob

ab
ilit

y

(b) n = 2

−4 −3 −2 −1 0 1 2 3 4
Zx,Ndata, n

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

pr
ob

ab
ilit

y

(c) n = 30

Figure 2.1 – Histogram of Zx,Ndata,n when sampling is performed without replacement for the
Gaussian model of Section 2.2.5.1, with Ndata = 100, σθ = 1, σx = 1, µ = 0, θ = 0.5. The
reference standard Gaussian distribution is superimposed as a continuous line.

where Zx,Ndata,n is by construction a centered random variable with identity covariance. If n
and Ndata are large enough, and n� Ndata, the central limit theorem holds so that Zx,Ndata,n

asymptotically follows a centered reduced normal distribution (as assumed for instance in [31,
4, 162]). Most of the works in the literature consider the regime where the central limit
theorem holds. This is however unnecessary when it comes to quantifying the weak error of
the numerical scheme and hence the error on the invariant measure. In our work, we consider
explicitly the case when n is of order 1 and Ndata is (moderately) large, so that Zx,Ndata,n is
not necessarily close to a Gaussian distribution. This is illustrated in Figures 2.1 and 2.2,
where we plot the distribution of Zx,Ndata,n for various values of n for the models introduced in
Section 2.2.5, where the elementary likelihood is either a Gaussian or a mixture of Gaussians.
It is clear that the distribution of Zx,Ndata,n is far from being Gaussian for small values of n, but
is nonetheless centered and with covariance Id. Distributions close to Gaussian are obtained
for n = 20− 30 for the situation considered in Figure 2.2.

2.2.3 Stochastic Gradient Langevin Dynamics

We introduce in this section the SGLD algorithm (see Section 2.2.3.1) and analyze the bias due
to replacing the gradient (2.3) by the stochastic estimator (2.9) using the effective dynamics
associated with the numerical method at hand (see Section 2.2.3.2).

2.2.3.1 Description of the method

A popular SDE to sample from π(·|x) is the overdamped Langevin dynamics:

dθt = ∇θ(log π(θt|x)) dt+
√

2 dWt, (2.14)

where Wt is a standard d-dimensional Wiener process. Its generator is given by

Lovd = ∇θ(log π(·|x))T∇θ + ∆θ. (2.15)

It is well known that the process (2.14) is irreducible and admits π(·|x) as a unique invariant
probability measure, so that expectations can be approximated by trajectory averages (see
for instance [73]). In general, one cannot directly simulate the overdamped Langevin dynam-
ics (2.14). To numerically approximate the solution, the widely used Euler-Maruyama scheme
can be considered:

θm+1 = θm + ∆t∇θ(log π(θm|x)) +
√

2∆tGm, (2.16)

where ∆t > 0 is the step size, and (Gm)m>0 is a vector of i.i.d. standard d-dimensional
Gaussian random variables. It can be shown that the bias Eπ∆t(φ) − Eπ(φ) for overdamped

50 Chapter 2. Removing the mini-batching error with AdL

−0.7 0.2 1.1 2.0 2.9
Joint θ1

−2.9

−2.0

−1.1

−0.2

0.7

Jo
in
t

θ 2

−0.7 0.2 1.1 2.0 2.9
0

2

θ 2
m
ar
gi
na

l

0 1
θ1 marginal

−2.9

−2.0

−1.1

−0.2

0.7

(a) n = 1

−1.6 −0.5 0.6 1.7 2.8
Joint θ1

−2.8

−1.7

−0.6

0.5

1.6

Jo
in
t

θ 2

−1.6 −0.5 0.6 1.7 2.8
0.0

0.5

θ 2
m
ar
gi
na

l

0.0 0.5
θ1 marginal

−2.8

−1.7

−0.6

0.5

1.6

(b) n = 5

−2.2 −0.9 0.4 1.7 3.0
Joint θ1

−3.0

−1.7

−0.4

0.9

2.2

Jo
in
t

θ 2

−2.2 −0.9 0.4 1.7 3.0
0.00

0.25

θ 2
m
ar
gi
na

l

0.00 0.25
θ1 marginal

−3.0

−1.7

−0.4

0.9

2.2

(c) n = 10

−3.0 −1.5 0.0 1.5 3.0
Joint θ1

−3.0

−1.5

0.0

1.5

3.0

Jo
in
t

θ 2

−3.0 −1.5 0.0 1.5 3.0
0.00

0.25

θ 2
m
ar
gi
na

l

0.00 0.25
θ1 marginal

−3.0

−1.5

0.0

1.5

3.0

(d) n = 30

Figure 2.2 – Histogram of Zx,Ndata,n for θ = (1, 0.2), when sampling is performed without
replacement for the model of Section 2.2.5.2 with Ndata = 100 data points sampled from a
mixture of Gaussians with parameters σ1 = σ2 = 0.4, w = 0.5, θ1 = 0.2 and θ2 = 1. The
reference standard Gaussian distribution is superimposed as a continuous line on the marginal
distributions in θ1, θ2.

2.2. Stochastic gradient Markov Chain Monte Carlo 51

Langevin dynamics is of order O(∆t); see for instance [144] and [101, Theorem 7.3] for pio-
neering works on ergodic properties of discretization of SDEs and error estimation for globally
Lipschitz vector fields.

Using the stochastic estimator (2.9), SGLD corresponds to the following numerical scheme:

θm+1 = θm + ∆tF̂n(θm) +
√

2∆tGm. (2.17)

We assume in the sequel that this Markov chain admits a unique invariant probability mea-
sure π∆t,n (we omit the dependence on x to simplify the notation).

Remark 2.1. It is suggested in [157] to use decreasing time steps as this allows to ultimately
eliminate the bias without resorting to a Metropolis Hastings scheme. However, considering
decreasing time steps means that we need more iterations for a fixed final time T , which
increases the computational cost of the algorithm and results in a possibly large variance in
the estimation of averages at fixed computational cost. In practice, it is more customary to use
a small finite time step. As discussed in [154], the bias arising from mini-batching dominates
the one resulting from the time step discretization. Our focus in this work is therefore on the
bias arising from mini-batching and not on the bias coming from the use of finite time steps.

2.2.3.2 Effective SGLD

We recall in this section how to prove that the bias between the invariant measure π∆t,n of
SGLD (2.17) and π(·|x) is of order O((1 + ε(n))∆t) – by which we mean that error estimates
such as (2.5) hold with ∆ts replaced by (1 + ε(n))∆t on the right hand side. Such error
estimates were already obtained in [154]. This analysis is important since we will repeatedly
rely on it to quantify the bias on the invariant probability measures of numerical schemes, in
particular for Adaptive Langevin dynamics and their extensions, which is why we insist on
presenting the overall strategy.

From a technical viewpoint, the analysis relies on effective dynamics, discussed at the
end of Section 2.2.1. To derive an effective dynamics for the SGLD, we follow the general
framework of backward error analysis for SDEs considered in [139, 163, 37, 1], which is based
on building a perturbation to the generator associated with the original dynamics (2.15),
constructed so that SGLD evolved over one step is closer to the SDE associated with the
modified generator than to the original dynamics. The results of [154] show that (see also
Appendix 2.A.a for a short proof allowing to make precise the dependence of the remainder
term on n)

P̂∆t,n = e∆t(Lovd+∆tAovd,n) +O
(

(1 + ε(n)3/2)∆t3
)
, Aovd,n = ε(n)Amb +Adisc, (2.18)

where P̂∆t,n is the evolution operator associated with the SGLD scheme (2.17), and the
operators Amb and Adisc respectively encode the perturbations arising from mini-batching
and time discretization:

Ambφ =
1

2
Σx : ∇2

θφ,

Adiscφ = −∇2
θ(log π(·|x)) : ∇2

θφ−
1

2
∇θ∆(log π(·|x))T∇θφ−

1

2
∇θ(log π(·|x))T∇2

θ(log π(·|x))∇θφ.

In the latter expressions, we denote by : the Frobenius inner product of two square matrices,
i.e.

∀M1,M2 ∈ Rd×d, M1 : M2 =

d∑
i,j=1

M1
i,jM

2
i,j .

In fact, as discussed in Remark 2.15 of Appendix 2.A.a, the error estimate in (2.18) can be
improved to O((1 + ε(n))∆t3) when E[Z3

x,Ndata,n
] = 0. Using [94, Remark 5.5], or results

52 Chapter 2. Removing the mini-batching error with AdL

from [154], we deduce that the bias between π∆t,n and π is of order O ((1 + ε(n))∆t) provided
that ∆t and ε(n)∆t are small enough. Recalling (2.8) and the expression of Amb, one can see
that the bias is indeed larger when Σx is larger, although this statement is not as clear cut as
for Langevin dynamics since the correction function f which appears in (2.8) for SGLD also
involves derivatives of Σx, in contrast to estimates obtained for underdamped and adaptive
Langevin dynamics.

Note that the bias can be decreased by either decreasing ∆t or increasing n, hence de-
creasing ε(n) in view of (2.12). However, as already discussed in [154], the mini-batching error
usually dominates the discretization error by orders of magnitude since ε(n) is proportional
to N2

data unless n is a fraction of Ndata, in which case it scales as Ndata.

Remark 2.2. To reduce the mini-batching bias, it is suggested in [154] to renormalize the
magnitude of the injected noise by a quantity involving Σx(θ) (the so-called modified SGLD
scheme). Since Σx(θ) is usually unknown, this requires estimating this matrix, which is how-
ever computationally expensive since the estimation has to be repeated for each new value of θ,
and may cancel the gain provided by mini-batching in the first place. Our focus in this work
is to reduce the mini-batching error without the need to estimate Σx(θ).

2.2.4 Langevin dynamics with mini-batching

It has been observed in practice that a better sampling of probability measures can be provided
by Langevin dynamics, both in the literature on computational statistical physics (see for
instance [26]) and more recently in the machine learning literature [35]. We first present
in Section 2.2.4.1 the numerical scheme obtained by discretizing Langevin dynamics with a
splitting scheme and replacing the gradient of the log-likelihood by its estimator (2.9), and
then analyze the bias induced on the invariant probability measure of the numerical scheme
in Section 2.2.4.2.

2.2.4.1 Standard Langevin dynamics

Langevin dynamics introduces some inertia in the evolution of θ, through an extended con-
figuration space with a momentum vector p conjugated to θ. It can be seen as a perturbation
of the Hamiltonian dynamics where some fluctuation/dissipation mechanism is added to the
evolution of the momenta, and reads{

dθt = pt dt,

dpt = ∇θ(log π(θt|x)) dt− Γpt dt+
√

2Γ1/2 dWt,
(2.19)

where Γ ∈ Rd×d is a positive definite symmetric matrix. It would be possible, as in molecular
dynamics, to attach a mass to each degree of freedom, but we set here for simplicity this mass
to 1, the generalization to non trivial mass matrices being straightforward. The generator of
Langevin dynamics (2.19) is given by

Llan = ∇θ(log π(·|x))T∇p + pT∇θ − pTΓ∇p + Γ : ∇2
p. (2.20)

The diffusion constant
√

2Γ1/2 in front of the Wiener process ensures that the following
probability distribution is invariant:

µ(dθ dp|x) = π(θ|x)τ(dp) dθ,

where
τ(dp) = (2π)−d/2e−p

2/2 dp, (2.21)

see for instance [118, 86, 94]. In particular, the marginal distribution of µ(·|x) in the θ
variable is indeed the target distribution (2.2). It can even be shown that time averages along

2.2. Stochastic gradient Markov Chain Monte Carlo 53

solutions of (2.19) almost surely converge to averages with respect to µ since the generator of
the dynamics is hypoelliptic [73].

To numerically approximate the solution of Langevin dynamics, we use a numerical inte-
grator based on a second order Strang splitting, as encoded by the following evolution operator
(although there are various other choices of orderings, see for instance [85, 87, 86]):

P∆t = e∆tL3/2e∆tL2/2e∆tL1e∆tL2/2e∆tL3/2, (2.22)

where

L1 = ∇θ log(π(·|x))T∇p, L2 = pT∇θ, L3 = −pTΓ∇p + Γ : ∇2. (2.23)

The elementary generators L1 and L2 are respectively associated with the elementary dif-
ferential equations dθt = pt dt and dpt = ∇θ log(π(θt|x) dt, and can be analytically in-
tegrated. The elementary generator L3 is associated with the Ornstein–Uhlenbeck pro-
cess dpt = −Γpt dt+

√
2Γ1/2 dWt, and can also be analytically integrated as:

pt = e−Γtp0 +
√

2

t∫
0

e−(t−s)ΓΓ1/2 dWs ∼ N (αtp0, Id − α2t), αt = e−Γt. (2.24)

Finally, the numerical scheme encoded by (2.22) reads:

pm+ 1
3 = α∆t/2 p

m + (Id − α∆t)
1/2 Gm,

θm+ 1
2 = θm +

∆t

2
pm+ 1

3 ,

pm+ 2
3 = pm+ 1

3 + ∆t∇θ
[
log π

(
θm+ 1

2

∣∣∣x)] ,
θm+1 = θm+ 1

2 +
∆t

2
pm+ 2

3 ,

pm+1 = α∆t/2 p
m+ 2

3 + (Id − α∆t)
1/2 Gm+ 1

2 ,

(2.25)

where (Gm)m>0 and (Gm+ 1
2)m>0 are two independent families of i.i.d. standard d-dimensional

Gaussian random variables. Moreover, it is proved in [87, 2, 44] that the Markov chain gener-
ated by (2.25) admits a unique invariant probability measure µ∆t and that there exists C ∈ R+
such that, for any smooth function φ with compact support,∣∣∣∣∫

Θ
φ(θ, p)µ∆t(dθ dp)−

∫
Θ
φ(θ, p)µ(dθ dp|x)

∣∣∣∣ 6 C∆t2.

The key element to prove this statement is the fact that the numerical scheme (2.25) is an
approximation of weak order 2 of Langevin dynamics (see [87, 2])

P∆t = e∆tLlan +O(∆t3). (2.26)

2.2.4.2 Error estimates for Langevin dynamics with mini-batching

In order to analyze the error on the posterior measure sampled by a discretization of Langevin
dynamics used in conjunction with mini-batching, we derive here the effective dynamics asso-
ciated with the numerical method (2.25) when the gradient of the log-likelihood is replaced by
its stochastic estimator (2.9) (similar results are obtained for other Strang splittings). This

54 Chapter 2. Removing the mini-batching error with AdL

corresponds to the following numerical scheme:

pm+ 1
3 = α∆t/2 p

m + (Id − α∆t)
1/2 Gm,

θm+ 1
2 = θm +

∆t

2
pm+ 1

3 ,

pm+ 2
3 = pm+ 1

3 + ∆tF̂n

(
θm+ 1

2

)
,

θm+1 = θm+ 1
2 +

∆t

2
pm+ 2

3 ,

pm+1 = α∆t/2 p
m+ 2

3 + (Id − α∆t)
1/2 Gm+ 1

2 .

(2.27)

When using mini-batching, we are in fact replacing e∆tL1 in (2.22) by the elementary evolution
operator QL1

∆t acting as (
QL1

∆tϕ
)

(θ, p) = E
[
ϕ
(
θ, p+ ∆tF̂n(θ)

)]
.

A simple computation provided in Appendix 2.A.b shows that

QL1
∆t = e∆tL1 +O(ε(n)∆t2). (2.28)

Denoting by P̂∆t,n the evolution operator of the numerical scheme (2.27), and by µ∆t,n its
invariant probability measure (assuming that it exists and it is unique), it can then be proved
that (see Appendix 2.A.b)

P̂∆t,n = e∆tLlan +O
(
(ε(n) + ∆t)∆t2

)
. (2.29)

In view of this equality, the bias between µ and µ∆t,n is of order O ((ε(n) + ∆t)∆t) (by which
we mean that error estimates such as (2.5) hold with (ε(n) + ∆t)∆t on the right hand side
instead of ∆ts). It is clear that the error ε(n)∆t coming from mini-batching dominates the
error ∆t2 due to time discretization since ε(n) is much larger than ∆t unless n is very close
to Ndata. Comparing this equality to (2.26) highlights the fact that mini-batching degrades
the consistency estimate (2.26) by one order in ∆t with respect to Langevin dynamics (2.19).

Remark 2.3. To remove the bias on the invariant probability measure at dominant order
in ε(n)∆t, it is suggested in [100] to modify the integration of the Ornstein–Uhlenbeck part on
the momenta. This requires however an estimation of the covariance matrix, which can again
be computationally prohibitive (as discussed in Remark 2.2).

2.2.4.3 Effective dynamics for Langevin dynamics with mini-batching

We now construct an effective dynamics which coincides at order 3 in ∆t over one time
step with the numerical scheme (2.27) even when using mini-batching, in order to obtain an
equality similar to (2.26). This effective dynamics is the key building block to understand
Adaptive Langevin dynamics in Section 2.3.1. A straightforward computation, following the
lines of [100], shows that (see Appendix 2.A.b)

P̂∆t,n = e∆t(Llan+∆tε(n)Alan) +O
(

(1 + ε(n)3/2)∆t3
)
, Alan =

1

2
Σx : ∇2

p. (2.30)

The effective dynamics associated with Llan + ∆tε(n)A isdθ̃t = p̃t dt,

dp̃t = ∇θ
[
log π

(
θ̃t

∣∣∣x)] dt− Γp̃t dt+
(

2Γ + ε(n)∆tΣx(θ̃t)
)1/2

dWt,
(2.31)

2.2. Stochastic gradient Markov Chain Monte Carlo 55

where Γ+ε(n)∆tΣx(θ) is a positive definite matrix since Σx is positive (even though the latter
matrix is unknown). We deduce from (2.8) that, thanks to estimates on Llan obtained from
hypocoercive estimates [61, 41, 42], the bias on the invariant probability measure sampled
by the numerical scheme is, at dominant order, of order ε(n)∆t‖A∗lan1‖L2(µ), which, by a
simple computation, is itself bounded up to a multiplicative factor by ε(n)∆t‖Σx‖L2(π), in
accordance with the general estimate (2.1) (choosing S = {0} hence S∗ = 0). Here and in
the sequel, we assume implicitly that Σx has all its entries in L2(π).

Remark 2.4. Consider the simple case when the covariance of the gradient estimator is
contant, namely Σx = σ2Id ∈ Rd×d, and the friction is isotropic, namely Γ = γId ∈ Rd×d,
with σ, γ > 0. In this situation, the modified Langevin dynamics (2.31) samples the invariant
probability measure proportional to µβeff , with

βeff =

(
1 +

ε(n)σ2∆t

2γ

)−1

< 1. (2.32)

2.2.5 Numerical illustration

We illustrate in this section the results on the bias of the posterior measure introduced by
mini-batching when the elementary likelihoods are given by either a Gaussian or a mixture of
Gaussians. The aim is to numerically quantify the bias in the non asymptotic regime n = O(1)
(for which Zx,Ndata,n is not Gaussian), and to have a benchmark on the bias to compare with
AdL and its extension.

2.2.5.1 Gaussian posterior

We first suppose that the elements of the data set are normally distributed, namely xi|θ ∼
N (θ, σ2

x), where θ is the parameter to estimate. The prior distribution on θ is a centered
normal distribution with variance σ2

θ . In this case, simple computations show that the pos-
terior distribution on θ is also Gaussian with mean µpost and variance σ2

post, where (see for
instance [154])

µpost =

(
σ2
x

σ2
θ

+Ndata

)−1 Ndata∑
i=1

xi, σ2
post =

(
1

σ2
θ

+
Ndata

σ2
x

)−1

. (2.33)

Moreover,

F̂n(θ) = − θ

σ2
θ

+
Ndata

n

∑
i∈In

xi − θ
σ2
x

.

The variance of F̂n(θ) as a function of θ can therefore be analytically computed using (2.11)
(see again [154] for instance):

Σx(θ) = varI [∇θ(logPelem(xI |θ))] =
var(x)

σ4
x

, (2.34)

where I is a random variable uniformly distributed in {1, ..., Ndata}, and

var(x) =
1

Ndata − 1

Ndata∑
i=1

xi − 1

Ndata

Ndata∑
j=1

xj

2

is the empirical variance of the data. In this case, the covariance of the force Σx is constant
and does not depend on the parameter θ.

Let us first discuss SGLD. As shown in [154, Section 2.1], there is no bias on the mean of the
posterior distribution π∆t,n of the Markov chain associated with SGLD. The latter distribution

56 Chapter 2. Removing the mini-batching error with AdL

is however not Gaussian, because the random variable Zx,Ndata,n is not Gaussian. In order to
characterize the shape of this distribution at dominant order, we write the effective dynamics
with generator Lovd + ∆tAovd,n in (2.18), which turns out to be an Ornstein–Uhlenbeck
process:

dθt =

[
−

(
1 +

∆t

2σ2
post

)
θ − µpost

σ2
post

]
dt+

√
2

(
1 +

∆tε(n)

2σ4
x

var(x) +
∆t

σ2
post

)1/2

dWt.

The probability measure of the latter process is a Gaussian distribution with mean 0 and
variance

σ2
post

(
1 +

∆t

2σ2
post

)−1(
1 +

ε(n)∆t

2σ4
x

var(x) +
∆t

σ2
post

)
.

This shows that the invariant probability measure of SGLD is, at dominant order in ∆t
and ε(n)∆t, a Gaussian distribution with mean 0 and variance

σ2
post

[
1 +

∆t

2

(
ε(n)

σ4
x

var(x) +
1

σ2
post

)]
+O

(
(1 + ε(n)2)∆t2

)
. (2.35)

For Langevin dynamics with mini-batching, there is (as for SGLD) no bias on the mean of
the posterior distribution π∆t,n, as proved in Appendix 2.B. The latter distribution is however
not Gaussian when the random variable Zx,Ndata,n is not Gaussian. It is however close to a
Gaussian distribution since the marginal posterior distribution in the θ variable obtained for
the effective Langevin dynamics is, according to Remark 2.4, a Gaussian distribution with
mean µpost and variance σ2

post/βeff . This means that the variance for the discretization of
Langevin dynamics (2.27) is, at dominant order in ∆t and ε(n)∆t, and when Γ = γId,

σ2
post

(
1 +

ε(n)∆t

2γσ4
x

var(x)

)
+O

(
(1 + ε(n)2)∆t2

)
. (2.36)

Note that this expression coincides with (2.35) when γ = 1 and ε(n)� 1.
To perform the numerical experiments, we generate a dataset of Ndata = 100 according to

a Gaussian distribution with mean θ0 = 0 and variance σx = 1. We also set σθ = 1 in the prior
distribution. We run the SGLD scheme (2.17) and Langevin dynamics with the numerical
scheme (2.27) with Γ = 1 for a final time T = 106 and various values of ∆t (which corresponds
to Niter = T/∆t time steps). We also consider various values of n, the subsampling of the
data points being done with and without replacement. We report in Figure 2.3 the relative
bias on the variance, given in the limit Niter → +∞ by the ratio of∣∣∣∣∣
[∫

R
θ2π∆t,n(θ|x) dθ −

(∫
R
θπ∆t,n(θ|x) dθ

)2
]
−

[∫
R
θ2π(θ|x) dθ −

(∫
R
θπ(θ|x) dθ

)2
]∣∣∣∣∣ ,

and σ2
post, where π∆t,n(·|x) denotes the invariant measure in the θ variable of the numerical

scheme under consideration (for (2.27), this corresponsd to the marginal measure of µ∆t,n(θ, p|x)
in the θ variable).

Several conclusions can be drawn from the results presented in Figure 2.3. First, note
that the bias is determined by the value of ε(n) irrespectively of the fact that sampling is
performed with or without replacement. Second, the bias is indeed affine in ε(n), with a
slope which proportional to ∆t. In fact, all curves would be superimposed if we were plotting
the error as a function of ε(n)∆t, which demonstrates that the error is indeed determined at
dominant order by this parameter. We do not report results for ε(n) = 0, which corresponds
to n = Ndata and sampling without replacement, since the corresponding error is anyway
much smaller than the one arising from mini-batching. Finally, errors are very similar for
SGLD and the scheme (2.27) associated with Langevin dynamics, as anticipated from the
comparison of (2.35) and (2.36) when choosing γ = 1.

2.2. Stochastic gradient Markov Chain Monte Carlo 57

0 2000 4000 6000 8000 10000
ε(n)

0%

50%

100%

150%

200%

250%

300%
Re

la
tiv

e
er

ro
r o

n
th

e
va

ria
nc

e
Δt= 0Δ005
Δt= 0Δ001
Δt= 0Δ0005
Δt= 0Δ0001

(a) SGLD

0 2000 4000 6000 8000 10000
ε(n)

0%

50%

100%

150%

200%

250%

300%

Re
la

tiv
e

er
ro

r o
n

th
e

va
ria

nc
e

Δt= 0Δ005
Δt= 0Δ001
Δt= 0Δ0005
Δt= 0Δ0001

(b) Langevin dynamics

Figure 2.3 – Relative error on the variance of the posterior distribution for various values
of ∆t and n when the elementary likelihood is a Gaussian distribution, when sampling with
(circles) and without replacement (squares).

2.2.5.2 Mixture of Gaussians

We next consider a more realistic case where the data points are distributed according to a
mixture of Gaussians:

Pelem(xi|θ) =
w√
2πσ1

exp

(
−(xi − µ1)2

2σ2
1

)
+

1− w√
2πσ2

exp

(
−(xi − µ2)2

2σ2
2

)
, (2.37)

where w ∈ [0, 1], µ1, µ2 ∈ R and σ1, σ2 ∈ (0,+∞). We consider the case when the parameters
to estimate are the centers of the Gaussians θ = (µ1, µ2), whereas σ1, σ2 and w are given. The
prior distribution on the vector of parameters θ is chosen to be a centered normal distribution
with covariance matrix I2. To perform numerical simulations, we fix µ1 = 1, µ2 = 0.5,
σ1 = σ2 = 0.4, w = 0.4 and Ndata = 200 to generate the dataset according to (2.37). We run
again the numerical schemes (2.17) and (2.27), with Γ = I2 and an integration time T = 106.
We compute the L1 error on the marginal distribution in the θ1 = µ1 variable, given in the
limit Niter → +∞ by ∫

R

∣∣∣∣∫
R
π∆t,n(θ|x) dθ2 −

∫
R
π(θ|x) dθ2

∣∣∣∣ dθ1. (2.38)

We plot this error with respect to ε(n) for various values of ∆t in Figure 2.4. We use numerical
quadratures to approximate the integral with respect to θ1 in (2.38) (approximating the
marginals as piecewise constant functions over a grid of 500 bins over the interval [0,1.4]), and
also to compute the integral with respect to θ2 for π(·|x).

The interpretation of the results presented in Figure 2.4 is quite similar to the discussion
of the results of Figure 2.3. They confirm that the bias is determined by the value of ε(n)
irrespectively of the fact that sampling is performed with or without replacement. Note also
that the errors are quite similar for SGLD and Langevin dynamics with Γ = I2. Moreover, the
L1 error (2.38) is affine in ε(n) provided ε(n)∆t is sufficiently small so that the asymptotic
analysis of the bias is indeed valid. From a quantitative viewpoint, the affine regime is observed
for L1 errors below 0.1. This regime is relevant for time steps ∆t 6 10−4 for the values of n
considered in our simulations, but not for simulations with larger time steps.

58 Chapter 2. Removing the mini-batching error with AdL

0 10000 20000 30000 40000
ε(n)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L1
er
ro
r

ΔtΔ0.001
ΔtΔ0.0005
ΔtΔ0.0001
ΔtΔ0.00005

(a) SGLD

0 10000 20000 30000 40000
ε(n)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L1
er
ro
r

ΔtΔ0.001
ΔtΔ0.0005
ΔtΔ0.0001
ΔtΔ0.00005

(b) Langevin dynamics

Figure 2.4 – L1 error on the θ1 marginal of the posterior distribution for various values of
∆t and n when the elementary likelihoods are mixtures of Gaussians, when sampling with
(circles) and without replacement (squares).

2.3 Adaptive Langevin dynamics

Using SGLD or Langevin dynamics with mini-batching introduces a bias on the posterior
distribution. We recall in Section 2.3.1 the Adaptive Langevin (AdL) dynamics [65, 39],
whose aim is to remove the bias due to mini-batching. Under the key assumption that
the covariance matrix Σx(θ) defined in (2.11) is constant (but unknown), it can indeed be
proved that Adaptive Langevin dynamics samples the target distribution (see Section 2.3.2).
However, we demonstrate in Section 2.3.3 that this assumption may not hold in practice, e.g.
for models for which the elementary likelihood is a mixture of Gaussians, which motivates the
construction of an extended version of AdL to tackle such cases. We also quantify the bias on
the invariant measure due to the fact that Σx is not constant by deriving an error estimate
involving (2.1), henceforth explaining why AdL performs better than SGLD or Langevin
dynamics with minibatching.

2.3.1 General formulation of Adaptive Langevin dynamics

AdL was initially introduced to address the issue of the gradient of the energy not being
exactly computed in molecular dynamics [65]. It was then considered for Bayesian inference
in [39] where it allows to remove the bias arising from mini-batching under the assumption
that the covariance Σx is constant. As discussed in Section 2.2.4, the effect of the stochastic
estimator (2.13) of the force in Langevin dynamics is, at dominant order, to add an unknown
contribution to the diffusion coefficient in front of the Brownian motion, which we denote by√

2A∆t,n(θ)1/2, with

A∆t,n(θ) = Γ +
ε(n)∆t

2
Σx(θ). (2.39)

Note that A∆t,n(θ) ∈ Rd×d is an unknown positive definite symmetric matrix. The idea
behind AdL is to modify the effective Langevin dynamics so that it admits π(·|x) as an
invariant probability measure (more precisely, that it admits an invariant probability measure
whose marginal distribution in the θ variable is π(·|x)). The friction matrix, denoted here
by ξ ∈ Rd×d, is no longer a constant, but a dynamical variable that adjusts itself to the
effective noise resulting from mini-batching. Denoting by [ξ]i,j the components of ξ, AdL can

2.3. Adaptive Langevin dynamics 59

be written as 
dθt = pt dt,

dpt = (∇(log π(θt|x))− ξtpt) dt+
√

2A∆t,n(θt)
1/2dWt,

d[ξt]i,j =
1

η
(pi,tpj,t − δi,j) dt, 1 6 i, j 6 d,

(2.40)

where η is a positive scalar which sets the timescale for the evolution of the friction matrix (see
Remark 2.6 below for more general choices). Let us emphasize once again that we consider
that each degree of freedom has mass 1 for simplicity, but our analysis can be easily generalized
to non trivial mass matrices, or even to non-quadratic kinetic energies.

Remark 2.5. If the initial condition ξ0 is symmetric, then the matrix ξt is symmetric for all
t. In any case, the quantities ξi,j,t− ξj,i,t are constant. This shows that it suffices to introduce
(d+ 1)d/2 new variables ([ξ]i,j)16i6j6d to simulate AdL. However, for Lemma 2.7 below, it is
more convenient to write out statements and proofs with all variables ([ξ]i,j)16i,j6d.

Remark 2.6. It is possible to formulate AdL for with different timescale parameters for
the evolution of the components of the friction matrix, as defined by a symmetric matrix
η = ηT ∈ Rd×d with positive entries. In this case, each element i, j of ξ follows the dynamics

d[ξt]i,j =
1

ηi,j
(pi,tpj,t − δi,j) dt.

Let us conclude this general presentation of AdL by recalling the motivation for the dy-
namics on the friction variable. We assume for this discussion that d = 1 in order to simplify
the presentation. One way to understand the intuition behind AdL is to see (2.40) as the
superposition of a Hamiltonian dynamics (which preserves the energy − log π(θ|x) + |p|2/2)
and the following elementary dynamics:

dpt = −ξtpt dt+
√

2A
1/2
∆t,ndWt,

dξt =
1

η

(
p2
t − 1

)
dt.

Note that we write A1/2
∆t,n here instead of A∆t,n(θ)1/2 since the value of θ does not change for

this subdynamics. Knowing that the marginal distribution over the variable p of the invariant
probability measure should be a Gaussian of variance 1 (see [39]), the idea is to keep the
right balance between the friction ξ and the fluctuation A∆t,n. Given that the strength of the
fluctuation is unknown, the friction is adjusted so that the average kinetic energy is fixed to
its target value, i.e. E(|p|2) = 1. More precisely, if |p|2 > 1, the kinetic energy is larger than
what it should be, so the friction is increased, which ends up decreasing p. We can use the
same line of argument for the opposite case. In fact, the dynamics of the additional variable
ξ follows a negative feedback loop control as in the Nosé–Hoover thermostat [112, 63].

2.3.2 Adaptive Langevin dynamics for gradient estimators with constant
covariance

We discuss more precisely in this section the properties of AdL under the crucial assumption
that the covariance of the gradient estimator is constant :

Σx(θ) = Σx. (2.41)

This implies in particular that the matrix A∆t,n defined in (2.39) is constant. The limitations
of this assumption are discussed more precisely in Section 2.3.3.

60 Chapter 2. Removing the mini-batching error with AdL

We start by discussing invariant probability measures of AdL in Section 2.3.2.1. We next
present in Section 2.3.2.2 numerical schemes to integrate AdL, together with error estimates on
the bias on their invariant measures. These results are numerically illustrated in Section 2.3.2.3
for the Gaussian model of Section 2.2.5.1, for which the fundamental assumption (2.41) is
satisfied. Let us emphasize here again that, in contrast to various works in the literature, we
do not necessarily assume that n is much larger than 1 and that the random variable in (2.13)
follows a Gaussian distribution.

2.3.2.1 Invariant probability measure of AdL

The generator of the stochastic dynamics (2.40) can be decomposed as

LAdL,Σx = Lham + LFD + LNH,

where
LNH = −pT (ξ −A∆t,n)∇p +

1

η

∑
16i,j6d

(pipj − δi,j)∂[ξ]i,j ,

and
Lham = pT∇θ +∇θ(log π(·|x))T∇p, LFD = A∆t,n : ∇2

p − pTA∆t,n∇p.

We recall the following result on the invariant probability measure of (2.40) (see [90, Section
2]).

Lemma 2.7. Suppose that (2.41) holds. Then the dynamics (2.40) admits the following
invariant probability measure

ν(dθ dp dξ) = π(θ|x)τ(dp)ρ(dξ) dθ, (2.42)

where τ(dp) is defined in (2.21) and

ρ(dξ) =
∏

16i,j6d

√
η

2π
exp

(
−η

2
(ξi,j − [A∆t,n]i,j)

2
)
d[ξ]i,j ,

where [A∆t,n]i,j is the (i, j) component of A∆t,n.

Lemma 2.7 suggests that, as long as assumption (2.41) is satisfied, sampling a probability
measure using Adaptive Langevin dynamics is not affected by the mini-batching procedure
to estimate the gradient of the log-likelihood in the θ variable. The marginal distribution
of (2.42) in the variable θ is indeed the target distribution π, whatever the value of A∆t,n.
This shows that AdL can indeed adjust the friction in order to compensate fluctuations of
arbitrary constant magnitude. We recall the proof of Lemma 2.7 because we will use similar
computations in the proof of Theorem 2.12 below.

Remark 2.8. Let us emphasize that Lemma 2.7 states that ν is invariant by AdL. How-
ever, the dynamics cannot be ergodic for this measure since [ξt]i,j − [ξt]j,i remains constant,
whereas [ξ]i,j and [ξt]j,i are independent under the probability measure (2.42). The dynamics
can therefore at best be ergodic for the restriction of ν onto the sub-manifold

S (ξ0) = Θ× Rd ×
{
ξ ∈ Rd×d

∣∣∣ [ξ]i,j − [ξ]j,i = [ξ0]i,j − [ξ0]j,i

}
,

which is determined by the initial condition ξ0. Such an ergodicity result is however not trivial
at all since there are d(d+1) independent degrees of freedom in the symmetric matrix ξt, while
the noise acting on the momentum variable p is only of dimension d. The stochastic dynamics
is therefore highly degenerate. In any case, the important point here is that the marginal in
the θ-variable of the projected measure is π(·|x) whatever the distribution ρ in (2.42).

2.3. Adaptive Langevin dynamics 61

Proof. We follow the approach of [90, Section 2]. It suffices to show that, for all smooth and
compactly supported functions φ,∫

Θ
LAdL,Σxφdν =

∫
Θ
φ
(
L∗AdL,Σx1

)
dν = 0, (2.43)

where adjoints are taken in L2(ν). Simple computations based on integration by parts show
that ∂∗θi = −∂θi − ∂θi(log π(θ|x)), ∂∗pi = −∂pi + pi, ∂∗[ξ]i,j = −∂[ξ]i,j + η ([ξ]i,j − [A∆t,n]i,j). We
can then rewrite the generators Lham and LFD as [90]:

Lham =
d∑
i=1

∂∗pi∂θi − ∂
∗
θi
∂pi , (2.44)

LFD = −∇∗pA∆t,n∇p = −
∑

16i,j6d

[A∆t,n]i,j∂
∗
pi∂pj . (2.45)

Moreover, for φ, ψ two smooth and compactly supported functions,∫
Θ

(LNHφ)ψ dν =
∑

16i,j6d

∫
Θ
−pi([ξ]i,j − [A∆t,n]i,j)

(
∂pjφ

)
ψ +

1

η
(pipj − δi,j)

(
∂[ξ]i,jφ

)
ψ dν

=
∑

16i,j6d

∫
Θ
−([ξ]i,j − [A∆t,n]i,j)∂

∗
pj (piψ)φ+

1

η
(pipj − δi,j)

(
∂∗[ξ]i,jψ

)
φdν

= −
∫

Θ
(LNHφ)ψ dν.

(2.46)
It is then clear that Lham and LNH are antisymmetric, while LFD is symmetric. Moreover,
LNH1 = Lham1 = LFD1 = 0. The invariance of ν therefore follows from (2.43).

The mathematical properties of AdL are investigated in [90] in the case when Σx = σ2Id
with σ2 constant, and the friction is scalar valued (in which case the invariant probability
measure provided by Lemma 2.7 is in fact the only invariant probability measure). The main
contributions of [90] are the following: (i) the exponential convergence of the law of the process
encoded by the convergence of the semi-group etL is proved using the hypocoercive approach
of [61, 41, 42]; (ii) a central limit theorem for time averages along one realization of the
dynamics is derived with bounds on the asymptotic variance depending on the parameters η
and Γ of the dynamics. If A∆t,n ≈ Γ (which is the case when ∆t is sufficiently small and n is
sufficiently large), the mathematical analysis suggests to fix Γ = O(1) and η = O(1).

2.3.2.2 Numerical scheme

We now construct a numerical scheme for which AdL in (2.40) is the effective dynamics at
dominant order in ∆t and ε(n)∆t. Concretely, we replace the matrix A∆t,n by its expres-
sion (2.39) in the SDE (2.40) and consider the symmetric splitting scheme introduced in [90],
which is based on decomposing (2.40) into the following four elementary SDEs (the variables
which are evolved are indexed by t, while the ones which remain constant do not have any
subscript):

dθt = p dt, (2.47)

dpt = −ξpt dt+
√

2Γ1/2 dW1,t, (2.48)

dpt = ∇θ(log π(θ|x)) dt+
√
ε(n)∆tΣx(θ)1/2 dW2,t, (2.49)

d[ξt]i,j =
1

η
(pipj − δi,j) dt, 1 6 i 6 j 6 d, (2.50)

62 Chapter 2. Removing the mini-batching error with AdL

where W1,t,W2,t are two independent standard d-dimensional Brownian motions. The ele-
mentary ordinary differential equations (2.47) and (2.50) can be trivially integrated. The
elementary SDE (2.48) is an Ornstein–Uhlenbeck process that can be analytically integrated
in law as

pm+1 = e−∆tξpm + σξ,Γ,∆tG
m, σ2

ξ,Γ,∆t = 2

∆t∫
0

e−sξΓe−sξ ds,

where (Gm)m>0 is a family of i.i.d. standard d-dimensional Gaussian random variables. If
there exists M such that ξM +Mξ = Γ, then σ2

ξ,Γ,∆t = 2
(
M − e−∆tξMe−∆tξ

)
. In particular,

for Γ = γId and when ξ is invertible, one can choose M = γξ−1/2 in which case σ2
ξ,Γ,∆t =

γξ−1(Id − e−2∆tξ). When ξ is singular or close to singular, the latter formula has to be
understood through a limiting procedure based on spectral calculus, see [90].

The elementary SDE (2.49) is integrated as

pm+1 = pm + ∆tF̂n (θ) = pm + ∆t∇θ(log π(θ|x)) + ∆t
√
ε(n)Σx(θ)1/2Zx,Ndata,n. (2.51)

Since the random variable Zx,Ndata,n has mean 0 and identity covariance by construction, the
equality (2.73) in Appendix 2.A.b shows that the numerical scheme (2.51) is weakly consistent
with (2.49), with an error of order (1 + ε(n)3/2)∆t3 over one time step (even if Zx,Ndata,n is
not Gaussian). In the case where E[Z3

x,Ndata,n
] = 0, the error over one time step is of order

(1 + ε(n))∆t3.
The numerical scheme we consider is finally obtained by a Strang splitting where (2.49)

is updated in the central step of the algorithm, in order to compute the force only once per
time step and avoid its storage. The order in which the remaining elementary dynamics
are integrated is unimportant for our purposes, although some orderings may be better than
others, in particular in some limiting regimes where one of the parameters goes to 0 or infinity;
see [91] for an extensive discussion in the context of AdL. Fixing Γ = γId, the numerical scheme
reads as follows:

pm+ 1
2 = e−∆tξm/2pm +

[
γ(ξm)−1

(
Id − e−∆tξm

)]1/2
Gm,

ξm+ 1
2 = ξm +

∆t

2η

(
pm+ 1

2

(
pm+ 1

2

)T
− Id

)
,

θm+ 1
2 = θm +

∆t

2
pm+ 1

2 ,

p̃m+ 1
2 = pm+ 1

2 + ∆tF̂n

(
θm+ 1

2

)
,

θm+1 = θm+ 1
2 +

∆t

2
p̃m+ 1

2 ,

ξm+1 = ξm+ 1
2 +

∆t

2η

(
p̃m+ 1

2

(
p̃m+ 1

2

)T
− Id

)
,

pm+1 = e−∆tξm+1/2p̃m+ 1
2 +

[
γ(ξm+1)−1

(
Id − e−∆tξm+1

)]1/2
Gm+ 1

2 ,

(2.52)

where (Gm)m>0 and (Gm+ 1
2)m>0 are two independent families of i.i.d. standard Gaussian ran-

dom variables. Note that it is possible to work only with the additional variables (ξi,j)16i6j6d

since the updates of ξi,j and ξj,i in (2.40) are the same. The initial conditions for ξ0 is γId,
while the components of θ0, p0 are initialized to 0. Of course, more educated choices can be
considered depending on the system at hand (e.g. restarting from values sampled by SGLD
or some Langevin-like dynamics).

2.3. Adaptive Langevin dynamics 63

Remark 2.9. Other versions of the numerical scheme (2.52) can be considered, in particular
the one used in [90], for which ξ ∈ R. In this case, (2.50) should be replaced by

dξt =
1

η

(
pT p− d

)
dt. (2.53)

Another option to reduce the number of additional variables is to consider the variable ξ as a
diagonal matrix with entries ξi. In this case, (2.50) has to be replaced with

d[ξt]i =
1

η

(
p2
i − 1

)
dt, 1 6 i 6 d. (2.54)

The numerical schemes for these two cases can be obtained by an obvious modification of the
right hand side of the update formulas for ξm+ 1

2 and ξm+1 in (2.52).

Using the Baker–Campbell–Hausdorff formula (see for instance [55, Section III.4.2]), as
done in [87, 91] for instance, one can prove that the evolution operator P̂∆t,n of the numerical
scheme (2.52) satisfies (see Appendix 2.A.c)

P̂∆t,n = e∆tLAdL,Σx +O
(

(1 + ε(n)3/2)∆t3
)
. (2.55)

Assume next that (2.40) and (2.52) both admit a unique invariant probability measure, re-
spectively denoted by νξ0 and νξ0,∆t,n. Then, the following error estimate holds: for any
smooth function ϕ with compact support, there exists C ∈ R+ such that∣∣∣∣∫

Θ
ϕ(θ, p, ξ) νξ0,∆t,n(dθ dp dξ)−

∫
Θ
ϕ(θ, p, ξ) νξ0(dθ dp dξ)

∣∣∣∣ 6 C
(

1 + ε(n)3/2
)

∆t2. (2.56)

Note that this error estimate holds even when Zx,Ndata,n is not Gaussian (namely for small
values of n). When E[Z3

x,Ndata,n
] = 0, the error estimate (2.56) holds with C(1 + ε(n))∆t2

on the right hand side. When Zx,Ndata,n is Gaussian, the integration (2.51) is in fact exact in
law. In any case, the analysis we made crucially depends on the fact that (2.41) holds. When
it does not hold, there is an additional bias on the invariant measure due to mini-batching,
as quantified in Section 2.3.3.

2.3.2.3 Numerical illustration for Gaussian likelihoods

We consider the same setting as in Section 2.2.5.1. The covariance Σx, given by (2.34),
is constant for this model, so that assumption (2.41) indeed holds. We run the numerical
scheme (2.52) with γ = 1 for an integration time T = 106. Similar computations have already
been performed in [39, 91]. In Figure 2.5, we plot the error on the variance of the marginal
posterior distribution in the θ variable with respect to ε(n). First, we note that, for ∆t
small enough (namely ∆t 6 0.005), the bias is not affected by the value of ε(n) (even for the
very large value N2

data obtained when n = 1), and hence by the size of the mini-batch. The
bias is therefore simply due to the discretization time step. For large values of ∆t (namely
∆t > 0.008 in our experiments), the error is affected by the value of n. This is probably
due to the fact that this rather large value of ∆t is out of the regime where the asymptotic
analysis for the bias holds. In any case, a comparison with Figure 2.3 shows that the error
obtained with AdL is much smaller than the one obtained with SGLD (2.17) or the numerical
scheme (2.27) (which corresponds to Langevin dynamics with mini-batching), even with much
larger time steps.

64 Chapter 2. Removing the mini-batching error with AdL

0 2000 4000 6000 8000 10000
ε(n)

1%

2%

3%

4%

5%

6%

7%

8%

Re
la

tiv
e

er
ro

r o
n

th
e

va
ria

nc
e

Δt= 0Δ01
Δt= 0Δ008
Δt= 0Δ005
Δt= 0Δ003
Δt= 0Δ001

Figure 2.5 – Relative error on the variance of the posterior distribution for various values of
n using AdL when the elementary likelihood is Gaussian, and sampling is performed without
replacement.

2.3.3 Impact of a non constant covariance matrix

The bias analysis in the previous section does not hold in the case of a non constant co-
variance matrix Σx. We first quantify in Section 2.3.3.1 the bias due to mini-batching when
assumption (2.41) is not satisfied. We illustrate our analysis in Section 2.3.3.2 with a numer-
ical example where the elementary likelihood is a mixture of Gaussians. In this case, Σx(θ)
genuinely depends on θ.

2.3.3.1 Mini-batching bias for Adaptive Langevin dynamics and non constant
covariance

We consider the situation where Σx(θ) genuinely depends on θ, and prove that the bias on
the invariant measure is of order O(ε(n)∆t) +O(∆t2). Denote by

Σx =

∫
Θ

Σx(θ)π(θ|x) dθ (2.57)

the average covariance of the estimator of the force. The motivation for introducing this
particular constant matrix is discussed after Lemma 2.10 below. The generator of (2.40) can
then be written as

LAdL,Σx = LAdL,Σx
+ ε(n)∆tL̃Σx−Σx

, L̃M = M : ∇2
p. (2.58)

Since Σx does not depend on θ, the probability measure ν defined in (2.42) is an invariant
probability measure of the dynamics with generator LAdL,Σx

. As in Sections 2.2.3 and 2.2.4,
we next use [94, Remark 5.5] to prove that the extra bias due to mini-batching on the invariant
measure of (2.40) when Σx is not constant is of order O(ε(n)∆t). More precisely, denoting
by νξ0 the invariant probability measure of the continuous dynamics (2.40) when Σx depend
on the θ variable, and by νξ0 the invariant probability measure of the same dynamics (2.40)
when the covariance is set to Σx (recall Remark 2.8), it can be proved under appropriate
ergodicity conditions that, for any smooth function ϕ with compact support, there exists
C ∈ R+ such that∣∣∣∣∫

Θ
ϕ(θ, p, ξ)νξ0(dθ dp ξ)−

∫
Θ
ϕ(θ, p, ξ) [1 + ε(n)∆tfAdL,Σx(θ, p, ξ)] νξ0(dθ dp dξ)

∣∣∣∣ 6 Cε(n)2∆t2,

(2.59)

2.3. Adaptive Langevin dynamics 65

where (adjoints being taken on L2(νξ0))

fAdL,Σx =
(
−L∗

AdL,Σx

)−1
L̃∗

Σx−Σx
1.

This shows that the difference between νξ0 and νξ0 is of order ε(n)∆t, with a magnitude
related to the norm of fAdL,Σx in L2(νξ0). The latter quantity is estimated in the following
lemma.

Lemma 2.10. Assume that the marginal distributions of νξ0 in the θ and p variables are re-
spectively π(·|x) and τ , and that the resolvent L−1

AdL,Σx
is bounded on the subspace of functions

in L2(νξ0) with average 0 with respect to νξ0 . Then there exists C ∈ R+ such that

‖fAdL,Σx‖L2(νξ0) 6 C
∥∥Σx − Σx

∥∥
L2(π)

.

The boundedness of the resolvent has been proved when ξ is scalar valued, see [90].
Lemma 2.10 provides a motivation on the choice of Σx. Indeed, the error estimate in
Lemma 2.10 would be true with Σx replaced by any constant, positive, symmetric ma-
trixM ∈ Rd×d. The optimal choice is the L2(π)-orthogonal projection Σx of Σx onto constant
matrices.

Proof. Note first that L̃∗
Σx−Σx

1 =
(
Σx − Σx

)
:
(
∇2
p

)∗
1. The (i, j)-component of

(
∇2
p

)∗
1 is

∂∗pi∂
∗
pj1 = pipj − δi,j . Since ∫

Rd
(pipj − δi,j)2 τ(p) dp = 1 + δi,j ,

we obtain, by a Cauchy–Schwarz inequality,∥∥∥L̃∗Σx−Σx
1
∥∥∥2

L2(νξ0)
6
∥∥Σx − Σx

∥∥2

L2(π)

d∑
i,j=1

∫
Rd

(pipj − δi,j)2 τ(p) dp = d(d+1)
∥∥Σx − Σx

∥∥2

L2(π)
.

The conclusion then follows from the assumed boundedness of the resolvent.

We finally deduce from (2.56) and (2.59) that the total error between the invariant proba-
bility measures for (2.40) and (2.52) is of order O(ε(n)∆t) +O(∆t2). However, as motivated
by Lemma 2.10, the prefactor for the error term ε(n)∆t is much smaller than the one for
SGLD and Langevin dynamics, and depends only on the deviation of the covariance of the
gradient from its average.

Remark 2.11. Using other versions of the numerical scheme (2.52) (see Remark 2.9) affects
the prefactor for the error term ε(n)∆t. If we consider the case where the variable ξ is a
scalar, in other words, if we consider (2.53) for the numerical scheme, Σx in (2.57) should be
replaced by s∗Idd, with

s∗ =
1

d

∫
Θ

Tr (Σx(θ))π(θ|x) dθ.

In this case, the prefactor in front of the minibatching error term is larger than ‖Σx−Σx‖L2(π),
as it is given by ‖Σx − s∗Id‖L2(π). If we consider the variable ξ to be a diagonal matrix, i.e.
we consider (2.54) for the numerical scheme, Σx in (2.57) should be replaced by a diagonal
matrix with entries ∫

Θ
[Σx(θ)]i,i π(θ|x) dθ, 1 6 i 6 d.

By interpreting the various L2(π)-norms of the difference between Σx and a constant matrix as
the distance to finite dimensional subspaces of L2(π) included in each other, one can conclude
that the projection error obtained for diagonal matrices is between the error obtained with full
matrices and isotropic ones.

66 Chapter 2. Removing the mini-batching error with AdL

2.3.3.2 Mixture of Gaussians

We illustrate here that the bias on the posterior distribution is indeed of orderO(ε(n)∆t+∆t2)
when (2.41) does not hold. We consider to this end the model described in Section 2.2.5.1
with the same parameters as in that section. Assuming that the data points xi are distributed
according to Pelem(·|θ0) for some θ0, the covariance Σx(θ) has the following limit when the
number of data points Ndata is large:

Σ(θ) := lim
Ndata→∞

Σx(θ)

=

∫
X

∇θ(logPelem(x|θ))∇θ(logPelem(x|θ))TPelem(x|θ0) dx

−

∫
X

∇θ(logPelem(x|θ))Pelem(x|θ0)dx

∫
X

∇θ(logPelem(x|θ))Pelem(x|θ0)dx

T

.

(2.60)
This limit is well defined provided ∇θ(logPelem(·|θ)) ∈ L2(Pelem(·|θ0)) for all θ ∈ Θ. Com-
puting Σ(θ) in (2.60) is intractable in general for two reasons: (i) θ0 is unknown and anyway
the data points may even not be distributed according to Pelem(·|θ0); (ii) the integral over
x is possibly a high dimensional one or requires an evaluation cost of O(Ndata) to approx-
imate it. We nonetheless use the formula (2.60) to compute the elements of Σ(θ) in the
low-dimensional case considered here to better understand the issues at stake. We plot in
Figure 2.6 the components Σ11(θ), Σ12(θ) and Σ22(θ) of the symmetric matrix Σ(θ) in (2.60).
It is clear that the variance genuinely depends on the value of the parameter θ = (θ1, θ2), so
that assumption (2.41) fails in this case.

To check whether the failure of assumption (2.41) has an impact on the properties of AdL,
we use the same dataset as described in Section 2.2.5.2. We run the numerical scheme (2.52)
for the following two cases: when ξ is a d× d matrix or when it is a scalar. We fix T = 106,
γ = 1 and η = 0.1. This last choice is motivated by metastability issues we noticed while using
AdL for larger values of η. We report in Figure 2.7 the L1 error given by (2.38). Note first
that using AdL greatly reduces the L1 error compared to the results of Figure 2.4, obtained
with SGLD (2.17) or the numerical scheme (2.27) (which corresponds to Langevin dynamics
with mini-batching). However, AdL, in both cases, fails to completely correct the bias due
to mini-batching. Consistently with the analysis of Section 2.3.3.1, we observe that the bias
seems to scale linearly with ε(n)∆t‖Σx(θ)−S∗‖L2(π) (where S∗ is the L2(π)-projection of Σx
onto the set of admissible matrices) when this quantity is sufficiently small. We numerically
compute ∥∥∥∥Σx(θ)− 1

d

∫
Θ

Tr (Σx(θ))π(θ|x) dθ

∥∥∥∥
L2(π)

≈ 1.75

for the scalar case, and ∥∥∥∥Σx(θ)−
∫

Θ
Σx(θ)π(θ|x) dθ

∥∥∥∥
L2(π)

≈ 0.57

for the full matrix case. This is consistent with the numerical results for ε(n)∆t 6 100, where
the error on the posterior distribution in the scalar case is roughly 3 times larger than the
error in the full matrix case.

2.4 Extended Adaptive Langevin Dynamics

AdL corrects for the bias due to mini-batching when the covariance of the stochastic gradient
is constant. This is unfortunately not always the case as we demonstrated in Section 2.3.3.

2.4. Extended Adaptive Langevin Dynamics 67

θ1

0.000.350.701.051.40
θ2

0.00
0.35

0.70
1.05

1.40

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
θ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

θ 2

0.300

0.600

0.600

0.90
0

0.900

1.200

1.200

1.500

1.5
00

1.800

1.800

2.100

2.100
2.400

2.400

2.7
00

2.
70
03.000

3.0
00

3.
30
0

3.3
00

3.6
00

3.600

3.9
00

3.9
00

4.2
00

4.2
00

4.500

4.5
00

4.8
00

4.
80

0

5.1
00

5.
10

0

5.
40

0
5.
70

0

(a) Σ1,1

θ1

0.00
0.35

0.70
1.05

1.40θ2

0.00 0.35 0.70 1.05 1.40

1
2
3
4
5

6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
θ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

θ 2

0.300

0.600

0.600

0.900

0.
90

0

1.200

1.2
00

1.5
00

1.500

1.800

1.
80
0

2.100

2.1
00

2.4
00

2.400

2.700

2.70
0

3.00
0

3.000

3.30
0

3.300
3.600

3.60
0

3.900

3.90
0

4.20
0

4.200

4.50
0

4.500

4.800

4.800

5.100

5.100

5.4005.7006.000

(b) Σ2,2

θ1

0.00
0.35

0.70
1.05

1.40
θ2

0.00
0.35

0.70
1.05

1.40

−0.5
0.0
0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
θ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

θ 2

-0.600

-0
.6
00

-0.600

-0.
45
0

-0.
45
0

-0.30
0

-0.3
00

-0.15
0

-0.15
0

0.0
00

0.0
00

0.15
0

0.1
50

0.30
0

0.30
0

0.45
0

0.45
0

0.6
00

0.6
00

0.75
0

0.7
50

0.9
00

0.9
00

1.05
0

1.05
0

1.20
0

1.20
0

1.35
0

1.35
0

1.5
00

1.5
00

1.65
0

1.65
0

1.8
00

1.8
00

1.9
50

1.9
50

2.1
00

2.1
00

(c) Σ1,2

Figure 2.6 – The three components of the elementary covariance matrix Σ in (2.60) when the
elementary likelihood are mixture of Gaussians: surface (left) and contour (right) plots. The
modes of the posterior distribution are indicated by orange ellipses.

68 Chapter 2. Removing the mini-batching error with AdL

0 10000 20000 30000 40000
ε(n)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

L1
er
ro
r

ΔtΔ0.01
ΔtΔ0.005
ΔtΔ0.001
ΔtΔ0.0005

(a) ξ matrix

0 10000 20000 30000 40000
ε(n)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

L1
er
ro
r

ΔtΔ0.01
ΔtΔ0.005
ΔtΔ0.001
ΔtΔ0.0005

(b) ξ scalar

Figure 2.7 – L1 error on the posterior distribution for various values of ∆t and n when
sampling from the posterior distribution for the mixture of Gaussians case using AdL, with
mini-batching performed without replacement.

In this section, we introduce an extension of AdL dynamics which allows to remove the bias
when the covariance is not constant but can be decomposed on a finite basis of functions.
This approach also allows to drastically reduce the bias even if the covariance matrix cannot
be decomposed in a finite basis.

We start by presenting the modified AdL dynamics in Section 2.4.1, under the assumption
that the covariance of the force estimator can be decomposed on a finite basis of functions.
This key assumption guarantees that the marginal distribution in the θ variable is the target
posterior (2.2), which is one important result of this work. We next propose a numerical
scheme for extended AdL in Section 2.4.2, where we also quantify the bias on the invariant
measure arising from the use of finite time steps, and possibly from mini-batching in situations
where the covariance of the force estimator cannot be decomposed as a finite sum for the
chosen basis of functions. We finally discuss in Section 2.4.3 a crucial point of the method,
namely the choice of basis functions.

2.4.1 Presentation of the dynamics

Using the same notation as in Section 2.3, let us consider the case where A∆t,n(θ) in (2.39)
genuinely depends on θ in the following manner.

Assumption 1. The matrix-valued function A∆t,n can be decomposed on a finite basis of
functions f0, . . . , fK as

A∆t,n(θ) =

K∑
k=0

Ak∆t,nfk(θ), (2.61)

where A0
∆t,n, ..., A

K
∆t,n ∈ Rd×d are symmetric matrices. Moreover, A∆t,n(θ) is a symmetric

positive matrix for any θ ∈ Θ.

The choice of the basis of function is of great importance for the numerical performance
of the method and is discussed more precisely in Section 2.4.3. The situation when (2.61)
does not hold is considered at the end of Section 2.4.2. Note that the matrices A0

∆t,n, ..., A
K
∆t,n

need not be positive as long as A∆t,n(θ) is. In accordance with (2.61), we choose the variable
ξt(θ) to be of the following form:

ξt(θ) =

K∑
k=0

ξk,tfk(θ), ξk,t ∈ Rd×d. (2.62)

2.4. Extended Adaptive Langevin Dynamics 69

If K = 0 and f0 = 1, then (2.61) coincides with assumption (2.41), in which case AdL
is sufficient to remove the bias due to mini-batching. In practice, the expression (2.61) is
obtained by a truncation of the expansion of the function A∆t,n(θ) on a complete basis. From
a pragmatic viewpoint, an appropriate value of K is such that∣∣∣∣∣A∆t,n −

K∑
k=0

Ak∆t,nfk

∣∣∣∣∣� |A∆t,n|, (2.63)

for some matrix norm | · | (e.g. the Frobenius norm).
We are now in position to write the following extended Adaptive Langevin dynamics

(eAdL), for which we introduce K + 1 additional (matrix) equations on the coefficients ξk,t
in (2.62): 

dθt = pt dt,

dpt = ∇θ(log π(θt|x)) dt− ξt(θt)pt dt+
√

2A∆t,n(θt)
1/2 dWt,

d[ξk,t]i,j =
fk(θt)

ηk
(pi,tpj,t − δi,j) , 1 6 i, j 6 d, 0 6 k 6 K,

(2.64)

where A∆t,n given by (2.39), [ξk,t]i,j is the (i, j) component of ξk,t ∈ Rd×d, and ηk are positive
scalars for 0 6 k 6 K. The interest of eAdL is the following consistency result on the existence
of an invariant probability measure with the correct marginal distribution in the θ variable.

Theorem 2.12. Suppose that Assumption 1 holds. Then, the eAdL dynamics (2.64) admits
the following invariant probability measure:

νK(dθ dp dξ0 . . . dξK) = π(θ|x)τ(dp)ρK(dξ) dθ, (2.65)

where τ(dp) is defined in (2.21), and

ρK(dξ0 . . . dξK) =
K∏
k=0

d∏
i,j=1

√
ηk
2π

exp

(
−ηk

2

(
[ξk]i,j − [Ak∆t,n]i,j

)2
)
d[ξk]i,j ,

with [Ak∆t,n]i,j the (i, j) component of Ak∆t,n ∈ Rd×d.

As for AdL (see the discussion following Lemma 2.7), Theorem 2.12 suggests that we
recover the target posterior distribution π(·|x) whatever the extra noise due to mini-batching,
since the marginal in the variable θ of the probability measure νK in (2.65) is π(·|x). However,
from a discussion similar to the one in Remark 2.8, the dynamics can not be ergodic for the
extended measure νK , as discussed in the following remark.

Remark 2.13. As discussed in Remarks 2.5 and 2.8, it is easier to consider all the additional
variables ([ξk]i,j)16i,j6d for all k ∈ {0, ...,K} (and not just the upper part of these matrices) to
prove the invariance of the probability measure νK . However, for the same reasons as for AdL,
the dynamics cannot be ergodic for the probability measure (2.65). The best case scenario is
that the dynamics is ergodic for the restriction of νK onto the submanifold

SK(ξ0) = Θ× Rd ×
K∏
k=0

{
ξk ∈ Rd×d

∣∣∣ [ξk]i,j − [ξk]j,i = [ξk,0]i,j − [ξk,0]j,i

}
.

The latter ergodicity is however unclear, since there are now (K + 1)d(d + 1) additional
degrees of freedom in the friction variables, whereas the noise acting on the system is only of
dimension d. In any case, this does not affect the main result, since the marginal over θ is
still π(·|x) as soon as the invariant measure has the tensorized structure (2.65), even if the
probability measure on ξ0, . . . , ξK is supported on a submanifold. Let us emphasize that it is
sufficient to consider only ([ξk]i,j)16i6j6d for the numerical experiments.

70 Chapter 2. Removing the mini-batching error with AdL

Proof. We follow the same approach as for the proof of Lemma 2.7. The generator of the
dynamics reads

LeAdL,Σx = Lham + LFD + L̃NH,

where Lham and LFD are the same operators as in (2.44) and (2.45) respectively (even if A∆t,n

depends on θ), while

L̃NH =

K∑
k=0

fkLNH,k,

where

LNH,k = −
d∑

i,j=1

pi

(
[ξk]i,j − [Ak∆t,n]i,j

)
∂∗pj +

1

ηk
(pipj − δi,j)∂[ξk]i,j .

A computation similar to the one performed in the proof of Lemma 2.7 shows that L∗NH,k =

−LNH,k, with adjoints taken with respect to L2(νK); while Lham and LFD are respectively
antisymmetric and symmetric on L2(νK). This implies that L∗eAdL,Σx

1 = 0, from which the
claimed invariance of νK follows.

2.4.2 Numerical scheme and estimates on the bias

We present in this section a numerical integrator for the eAdL dynamics (2.64) based on a
Strang splitting similar to the one considered in Section 2.3.2.2 for AdL. We consider the
same elementary SDEs (2.47)-(2.50) as for the discretization of AdL, except that there are
now K + 1 elementary SDEs in (2.50), indexed by 0 6 k 6 K. The associated numerical
scheme obtained for Γ = γId reads

ξm =
K∑
k=0

ξmk fk(θ
m),

pm+ 1
2 = e−∆tξm/2pm +

[
γ (ξm)−1

(
Id − e−∆tξm

)]1/2
Gm,

ξ
m+ 1

2
k = ξmk +

∆t

2ηk
fk(θ

m)

[(
pm+ 1

2

)(
pm+ 1

2

)T
− Id

]
, k = 0, ...,K,

θm+ 1
2 = θm +

∆t

2
pm+ 1

2 ,

p̃m+ 1
2 = pm+ 1

2 + ∆tF̂n

(
θm+ 1

2

)
,

θm+1 = θm+ 1
2 +

∆t

2
p̃m+ 1

2 ,

ξm+1
k = ξ

m+ 1
2

k +
∆t

2ηk
fk(θ

m+1)

[(
p̃m+ 1

2

)(
p̃m+ 1

2

)T
− Id

]
, k = 0, ...,K,

ξm+1 =

K∑
k=0

ξm+1
k fk(θ

m+1),

pm+1 = e−∆tξm+1/2p̃m+ 1
2 +

[
γ
(
ξm+1

)−1
(

Id − e−∆tξm+1
)]1/2

Gm+ 1
2 ,

(2.66)

where (Gm)m>0 and (Gm+ 1
2)m>0 are two independent families of i.i.d. standard d-dimensional

Gaussian random variables.
We assume as before that the numerical scheme (2.66) admits a unique invariant probabil-

ity measure, which may depend on the initial condition (ξ0
0 , . . . , ξ

0
K). Error estimates on this

invariant probability measure can be obtained as in Section 2.3.3.1. The conclusion is that
the bias is still of order O(∆t2) +O(ε(n)∆t), but with a smaller prefactor for the dominant

2.4. Extended Adaptive Langevin Dynamics 71

term ε(n)∆t. Let us emphasize that we do not require Assumption 1 to hold for this analysis.
To make this precise, the first step is to write the generator as

LeAdL,Σx = L
eAdL,Σ

K
x

+ ε(n)∆tL̃
Σx−Σ

K
x
,

where L̃M is defined in (2.58), and Σ
K
x is a symmetric positive matrix which belongs to the vec-

tor space generated by f0, . . . , fK . One can then state an inequality similar to (2.59), where νξ0

is replaced by the invariant probability measure νK,(ξ0
0 ,...,ξ

0
K) of the eADL dynamics associated

with the generator L
eAdL,Σ

K
x
, and νξ0 is replaced by invariant probability measure νK,(ξ0

0 ,...,ξ
0
K)

of the eAdL dynamics with generator LeAdL,Σx . The prefactor of the dominant error term,
proportional to ε(n)∆t, depends on the function

f
eAdL,Σx,Σ

K
x

=
(
−L∗

eAdL,Σ
K
x

)−1
L̃∗

Σx−Σ
K
x
1,

where adjoints are taken on L2(νK,(ξ0
0 ,...,ξ

0
K)). Under appropriate conditions on the structure

of νK,(ξ0
0 ,...,ξ

0
K) and resolvent bounds for L

eAdL,Σ
K
x
, similar to the ones stated in Lemma 2.10,

it is possible to upper bound the norm of feAdL,Σx in L2(νK,(ξ0
0 ,...,ξ

0
K)) by

∥∥∥Σx − Σ
K
x

∥∥∥
L2(π)

. By

optimizing upon the matrix valued function Σ
K
x , one can conclude that the prefactor of the

error term proportional to ε(n)∆t is bounded, up to a constant, by

min
M0,...,MK∈Rd×d

∥∥∥∥∥Σx −
K∑
k=0

Mkfk

∥∥∥∥∥
L2(π)

, (2.67)

which corresponds to the L2(π) projection of Σx onto the vector space of symmetric matrices
generated by the basis. This shows that the better the approximation of the covariance Σx is
for the chosen basis (f0, . . . , fK), the smaller the bias is.

Remark 2.14. As for the numerical discretization of AdL (2.52) (see Remark 2.9), we can
also use the numerical scheme (2.66) while considering each variable ξk as a scalar or a
diagonal matrix. Observations similar to the ones made in Remark 2.11 apply here as well.
More precisely, the prefactor of the error term proportional to ε(n)∆t is bounded by the L2(π)-
projection of Σx onto: (i) the vector space generated by the basis when the variables ξk are
scalars for each k, meaning that Mk = σkId where σk ∈ R in (2.67); (ii) the vector space of
diagonal matrices generated by the basis when the variables ξk are diagonal matrices for each
k, meaning that M0, . . . ,MK are diagonal matrices in (2.67). For the numerical simulations
reported in Section 2.5, we will consider the variables ξk as full d× d symmetric matrices.

2.4.3 Choice the basis functions

The choice of the basis functions f0, . . . , fK is a key point in our method, since there is a
trade-off between a good approximation of the matrix A∆t,n(θ) such that the condition (2.63)
is satisfied, and the number of additional degrees of freedom (which is equal to the number of
functions K introduced multiplied by d(d+ 1)/2 if the unknown are matrices). We typically
want to introduce only a limited number of degrees of freedom. One option towards this goal
is for instance to consider only isotropic matrices ξk = σkId with σk ∈ R. Such a choice is
advocated in [39] for K = 0 and f0 = 1.

Spatial decomposition. Numerical experiments suggest that the covariance matrix of the
estimator of the gradient may change rapidly in certain regions of the parameter space (see in
particular Figure 2.6). A convenient approach to approximating this matrix is to partition the

72 Chapter 2. Removing the mini-batching error with AdL

domain Θ into K + 1 subdomains, denoted by D0, . . . ,DK , and to consider the functions fk
to be indicator functions of these domains, i.e. fk = 1Dk . This corresponds to a piecewise
constant approximation of the covariance matrix. If the domain is simple and the dimension d
sufficiently small, one can think of simple geometric decompositions, using e.g. rectangles if Θ
is itself rectangular, or rings around the various modes of the posterior distribution. For more
complicated domains in possibly high dimension, it is possible to decompose the parameter
space with a Voronoi tessellation, where the centers of the Voronoi tesselation are for instance
the local maxima of the posterior distribution. Such points can be localized by performing
preliminary SGLD or AdL runs. This amounts to considering a constant friction matrix in
each mode of the probability distribution.

Polynomial approximation. If the domain Θ is sufficiently simple from a geometric view-
point, a more sophisticated method is to couple a spatial decomposition with some spectral
approximation, by introducing basis functions on each subdomain. For a rectangular decom-
position of the domain, a polynomial basis can be defined on each subdomain

Dk = [M−k,1,M
+
k,1]× ...× [M−k,d,M

+
k,d], (2.68)

by tensorization of monomial functions of the form

ek,j,i(θj) =

(
θj −M−k,j
M+
k,j −M

−
k,j

)i
. (2.69)

The integer k indexes the domain under consideration, j characterizes the degree of freedom
under consideration, and i is the power of the monomial. The normalization we choose ensures
that each of the term in the tensor product defining the basis function has values in [0, 1].
Defining for instance the degree of the tensor product deg to be the maximum of the degree
of the individual polynomials, the total number of degrees of freedom is given by K(deg+1)d.
When deg is large, the elementary polynomials (2.69) assume non negligible values only close
to the boundary of the domain, which can result in numerical instabilities. We therefore
rescale the basis functions so that their L2(π) norm is 1 (as the normalization factor being
estimated using preliminary AdL runs).

2.5 Numerical illustrations

We illustrate in this section the interest of eAdL with numerical experiments showing that this
dynamics allows to (almost fully) remove the mini-batching bias. We first demonstrate this
in Section 2.5.1 for a one dimensional toy model where we artificially inject noise. We then
consider in Section 2.5.2 the more realistic example of Section 2.2.5.2 where the elementary
likelihoods are given by a mixture of Gaussians, and for which AdL fails to fully remove the bias
because the covariance matrix is not constant. We demonstrate that with a reduced number
function basis, the bias is significantly reduced even for the smallest values of n, including
n = 1. We finally consider a model of logistic regression for MNIST data in Section 2.5.3,
where we investigate why AdL with a scalar friction provides results of almost the same quality
as AdL with a genuine friction matrix.

2.5.1 One dimensional toy model

We have seen in Section 2.3.3 that the covariance matrix Σx(θ) is not always constant. We
demonstrate here how the dependence of the covariance matrix on the parameters affects
the posterior distribution and how eAdL corrects for the corresponding bias. To do so, we

2.5. Numerical illustrations 73

−4 −3 −2 −1 0 1 2 3 4
θ

0.0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ilit

y

Exact
AdL ΔtΔ 0.01
AdL ΔtΔ 0.001

(a) δ = 0.5

−4 −3 −2 −1 0 1 2 3 4
θ

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ilit

y

Exact
AdL ΔtΔ 0.01
AdL ΔtΔ 0.001

(b) δ = 1.0

Figure 2.8 – Sampling the Gaussian distribution using the scheme (2.52) for Adaptive Langevin
dynamics and various values of δ. The solid blue line is the exact distribution.

consider a toy model where π(θ) = (2π)−1/2 exp
(
−θ2/2

)
, and we inject an artificial Gaussian

noise, with a variance depending on θ as

Σ(θ) = α2 1 + δ cos(2πθ)

2
,

where |δ| 6 1 so that Σ > 0. We consider F̂n(θ) = θ+
√

Σ(θ)G in (2.66), with G is standard
Gaussian random variable. We run numerical experiments to see how the dependence of Σ on
θ affects the posterior distribution. In this simple model, the parameter α2 is the counterpart
of ε(n); while the parameter δ quantifies the difference between Σ and its average with respect
to π (and hence should determine the bias for AdL at leading order in view of the analysis of
Section 2.3.3.1).

We set α = 50. We fist run the numerical scheme (2.52) corresponding to AdL (for which
we fix Γ = 1 and η = 1) for a time T = 106 for various values of δ and ∆t. We compare the
resulting histograms of θ and the exact posterior distribution in Figure 2.8. It is clear that the
variation of the covariance matrix affects the sampled probability distribution. The results of
Figure 2.8 show that the bias is already significant for δ = 0.5, and even larger for δ = 1. The
modes that appear in the posterior distribution are a trace of the modulations of Σ(θ) over
the range of values of θ which are explored. As expected however, the bias decreases as ∆t
decreases. This is due to the fact that the magnitude of the noise depends on the stepsize,
see Section 2.3.3.1, and (2.58) in particular.

We next run eAdL with the same parameters for the same values of δ. We choose f1(θ) = 1
and f2(θ) = cos(2πθ). In this case the covariance matrix can be fully captured by the basis of
functions. As expected, eAdL completely corrects for the bias introduced by the dependence
of covariance matrix on the parameter θ in this simple example, even for δ = 1; see Figure 2.9.

2.5.2 Mixture of Gaussians

We turn to the more realistic example introduced in Section 2.2.5.2. The covariance matrix in
this case is not constant, and AdL fails to correct for the extra noise due to mini-batching; see
Section 2.3.3.2 and Figure 2.7. We consider the same parameters as Section 2.3.3.2. To define
the basis functions, we first consider a symmetric rectangular partition on the domain, with
4 meshes of the form (2.68), with M−0,1 = M−0,2 = M−1,2 = M−2,1 = 0, M+

0,1 = M+
0,2 = M−1,1 =

M+
1,2 = M+

2,1 = M−2,2 = M−3,1 = M−3,2 = 0.7 and M+
1,1 = M+

2,2 = M+
3,1 = M+

3,2 = 1.4. We define
polynomials on each mesh as discussed in Section 2.4.3. We run the numerical scheme (2.66)

74 Chapter 2. Removing the mini-batching error with AdL

−4 −3 −2 −1 0 1 2 3 4
θ

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

pr
ob

ab
ilit

y

Exact
eAdL ΔtΔ 0.01
eAdL ΔtΔ 0.001

(a) δ = 0.5

−4 −3 −2 −1 0 1 2 3 4
θ

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

pr
ob

ab
ilit

y

Exact
eAdL ΔtΔ 0.01
eAdL ΔtΔ 0.001

(b) δ = 1.0

Figure 2.9 – Sampling the Gaussian distribution using the scheme (2.66) for eAdL and various
values of δ. The solid blue line is the exact distribution.

for eAdL with ηk = 1 for all values of 0 6 k 6 K, for a final time T = 106, various values
of ∆t, and various degrees of polynomials. The case K = 0 corresponds to standard AdL,
while K = 3 corresponds to an estimation of the covariance matrix by a piecewise constant
matrix valued function on the 4 domains under consideration, K = 15 to products of affine
functions in each degree of freedom on the 4 domains, and K = 35 to products of second order
polynomials in each variable on each domain. We report in Figure 2.10 the L1 error on the
marginal distribution over θ1 of the posterior distribution sampled by the numerical scheme
for various values of K. Let us first emphasize that the bias has been dramatically decreased
compared to AdL even for the smallest valueK = 3 (compare with Figure 2.7). A small bias is
however remaining, due to the fact that the covariance matrix cannot be fully approximated.
This residual bias can be further reduced when K is increased. Already for K = 15, the bias
is very low and only arises from the time step error. We plot in Figure 2.11 the quantity
‖Σx − SK‖L2(π) where SK is the L2(π) projection of Σx onto the vector space of symmetric
matrices generated by the basis for each value of K. The results are consistent with the bias
analysis of Section 2.4.2 since the decay of the approximation of Σx is similar to the decay of
the bias with respect to K.

2.5.3 Logistic regression

In this section, we consider the example of a Bayesian logistic regression model, where we
train the model on a subset of the MNIST data set containing the digits 7 and 9, and which
have been pre-processed by a principal component analysis, as described in [90, Section 4.3].

Presentation of the model. We consider Ndata = 12, 251 images z = (z1, z2, ..., zNdata
) ⊂

Rd (with d = 100), labeled by y = (y1, y2, ..., yNdata
) ⊂ {0, 1} (the labels 0 and 1 respectively

correspond to digits 7 and 9). We assume that the the elementary likelihood on the data
point xi = (zi, yi) is

Pelem(xi|θ) = σ(θT zi)
yi(1− σ(θT zi))

1−yi ,

where

σ(z) =
exp(z)

1 + exp(z)
,

and θ ∈ Rd is the vector of parameters we want to estimate. Assuming that the prior over
the vector of parameter θ is a centered standard normal distribution, a simple computation

2.5. Numerical illustrations 75

0 5 10 15 20 25 30 35
K

0.0

0.1

0.2

0.3

0.4

L1
er
ro
r

ΔtΔ0.01
ΔtΔ0.005
ΔtΔ0.001

(a) n = 5

0 5 10 15 20 25 30 35
K

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

L1
er
ro
r

ΔtΔ0.01
ΔtΔ0.005
ΔtΔ0.001

(b) n = 15

Figure 2.10 – L1 error on the the marginal over θ1 of the a posteriori distribution with eAdL
for various values of K and ∆t (K = 0 corresponds to AdL results).

0 5 10 15 20 25 30 35
K

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||Σ
x(θ

)−
S K
|| L

2 (
π)

Figure 2.11 – ‖Σx − SK‖L2(π) where SK is the L2(π) projection of Σx onto the vector space
of symmetric matrices generated by the basis for each value of K.

76 Chapter 2. Removing the mini-batching error with AdL

−3.7 −3.6 −3.5 −3.4 −3.3 −3.2
θ3

0

1

2

3

4

5

6

7
pr
ob

ab
ilit

y

(a) Marginal distribution of θ3

−0.2 −0.1 0.0 0.1
θ44

0

1

2

3

4

5

6

7

8

pr
ob

ab
ilit

y

(b) Marginal distribution of θ44

−3.60 −3.55 −3.50 −3.45 −3.40 −3.35
θ3

−0.45

−0.40

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

θ 2
8

(c) Joint marginal distribution of (θ3, θ29)

−0.45 −0.40 −0.35 −0.30 −0.25 −0.20 −0.15 −0.10
θ43

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

θ 5
5

(d) Joint marginal distribution of (θ43, θ55)

Figure 2.12 – Marginal posterior distributions of θ3 and θ44 (top), and of (θ3, θ28) and (θ43,
θ55) (bottom).

based on the identity σ′(z) = σ(z)(1− σ(z)) shows that

F̂n(θ) = θ +
Ndata

n

∑
i∈In

(yi − σ(θT zi))zi.

Numerical results. We use AdL to sample from the posterior distribution rather than
eAdL since d is large, and the decomposition of the covariance in a basis of functions matrix
would involve too many unknowns. We fix γ = η = 1, T = 103 and ∆t = 10−3. We run
the numerical scheme (2.52) for the following three cases: ξ is a scalar, a diagonal matrix
or a full matrix. We plot the marginal distributions of some parameters θi in Figure 2.12.
The results suggest that the posterior distribution of the parameters is close to a Gaussian
distribution. As pointed out in Section 2.3.2.3, AdL would be sufficient in this case to remove
the minibatching error.

According to Lemma 2.7, the posterior distribtion of the variable ξ is centered on A∆t,n

given by (2.39), when the latter matrix is constant. An estimate of the average covariance
matrix can then be obtained with the estimator

1

ε(n)∆t

(
1

Niter

Niter∑
m=1

ξm − γId

)
,

where γId is replaced by γ in the scalar case. We plot in Figure 2.13 the diagonal components
of the estimate of the average of the covariance matrix of the stochastic gradient for the
following three cases considered here (ξ scalar, diagonal of full matrix). We can see that Σx
has a dominant part which is equal to σId (although there are many non zero off diagonal

2.5. Numerical illustrations 77

0 20 40 60 80
0

20

40

60

80
0.000

0.005

0.010

0.015

0 20 40 60 80 100
i

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030 matrix
diagonal
scalar

Figure 2.13 – Left: Estimated covariance matrix of θ. Right: Diagonal components of the
estimate of the average covariance matrix of the stochastic gradient as a function of the index
1 6 i 6 d.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
ε(n) 1e6

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

m
ea

n
re

la
tiv

e
er

ro
r o

n
th

e
di

ag
on

al

 o
f t

he
 c

ov
ar

ia
nc

e
m

at
rix

scalar
diagonal
matricial

Figure 2.14 – Error on the covariance matrix of the parameters using AdL for ξ scalar, diagonal
matrix or full matrix.

terms). Following Remark 2.11, we expect AdL to give comparable results whether the friction
variable is a scalar, a diagonal matrix and a full matrix. In order to investigate this, we plot
in Figure 2.14 the mean relative error on the diagonal entries of the covariance matrix of the
vector of parameters θ with respect to ε(n) given by

1

d

d∑
i=1

∣∣∣∣ [cov(θn)]i,i − [cov(θNdata
)]i,i

[cov(θNdata
)]i,i

∣∣∣∣ ,
where θn denotes the vector of parameters obtained by a trajectory average over a realization
of AdL while using the minibatching procedure, while θNdata

denote the reference vector of
parameters obtained by AdL without minibatching. The error on the covariance matrix is
some measure of the bias on the posterior distribution effectively sampled by the numerical
scheme. The results confirm that AdL with scalar ξ already leads to acceptable results in this
example and performs as well as AdL with diagonal ξ.

78 Chapter 2. Removing the mini-batching error with AdL

2.6 Discussion and perspectives

We quantified in this work the bias on the posterior distribution arising from mini-batching
for (kinetic or underdamped) Langevin dynamics, both for standard and adaptive Langevin
dynamics. As highlighted in (2.1), the bias is dictated by the quality of the approximation of
the covariance matrix Σx(θ) of the gradient estimator by the average (at θ fixed) of the extra
friction variable ξ introduced in AdL. The latter average is independent of the parameter θ
in the original formulation of AdL, and this is sufficient to remove the bias if the target
distribution is Gaussian, and allows to strongly reduce the bias for posteriors close to Gaussian
(as for the MNIST example considered in Section 2.5.3). The latter situation is typical
when the number of data points Ndata is large, as the posterior distribution concentrates in
a Gaussian manner around one mode (up to symmetries) due to the Bernstein–von Mises
theorem (see [150, Section 10.2]). In this case, it is likely that AdL already captures most of
the mini-batching bias.

Standard AdL is however not sufficient in various situations, in particular when Σx gen-
uinely depends on θ, which is the case when Ndata is relatively small. In this case, the poste-
rior distribution can strongly deviate from a Gaussian distribution. Extended AdL provides
a framework to systematically reduce the mini-batching bias in such situations, by adding
extra degrees of freedom to better tune the friction variable. Striking reductions in the bias
can be observed already for not too many additional degrees of freedom, even for the extreme
situation where the batch size is set to its minimal value n = 1. In any case, eAdL always
leads to a smaller bias than AdL.

Let us also emphasize here that AdL and eAdL can be used in conjunction with other
techniques to reduce the variance of the stochastic estimator of the force, such as control
variate or extrapolation techniques (see for instance [110, 24, 9, 46]). AdL and eAdL should
therefore not be seen as alternatives to these techniques, but as complements.

The choice of the dimensionality of the vector space for the friction variable is a key element
for standard AdL and its extension. Going from scalar to matrix valued friction increases the
number of degrees of freedom from 1 to d2. When eAdL is employed, with K basis functions
(for instance indicator functions of some regions in parameter space), the number of degrees
of freedom is further multiplied by K. One would like the number of degrees of freedom to be
as small as possible. From a theoretical perspective, this motivates further characterizing the
structure of the covariance matrix Σx, which have been observed to be low rank in certain
situations related to neural network training [30]. This could also shed some light on the
current active research efforts on understanding the so-called implicit bias of neural network
training.

2.A. Proof of some technical estimates 79

Appendix

2.A Proof of some technical estimates

We provide in this appendix the algebraic manipulations for various error estimates. To
simplify the notation, we simply write Z in all this section for the random variable which
appears in (2.13). The analysis we perform is asymptotic since it relies on the assumption
that ε(n) > 1 and ∆t 6 1 are such that ε(n)∆t 6 1 is sufficiently small.

2.A.a Proof of (2.18)

Let us prove that the evolution operator for SGLD satisfies (2.18) for ∆t and ε(n)∆t small.
We rewrite to this end the SGLD scheme (2.17) as

θm+1 = Φ∆t,n(θm, Zm, Gm),

with
Φ∆t,n(θ, Z,G) = θ +

√
ε(n)∆tΣ

1/2
x (θ)Z +

√
2∆tG+ ∆t∇θ(log π(θ|x).

For a given smooth function θ 7→ ϕ(θ) with compact support, it then holds

ϕ(Φ∆t,n(θm, Zm, Gm)) = ϕ
(

Φ∆t,n(θm, 0, Gm) +
√
ε(n)∆tΣ

1/2
x (θm)Zm

)
= ϕ(Φ∆t,n(θm, 0, Gm)) +

√
ε(n)∆tΣ

1/2
x (θm)Zm · (∇θϕ)(Φ∆t,n(θm, 0, Gm))

+
1

2
ε(n)∆t2(∇2

θϕ)(Φ∆t,n(θm, 0, Gm)) : Σ
1/2
x (θm)Zm ⊗ Σ

1/2
x (θm)Zm

+
1

6
ε(n)3/2∆t3D3ϕ(Φ∆t,n(θm, 0, Gm)) :

(
Σ

1/2
x (θm)Zm

)⊗3

+O(ε(n)2∆t4),

where we use the notation

D3ϕ(θ) : v1 ⊗ v2 ⊗ v3 =
d∑

i,j,k=1

[v1]i[v2]j [v3]k(∂
3
θi,θj ,θk

ϕ)(θ),

and v⊗3 = v⊗v⊗v. Using classical results on the evolution operator of the Euler–Maruyama
scheme to compute the expectation of ϕ(Φ∆t,n(θm, 0, Gm)) with respect to Gm (see for exam-
ple [154] for details), we can compute the expectation of ϕ(Φ∆t,n(θm, Zm, Gm)) with respect
to the variables Gm and Zm as(

P̂∆t,nϕ
)

(θm) = Id + ∆tLovdφ(θm) + ∆t2
(

1

2
L2

ovd +Adisc

)
ϕ(θm) +O(∆t3)

+ ∆t2ε(n)EG [(Ambϕ)(Φ∆t,n(θm, 0, G))] +O
(
ε(n)3/2∆t3

)
.

Since EG [Ambϕ(Φ∆t,n(θm, 0, G))] = Ambϕ(θm) +O(∆t), we obtain on the one hand that

P̂∆t,n = Id + ∆tLovd + ∆t2
(

1

2
L2

ovd +Adisc + ε(n)Amb

)
+O

(
(1 + ε(n)3/2)∆t3

)
. (2.70)

On the other hand, notice that

e∆t(Lovd+ε(n)∆tAmb+∆tAdisc) = Id + ∆tLovd + ∆t2
(

1

2
L2

ovd +Adisc + ε(n)Amb

)
+O((1 + ε(n))∆t3).

(2.71)

Using (2.70) alongside with (2.71), we deduce the desired result (2.18).

Remark 2.15. Note that when E[Z3] = 0, the remainder term is in fact of order O
(
(1 + ε(n)2∆t)∆t3

)
in (2.70). This leads to a remainder of order O

(
(1 + ε(n))∆t3

)
in (2.18).

80 Chapter 2. Removing the mini-batching error with AdL

2.A.b Proof of (2.28), (2.29) and (2.30)

To prove (2.28), we consider a smooth function (θ, p) 7→ ϕ(θ, p) with compact support, and
rewrite the operator as(

QL1
∆tϕ

)
(θm, pm) = E

[
ϕ
(
θm, pm + ∆tF̂n(θm)

)]
= E

[
ϕ
(
θm, pm + ∆t∇θ(log π(θm|x)) +

√
ε(n)∆tΣ

1/2
x (θm)Zm

)]
.

We then have(
QL1

∆tϕ
)

(θm, pm) = E [ϕ (θm, pm + ∆t∇θ(log π(θm|x))]

+
√
ε(n)∆tE

[
Σ

1/2
x (θm)Zm · ∇pϕ(θm, pm +∇θ(log π(θm|x))

]
+

1

2
ε(n)∆t2E

[
∇2
pϕ(θm, pm + ∆t∇θ(log π(θm|x)) : Σ

1/2
x (θm)Zm ⊗ Σ

1/2
x (θm)Zm

]
+O

(
ε(n)3/2∆t3

)
,

so that(
QL1

∆tϕ
)

(θm, pm) =
(
e∆tL1ϕ

)
(θm, pm) + ε(n)∆t2(Alanϕ)(θm, pm + ∆t∇θ(log π(θm|x)))

+O
(
ε(n)3/2∆t3

)
=
(
e∆tL1ϕ

)
(θm, pm) + ε(n)∆t2 (Alanϕ) (θm, pm) +O

(
ε(n)3/2∆t3

)
,

(2.72)
from which the result directly follows.

Remark 2.16. If E[Z3] = 0, the error term O
(
ε(n)3/2∆t3

)
can be replaced by O

(
ε(n)∆t3

)
.

To prove (2.29), we use the Baker–Campbell–Hausdorff formula on the operator of the
numerical scheme (2.27):

P̂∆t,n = e∆tL3/2e∆tL2/2QL1
∆te

∆tL2/2e∆tL3/2

= e∆tL3/2e∆tL2/2e∆tL1e∆tL2/2e∆tL3/2 + ε(n)∆t2e∆tL3/2e∆tL2/2Alane∆tL2/2e∆tL3/2

+O
(
ε(n)3/2∆t3

)
= e∆tLlan +O

(
(∆t+ ε(n))∆t2

)
.

Using computations similar to the ones leading to (2.18), we can prove the following estimate
on QL1

∆t:

e∆t(L1+ε(n)∆tAlan) = QL1
∆t +O

(
(1 + ε(n)3/2)∆t3

)
. (2.73)

The desired result (2.30) follows by using the BCH formula.

2.A.c Proof of (2.55)

The evolution operator of the numerical scheme of AdL is given by

P̂∆t,n = e∆tL4/2e∆tL3/2e∆tL2/2QL1
∆te

∆tL2/2e∆tL3/2e∆tL3/2,

where L1 = ∇θ log(π(·|x))T∇p and L2 are respectively the generators of (2.49) when ε(n) = 0
and (2.47) (which coincide with the operators in (2.23)), while L3 and L4 are the generators

2.B. Unbiasedness of the mean for Langevin dynamics with mini-batching and
Gaussian posterior 81

of (2.50) and (2.48). Replacing QL1
∆t by its expression in (2.72) and using the BCH formula,

we obtain, by computations similar to the ones leading to (2.73):

P̂∆t,nϕ = e∆tL4/2e∆tL3/2e∆tL2/2e∆tL1e∆tL2/2e∆tL3/2e∆tL3/2 + ε(n)∆t2Alanϕ+O
(
ε(n)3/2∆t3

)
= e∆t(L1+L2+L3+L4)ϕ+ ε(n)∆t2Alanϕ+O

(
(1 + ε(n)3/2)∆t3

)
= e∆t(L1+L2+L3+L4+ε(n)∆tAlan)ϕ+O

(
ε(n)∆t3

)
+O

(
(1 + ε(n)3/2)∆t3

)
= e∆tLAdL,Σxϕ+O

(
(1 + ε(n)3/2)∆t3

)
.

When E[Z3] = 0, the error term becomes O
(
(1 + ε(n))∆t3

)
.

2.B Unbiasedness of the mean for Langevin dynamics with
mini-batching and Gaussian posterior

We prove that, in the case of one dimensional Gaussian likelihoods, there is no bias on the
mean of the posterior distribution when using the discretization of Langevin dynamics (2.27)
(see Section 2.2.5.1). We start by rewriting the numerical scheme as(

θm+1

pm+1

)
= M1

(
θm

pm

)
+ (1− α∆t)

1/2M2

(
Gm

Gm+1/2

)
+ V m

3 ,

where

M1 =

 1− a∆t2

2
α∆t/2

(
∆t− a∆t3

4

)
−a∆tα∆t/2 α∆t

(
1− a∆t2

2

)
 , M2 =

 ∆t

(
1− a∆t2

4

)
0

α∆t/2

(
1− a∆t2

2

)
1

 , V m
3 =

 ∆t2

2
bm

α∆t/2∆tbm

 ,

and
a =

1

σ2
θ

+
Ndata

σ2
x

, bm =
Ndata

n

∑
i∈Imn

xi
σ2
x

.

Since

E[bm] =
1

σ2
x

Ndata∑
i=1

xi := b,

we obtain, by first taking expectations with respect to Gm and Gm+1/2, and then with respect
to realizations of Imn in bm:

E
[(
θm

pm

)]
= Mm

1 E
[(
θ0

p0

)]
+

m−1∑
j=0

M j
1V3, (2.74)

with V2 = (∆t2b/2, α∆t/2∆tb)T . We note that (recalling that, for the one dimensional case
considered here, the friction Γ > 0 is a scalar)

M1 = Id −∆t

(
0 −1
a Γ

)
+O(∆t2),

which shows that the eigenvalues of M1 have real parts which are strictly smaller than 1
provided ∆t is sufficiently small. Therefore, Mm

1 → 0 as m → +∞, and the matrix Id −M1

is invertible. Moreover, a simple computation shows that

(Id −M1)

(
b/a
0

)
= V3,

82 Chapter 2. Removing the mini-batching error with AdL

so that

(Id −M1)−1V3 =

(
b/a
0

)
.

By letting m go to infinity in (2.74), and using the above equality, we finally conclude that

lim
m→+∞

E
[(
θm

pm

)]
=

(
b/a
0

)
=

(
µpost

0

)
,

which shows that the mean posterior distribution is unbiased.

CHAPTER 3

MINIBATCHING ERROR FOR BAYESIAN NEURAL NETWORKS

Contents
3.1 Introduction . 84
3.2 Presentation of the models . 85

3.2.1 Mathematical framework . 85
3.2.2 Numerical toy models . 87
3.2.3 Neural network architectures . 88

3.3 Analysis of the covariance matrix 89
3.3.1 Adaptive Langevin for neural networks 89
3.3.2 Numerical results . 90

3.4 Sampling of the posterior distribution 100
3.5 Perspectives . 100

This work started during a research visit to Edinburgh, where I worked with Ben Leimkuh-
ler and Tiffany Vlaar. We present in this chapter the preliminary results of this work on
which we are currently still working.

Bayesian neural networks acquired more attention with the development of scalable sam-
pling methods. MCMC methods give some guarantees when sampling from the posterior
distribution. However, using minibatching introduces some extra bias on the posterior dis-
tribution, determined by the covariance matrix of the stochastic estimator of the gradient.
Numerical analysis of this covariance matrix for BNNs in some numerical toy models suggests
that it is of low rank. This opens the possibility to develop new scalable methods based on
the AdL framework that reduce the minibatching error.

84 Chapter 3. Minibatching error for Bayesian Neural Networks

3.1 Introduction

Using neural networks [111, 51] for supervised learning tasks has attracted a lot of atten-
tion due to the performance of neural networks for a wide range of applications, for example
learning to play Go or chess [140], medical diagnosis [21] or generating new data based on
the Bayesian formalism using e.g. variational autoencoders [71, 124]. The mathematical and
theoretical understanding of the performance of neural networks is still elusive. The loss func-
tion associated with these models is high dimensional and non convex. Variants of stochastic
gradient descent are generally used to optimize the loss function, see for example [32] for an
analysis of the convergence properties of such methods. These algorithms have shown great
performance to optimize the loss function but an analysis of the generalization properties of
neural networks trained by this approach is lacking. Some works have focused on the proper-
ties of the loss function, see for example [68]. More recent works have focused on the properties
of the minima reached by stochastic descent gradient algorithm, see for example [120] where
the authors use the concept of implicit bias to characterize the minimum reached by SGD
in the case of diagonal linear networks. We also refer to references in [120] for works on the
generalization properties of SGD.

Bayesian Neural Networks (BNNs) [111, 51, 67, 59] have emerged as one way to quantify
the uncertainty associated with the predictions and avoid overfitting. Some stochasticity
in artificial neural networks is incorporated either in the parameters (considered as random
variables) or in the use of stochastic activation functions [158]. We focus in this work on
stochastic parameters. For example, a ReLU neural network trained to classify dogs and
cats can happen to (erroneously) classify a human as a dog with a high probability. This
phenomenon corresponds to what is known as overconfident networks. In [60], the authors
show that ReLU neural networks are necessarily overconfident for out of the distribution
points i.e. data points that are not close to elements in the training set. They propose
a new optimization technique which enforces low confidence predictions far away from the
training data. In [77], they argue that a Bayesian approach, even for the last layer only, is
sufficient to prevent overconfident ReLU neural networks. Bayesian Neural Networks are also
naturally adapted for online learning (which corresponds to the situation when the data is
added sequentially to the training set, so the predictor needs to be updated) or if the size of
the data set is moderately large. The use of a prior distribution can seem as a disadvantage
of BNNs, forcing some "random" prior knowledge on the parameters. However one can
argue that it provides a way to understand many regularization techniques already used in
optimization and which have been proved to increase the performance.

Sampling from the exact posterior distribution of the neural networks’ parameters is partic-
ularly challenging due to the high dimensionality and non convexity of the distribution [64].
Scalable methods have been developed. One can use scalable MCMC methods based on
SGLD-like algorithms [157, 98, 76, 95]. Variational inference methods [17] have also been
adapted in the context of sampling the parameters of neural networks to approximate the
posterior distribution by optimizing the evidence lower bound (ELBO), see [18]. One can also
cite deep ensembles [79] and the Laplace approximation [72, 125] as methods relying on the
Bayesian framework for neural networks. Scalable methods generally induce a bias on the pos-
terior distribution. In [64], the authors used Hamiltonian Monte Carlo without minibatching
to sample from the exact posterior, even if this method is not practical in real life exam-
ples. They numerically proved that BNNs allow to achieve better performance than classical
training algorithms when the posterior is sampled exactly. This motivates the development
of scalable Bayesian methods with low bias for sampling parameters of neural networks.

The analysis of Chapter 2 shows that the covariance matrix of the stochastic estimator
of the force plays a central role in Langevin-like algorithms. In this chapter, we address the
following points:

3.2. Presentation of the models 85

• Understanding the structure of the covariance matrix of the stochastic estimator of the
gradient of the posterior distribution of parameters for neural networks (rank, sparsity,
etc.). Sparsity, suggested already by [30], can lead to efficient approximations of the
covariance matrix and then development of efficient Bayesian methods allowing to reduce
the bias on the posterior distribution.

• Using AdL instead of computing full gradient as in [64] to reduce the bias on the posterior
distribution while keeping a reasonable computational time.

3.2 Presentation of the models

In this section, we first recall in Section 3.2.1 the mathematical framework behind BNNs. We
then present in Section 3.2.2 the numerical toy models used for the numerical illustrations.
Finally, we introduce in Section 3.2.3 the architecture of the neural network used for the
computations.

3.2.1 Mathematical framework

We first recall the notation of Section 1.1.2 (see the latter section for more details). Let
x = (x1, ..., xNdata

) ∈ XNdata be the set of input data and y = (y1, ..., yNdata
) ∈ YNdata =

{0, 1}Ndata their corresponding labels (we only consider binary classification problems in this
chapter for simplicity of exposition, bur the approach can be adapted to other situations).
In machine learning, the goal of supervised learning is, given the set of pairs (xi, yi) where
i ∈ {1, ..., Ndata}, to predict an output y from a new given input x. A neural network defines a
map Nθ : X → Y, where θ ∈ Θ = Rd represent the parameters of the NN (weights and biases).
The classical setting consists in finding the best θ∗ (the one that minimize the loss function,
which corresponds to a maximum likelihood parameter) using optimization algorithms. The
predictions are then computed as

y =

{
1 if Nθ∗(x) > 1/2,

0 if Nθ∗(x) < 1/2.
(3.1)

Recall that the loss function used for binary classification problems for a given pair (x, y) is
(see Equation (1.3) in Section 1.1.2)

L(x, y, θ) = y log(Nθ(x)) + (1− y) log(1−Nθ(x)).

In the Bayesian perspective, we infer the posterior distribution over the parameters π(θ|x)
which is given, considering Bayes’ rule, by

π(θ|x) ∝ Pprior(θ)Plikelihood(x|θ), (3.2)

where Pprior(θ) is the prior distribution on the vector of parameters and Plikelihood the like-
lihood distribution of the data. The likelihood of the data can be expressed in terms of the
loss function as

Plikelihood(x,y|θ) =
N∏
i=1

Pelem(yi, xi|θ) = exp

(
−
Ndata∑
i=1

L(xi, yi, θ)

)
.

In this case, one way to compute predictions is

p(y|x,x) =

∫
Rd
Nθ(x)π(θ|x) dθ ≈ 1

Niter

Niter∑
k=1

p(y|x, θk),

86 Chapter 3. Minibatching error for Bayesian Neural Networks

where (θk)06k6Niter
is a Markov Chain with invariant probability measure π(·|x). In this case

y =

{
1 if p(y|x,x) > 1/2,

0 if p(y|x,x) < 1/2.
(3.3)

We focus on MCMC methods based on the discretization of SDEs to sample from π in this
chapter, in particular the Adaptive Langevin dynamics (AdL) (see Section 1.2.2.4 for more
details).

Remark 3.1 (Optimization vs sampling). The MCMC methods presented in Section 1.2 were
initially used to sample from exp(−βV) in the context of molecular dynamics. When β is not
equal to 1, setting log π = −V , one is sampling from πβ. This shows a well known link between
posterior sampling and MAP estimation [88]. When β = 1, we are in a Bayesian context,
however if we set β → 0, one can think of the MCMC method as a maximum a posteriori
algorithm, since the distribution concentrates on global maxima of π.

Sampling from the posterior probability measure. Various MCMC algorithms require
the computation of ∇θ log π(·|x) given by

∇θ log π(θ|x) = ∇θ logPprior(θ)−
Ndata∑
i=1

∇θL(xi, yi, θ) (3.4)

The gradient of the loss function L with respect to the neural networks’ parameters can easily
be computed by backpropagation, which is already implemented in many packages (including
PyTorch which we use for the numerical results presented in Sections 3.3 and 3.4). To reduce
the computational time, one uses minibatching to approximate the exact gradient, see the
presentation in Section 1.3.1. An unbiased estimator of (3.4)(see (1.50))

F̂n(θ) = ∇θ logPprior(θ)−
Ndata

n

∑
i∈In

∇θL(xi, yi, θ)

where In a subset of size n generated by sampling uniformly from {1, ..., Ndata}. The error
induced by minibatching on the posterior distribution for Langevin-like MCMC algorithms is
at dominant order proportional to (see Chapter 2)

ε(n)∆t min
S∈S
‖Σx − S‖L2(π) = ε(n)∆t‖Σx − S∗‖L2(π), (3.5)

where Σx(θ) the empirical covariance of the gradient estimator for n = 1 (i.e. with expecta-
tions computed with respect to the random variable I uniformly distributed in {1, ..., Ndata}):

Σx(θ) = covI [∇θ(L(xI , yI , θ))] , (3.6)

and the expression of ε(n) depends on the type of minibatching, see Section 1.3.1 for more
details (more precisely, Equations (1.55) and (1.56)). We also recall that the matrix S∗

depends on the MCMC algorithm used, namely:

• S∗scalar = 1
dTr(Σx)Id for scalar AdL;

• S∗diagonal a diagonal matrix with entries
∫

Θ [Σx(θ)]i,i π(θ|x) dθ for 1 6 i 6 d for diagonal
AdL;

• S∗matricial = Σx =
∫

Θ Σx(θ)π(θ|x) dθ for matricial AdL.

Remark 3.2. In fact, for the sake of simplicity in numerical simulations (for which we use
the PyTorch package), we use reshuffling methods to compute the estimator of the gradient.
However, we expect that the error estimates given by (3.5) remains unchanged, although there
is no simple expression for the noise magnitude ε(n).

3.2. Presentation of the models 87

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

Class 0
Class 1

Figure 3.1 – Toy classification data.

3.2.2 Numerical toy models

We present two toy examples which will be the running numerical examples of this chapter.

Toy classification model. The first toy model we consider is the classification problem for
the data presented in Figure 3.1. The data set is created by generating points using a mixture
of Gaussians. The class 0 (resp. 1) is generated by considering realizations of X0 (resp. 1)
such that

X0 = x0,I + cG,

X1 = x1,J + cG,

where I ∼ U{1, 2, 3}, J ∼ U{1, 2, 3, 4}, G ∼ N (0, 1) and


x0,1 = (1, 1),

x0,2 = (0, 2),

x0,3 = (1, 3).


x1,1 = (2, 0.5),

x1,2 = (1, 2),

x1,3 = (2, 3),

x1,4 = (1, 4).

with c2 = 0.03. We use Ndata = 500 to train the algorithms and generate an additional
Ntest = 500 for test.

88 Chapter 3. Minibatching error for Bayesian Neural Networks

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Training Data
Class 0
Class 1

Figure 3.2 – Spiral data.

Spiral data. We next consider a slightly more complicated toy data set used in [88] and
generated as follows:

X1 = aUp cos(2bUpπ) + cG, (3.7)
X2 = aUp sin(2bUpπ) + cG, (3.8)

where G ∼ N (0, 1) and U ∼ U [0, 1] where U stands for the uniform distribution. To create
the data set, we generate realizations of (X1, X2) to be classified as 0 and realizations of
(−X1,−X2) to be classified as 1. We plot in Figure 3.2 the data set used with p = 0.5,
a = 2, c = 0.02 and b = 2. The hyperparameter b can be seen as a way to control the
complexity of the classification problem since it controls the number of turns of the data. We
use Ndata = 500 to train the algorithms and generate an additional Ntest = 500 for test. We
fix Ndata/2 (respectively Ntest/2) data points in classes 0 and 1.

3.2.3 Neural network architectures

For the numerical computations, we use the following architecture:

Nθ(x) = σ(W 2r(W 1x+ b)),

where W 1 ∈ Rd1×2, b ∈ Rd1 and W 2 ∈ Rd1×1. For the activation functions, r stands for
the ReLU function defined in (1.4) and σ for the sigmoid function defined in (1.6) since

3.3. Analysis of the covariance matrix 89

we are working on binary classification problems. In this case, the vector of parameters is
θ = (W 1, b,W 2) ∈ Rd with d = 4d1. For the numerical simulations, we set d1 = 64. For the
loss function, we use the binary cross entropy loss defined in (1.3).

3.3 Analysis of the covariance matrix

In this section, we first give in Section 3.3.1 more details about how to adapt the numerical
discretization of AdL to neural networks, then we provide in Section 3.3.2 numerical results
on the covariance matrix of the stochastic estimator of the gradient.

3.3.1 Adaptive Langevin for neural networks

We use the numerical scheme of AdL presented in Section 2.3 (see in particular (2.52)) to
sample from the posterior distribution of the neural network’s parameters. In fact the neural
netwrok’s parameters are composed of weights and biases of different layers, namely θ =
(W 1, b,W 2), where W 1 (resp. W 2) is reshaped into a vector of dimension 2d1 (resp. d1).
For the sake of simplicity of the numerical simulations, we separate the various "sets" of
parameters (each set representing weights or biases of a particular layer). More precisely, for
the scalar case, we consider the variable ξ to be of the form

ξ =

 ξ1I2d1 0 0

0 ξ2Id1 0

0 0 ξ3Id1


with ξ1, ξ2, ξ3 ∈ R. For the diagonal case, the variable ξ is diagonal in this representation.
For the matricial case, one uses a variable ξ of the form

ξ =

 ξ1 0 0

0 ξ2 0

0 0 ξ3


with ξ1 ∈ R2d1×2d1 , ξ2 ∈ Rd1×d1 and ξ3 ∈ Rd1×d1 . This is in fact equivalent to using
a matricial version of of AdL for each set of parameters, since the various sets are related
only through the loss function. One should note however that the matricial case of AdL is
computationally expensive, and cannot be considered as a practical sampling algorithm in the
BNN framework. We use it only for the purpose of a better understanding of the covariance
matrix of the gradient estimator.

Prior distribution. For the following numerical simulations, we set the prior to be a stan-
dard Gaussian distribution. In [64], the authors argue that BNNs are robust to the choice
of prior distribution. However, they advocate to use Gaussian priors with large variances to
increase the performance of the model. We set the variance to 1, which is already large for
regularization terms.

Choice of hyperparameters The number of hyperparameters may appear to be a disad-
vantage of AdL in the context of neural networks. We try to give some insights about the
choice of these hyperparameters

• set ∆t small because of the coefficient Ndata in the gradient estimator, more precisely,
one should aim for ∆tN2

data/n = O(1);

• choosing η such that η/∆t is of order 1. This allows a better sampling of the variable ξ;

• the algorithm seems to be robust to the choice of γ.

90 Chapter 3. Minibatching error for Bayesian Neural Networks

0 20 40 60 80 100 120

0

20

40

60

80

100

120
−0.2

0.0

0.2

0.4

(a) [Σx]06i,j62d1

0 10 20 30 40 50 60

0

10

20

30

40

50

60
−0.4

−0.2

0.0

0.2

0.4

0.6

(b) [Σx]2d1+16i,j63d1

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) [Σx]3d1+16i,j64d1

0 50 100 150 200 250

0

50

100

150

200

250
−0.4

−0.2

0.0

0.2

0.4

0.6

(d) Σx

Figure 3.3 – Covariance matrix of the stochastic estimator Σx at iteration 5 × 105 for the
spiral data case (top left: weights of fisrt layer, top right: bias of first layer, bottom left:
weights of the second layer, bottom right: full covariance matrix).

3.3.2 Numerical results

We run the numerical scheme for the scalar version of AdL for 107 iterations, for a minibatch
size of 50 (this therefore corresponds to 106 epochs), ∆t = 5× 10−5, γ = 1 and η = 200. To
compute the covariance matrix of the estimator of the gradient Σx(θ), we use the following
exact formula (see (2.11))

Σx(θ) =
1

Ndata

Ndata∑
i=1

∇θL(xi, yi, θ)∇θL(xi, yi, θ)
T− 1

N2
data

(
Ndata∑
i=1

∇θL(xi, yi, θ)

)(
Ndata∑
i=1

∇θL(xi, yi, θ)

)T
.

We plot in Figure 3.3 the covariance matrix during the training (at iteration 5× 105) for the
spiral case. The value of the elements of the covariance matrix of the weights of the last layer
seems larger than other parts. The same remark applies to the toy classification problem.
We plot in Figure 3.4 (resp Figure 3.5) the mean of the covariance matrices in the spiral case
(resp. toy classification case) approximated over a trajectory of AdL as∫

Rd
Σx(θ)π(θ|x) dθ ≈ 1

Niter

Niter∑
k=1

Σx(θk). (3.9)

3.3. Analysis of the covariance matrix 91

0 20 40 60 80 100 120

0

20

40

60

80

100

120
0.00

0.02

0.04

0.06

(a)
∫
Rd [Σx]06i,j62d1

(θ) dθ

0 10 20 30 40 50 60

0

10

20

30

40

50

60
0.00

0.02

0.04

0.06

0.08

0.10

(b)
∫
Rd [Σx]2d1+16i,j63d1

(θ) dθ

0 10 20 30 40 50 60

0

10

20

30

40

50

60
0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(c)
∫
Rd [Σx]3d1+16i,j64d1(θ) dθ

0 50 100 150 200 250

0

50

100

150

200

250
−0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

(d)
∫
Rd Σx(θ) dθ

Figure 3.4 – Mean of the covariance matrix of the stochastic estimator Σx for the spiral data
case (top left: weights of the first layer, top right: bias of the first layer, bottom left: weights
of the last layer, bottom left: full covariance matrix).

92 Chapter 3. Minibatching error for Bayesian Neural Networks

0 20 40 60 80 100 120

0

20

40

60

80

100

120

−0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

(a)
∫
Rd [Σx]06i,j62d1

(θ) dθ

0 10 20 30 40 50 60

0

10

20

30

40

50

60 0.000

0.005

0.010

0.015

0.020

(b)
∫
Rd [Σx]2d1+16i,j63d1

(θ) dθ

0 10 20 30 40 50 60

0

10

20

30

40

50

60
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(c)
∫
Rd [Σx]3d1+16i,j6d1(θ) dθ

0 50 100 150 200 250

0

50

100

150

200

250
−0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

(d)
∫
Rd Σx(θ) dθ

Figure 3.5 – Mean of the covariance matrix of the stochastic estimator Σx for the toy clas-
sification model (top left: weights of the first layer, top right: bias of the first layer, bottom
left: weights of the last layer, bottom left: full covariance matrix).

3.3. Analysis of the covariance matrix 93

The first remark is that the mean is also dominated by the elements corresponding to the
weights of the last layer. Secondly, one can say that the mean of the covariance matrix is
roughly αId, either for each set separately or for the whole covariance. However, we should
point that the covariance matrix associated with the weights of the last layer shows non zero
non diagonal elements. This suggests that using the scalar, diagonal or matricial version of
AdL would yield similar biases on the posterior distribution, at least for the weights and bias
of the first layer. To confirm this, we plot in Figure 3.6 (resp. Figure 3.7) the Frobenius norm
of the difference between the covariance matrix Σx at each iteration and its trajectory average
for the spiral data case (resp. the toy classification case); more precisely we plot

‖Σx − S∗scalar‖
‖S∗scalar‖

, (3.10)

‖S∗matricial − S∗scalar‖
‖S∗scalar‖

, (3.11)

‖S∗diagonal − S∗scalar‖
‖S∗scalar‖

, (3.12)

where S∗scalar, S
∗
diagonal, and S

∗
matricial are defined at the end of Section 3.2.1. The mean of the

covariance matrix is approximated by (3.9). The plot is first produced for each set separately
(for W 1 we use indices 0 6 i, j,6 2d1, for b we use indices 2d1 + 1 6 i, j 6 3d1 and for W 2

we use indices 3d1 + 1 6 i, j,6 4d1 of Σx and S∗) and then for the full covariance matrix.
The covariance matrix varies a lot around its mean for all sets (W 1, b, W 2). The quantities
‖S∗matricial − S∗scalar‖ and ‖S∗diagonal − S∗scalar‖ are small (at least for the first layer), suggesting
that the scalar version of AdL is sufficient for the weights and bias of the first layer, whereas
for the last layer one needs a matricial friction to capture the covariance matrix.

We plot in Figure 3.8 (resp. Figure 3.9) the logarithm of the eigenvalues of some covariance
matrices for all sets for the spiral data (resp. for the toy classification model). It is clear from
the figures that the covariance matrices are of low effective rank since there are only handful of
eigenvalues above 10−2 and the eigenvalues decrease rapidly with respect to the index (more or
less exponentially). To confirm and quantify this, we plot in Figure 3.10 (resp. Figure 3.11) the
histogram of the number of eigenvalues required to reach a given value of explained variance.
More precisely, denoting by (λi)16i6d the ordered eigenvalues of a covariance matrix, and by
η a given fraction of explained variance, the index Kη is defined as

Kη = min
k∈{1,...,d}


k∑
i=1

λi

d∑
i=1

λi

> η

 . (3.13)

The results show that about 5% of the eigenvalues are needed to account for 0.9 of the
covariance. The fact that the matrix is of low rank and that it can be explained by few
eigenvalues suggests an adaptation of scalar AdL where ξ would be decomposed using the first
eigenvectors only. This however requires understanding the statistics of the first eigenvectors
and eigenvalues to propose relevant approximation spaces. This calls for a careful numerical
investigation of the statistics of eigenvectors associated with the first eigenvalues. If the
directions of these eigenvectors were fixed and did not depend on the parameters of the
neural network θ (but eigenvalues could genuinely depend on θ), one could come up with a
version of eADL (presented in Section 2.4) where the friction variable ξ is decomposed in a
fixed basis of projection matrices.

94 Chapter 3. Minibatching error for Bayesian Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0
iteration 1e6

0

2

4

6

8

10

re
la

tiv
e

er
ro

r

(a) weights of first layer W 1

0.0 0.2 0.4 0.6 0.8 1.0
iteration 1e6

0

2

4

6

8

10

re
la

tiv
e

er
ro

r

(b) bias of first layer b

0 250 500 750 1000 1250 1500 1750 2000
iteration

1

2

3

4

re
la

tiv
e

er
ro

r

(c) weights of second layer W 2

0 250 500 750 1000 1250 1500 1750 2000
iteration

0

1

2

3

4

5

6

re
la

tiv
e

er
ro

r

(d) θ = (W 1, b,W 2)

Figure 3.6 – Difference between the covariance matrix and its mean under the posterior
measure π(θ|x) for the spiral data case. The blue line represents the expression (3.10), the
orange line represents the expression (3.11) and the green line represents the equation (3.12).

3.3. Analysis of the covariance matrix 95

0.0 0.2 0.4 0.6 0.8 1.0
iteration 1e6

0

5

10

15

20

25

re
la

tiv
e

er
ro

r

(a) weights of first layer W 1

0.0 0.2 0.4 0.6 0.8 1.0
iteration 1e6

0

5

10

15

20

25

re
la

tiv
e

er
ro

r

(b) bias of first layer b

0.0 0.2 0.4 0.6 0.8 1.0
iteration 1e6

0

1

2

3

4

5

6

7

8

re
la

tiv
e

er
ro

r

(c) weights of second layer W 2

0.0 0.2 0.4 0.6 0.8 1.0
iteration 1e6

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

re
la

tiv
e

er
ro

r

(d) θ = (W 1, b,W 2)

Figure 3.7 – Difference between the covariance matrix and its mean under the posterior mea-
sure π(θ|x) for the toy classification model. The blue line represents the expression (3.10), the
orange line represents the expression (3.11) and the green line represents the equation (3.12).

96 Chapter 3. Minibatching error for Bayesian Neural Networks

0 20 40 60 80 100
10−5

10−4

10−3

10−2

10−1

100

iteration 0
iteration 5000
iteration 10000
iteration 15000

(a) weights of first layer W 1

0 10 20 30 40 50
10−5

10−4

10−3

10−2

10−1

100

iteration 0
iteration 5000
iteration 10000
iteration 15000

(b) bias of first layer b

0 10 20 30 40
10−5

10−4

10−3

10−2

10−1

100

101
iteration 0
iteration 5000
iteration 10000
iteration 15000

(c) weights of second layer W 2

0 20 40 60 80 100
10−5

10−4

10−3

10−2

10−1

100

iteration 0
iteration 5000
iteration 10000
iteration 15000

(d) θ = (W 1, b,W 2)

Figure 3.8 – Logarithm of eigenvalues of covariance matrices for the spiral data case.

3.3. Analysis of the covariance matrix 97

0 20 40 60 80
−10

−8

−6

−4

−2

0

iteration 0
iteration 5000
iteration 10000
iteration 15000

(a) weights of first layer W 1

0 10 20 30 40
−10

−8

−6

−4

−2

0 iteration 0
iteration 5000
iteration 10000
iteration 15000

(b) bias of first layer b

0 10 20 30 40
−10

−8

−6

−4

−2

0

iteration 0
iteration 5000
iteration 10000
iteration 15000

(c) weights of second layer W 2

0 20 40 60 80
−10

−8

−6

−4

−2

0

iteration 0
iteration 5000
iteration 10000
iteration 15000

(d) θ = (W 1, b,W 2)

Figure 3.9 – Logarithm of eigenvalues of covariance matrices for the toy classification model.

98 Chapter 3. Minibatching error for Bayesian Neural Networks

3 4 5 6 7 8 90

1

2

3

4

5

6

7

(a) weights of first layer W 1

1 2 3 4 5 6 70

1

2

3

4

5

6

(b) bias of first layer b

1.0 1.2 1.4 1.6 1.8 2.00

20

40

60

80

100

(c) weights of second layer W 2

2.0 2.5 3.0 3.5 4.0 4.5 5.00

2

4

6

8

10

12

14

16

(d) θ = (W 1, b,W 2)

Figure 3.10 – Histogram of the number of eigenvalues given by (3.13) required to reach 0.9
of explained variance (left: weights of the first layer, middle: bias of the first layer, right:
weights of the last layer) for spiral data.

3.3. Analysis of the covariance matrix 99

1.0 1.2 1.4 1.6 1.8 2.00

10

20

30

40

50

60

70

80

(a) weights of first layer W 1

1.0 1.2 1.4 1.6 1.8 2.00

10

20

30

40

50

(b) bias of first layer b

0.6 0.8 1.0 1.2 1.40

20

40

60

80

100

(c) weights of second layer W 2

1.0 1.2 1.4 1.6 1.8 2.00

20

40

60

80

100

(d) θ = (W 1, b,W 2)

Figure 3.11 – Histogram of the number of eigenvalues given by (3.13) required to reach 0.9
of explained variance (left: weights of the first layer, middle: bias of the first layer, right:
weights of the last layer) for toy classification model.

100 Chapter 3. Minibatching error for Bayesian Neural Networks

−4 −3 −2 −1 0 1 2 3 40.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(a) p11 set 1

−4 −3 −2 −1 0 1 2 3 40.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(b) p19 set 2

−4 −3 −2 −1 0 1 2 3 40.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(c) p13 set 3

Figure 3.12 – Histogram of randomly selected elements of p for each set for spiral data.

0.7 0.8 0.9 1.0 1.1 1.20

1

2

3

4

5

6

(a) ξ1

0.8 0.9 1.0 1.1 1.20

1

2

3

4

5

6

7

(b) ξ2

0.8 0.9 1.0 1.1 1.20

1

2

3

4

5

6

(c) ξ3

Figure 3.13 – Histogram of ξ for each set.

3.4 Sampling of the posterior distribution

Sampling from the exact posterior allows to significantly increase the performance of the
neural network in addition to avoiding overfitting and overconfident networks. In this section,
we look on the posterior distribution when using the scalar version of AdL. We are currently
still working on quantifying the bias on this distribution. Here, we only consider the spiral
data case. The hope is that results should be similar for the toy classification model but
this has yet to be confirmed. We run the scalar version of AdL for ∆t = 5 × 10−5, n = 50
for 106 iterations. We fix γ = 1 and η = 200. To assess that the algorithm reached the
stationary distribution, we check the marginal distribution of ξ and some components of p see
Figures 3.12 and 3.13. The variables ξ and p are indeed normally distributed, as suggested by
the invariant probability measure of AdL, see Section 2.3. We consider the distribution of Nθ

instead of the the distribution of θ to avoid taking into account the various symmetries of the
network related to exchanges of parameters and also because this is the quantity of interest.
It is also suggested in [64] that the mixing of Nθ is better compared to the mixing in the
parameters space. We plot in Figure 3.14 the resulting histogram of Nθ(x) for x = (0, 1.08)
and x = (0, 1.35) (the points are represented in Figure 3.2). The second point is relatively
out of the distribution. The posterior distribution corresponding to this point shows a higher
variance.

3.5 Perspectives

The analysis of the covariance matrix, together with the results of Chapter 2 suggests that
numerical methods can be developed to reduce the minibatching error on the posterior dis-
tribution of BNNs without drastically increasing the computational time. Here are some

3.5. Perspectives 101

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
value of Nθ

0.0

0.5

1.0

1.5

2.0

2.5

3.0
pr

ob
ab

ilit
y

(a) x = (0, 1.2)

0.2 0.4 0.6 0.8
value of Nθ

0.0

0.5

1.0

1.5

2.0

2.5

pr
ob

ab
ilit

y

(b) x = (0, 1.45)

Figure 3.14 – Histogram of Nθ(x) for various values of x.

suggestions to explore to this end:

• A scalar version of the extended version of AdL, where the first eigenvalue of the stochas-
tic estimator of the gradient is decomposed in a finite basis of functions. More precisely,

the idea would be to approximate the covariance matrix as Σx =
I∑
i=1

λi(θ)ei(θ)e
T
i (θ),

for I small, where ei(θ) represents the eigenvectors associated with the eigenvalue λi(θ).
One can use for example a separated neural network to this end;

• Use extrapolation with two different sizes of minibatches in conjunction with coupling
to reduce the minibatching error and reduce the variance. Note that extrapolation using
∆t for Langevin dynamics and SGD has already been studied in [153].

Moreover, work is in progress to confirm our numerical observations on more realistic data
sets such as MNIST.

CHAPTER 4

GENERATIVE METHODS FOR TRANSITION PATHS IN
MOLECULAR DYNAMICS

Contents
4.1 Introduction . 104
4.2 Sampling transition paths of metastable processes 105
4.3 Generating transition paths with Variational AutoEncoders . . 106

4.3.1 Presentation of Variational AutoEncoders 107
4.3.2 Convolutional neural networks . 109
4.3.3 Data set for training . 110
4.3.4 "Naive" Variational AutoEncoders to generate transition paths . . . 110
4.3.5 VAEs with larger embedding space 112

4.4 Generating transition paths with reinforcement learning 114
4.4.1 Overview of reinforcement learning 114
4.4.2 Application to sampling transition paths 116
4.4.3 Numerical results . 117

4.5 Discussion and perspectives . 119
Appendices . 120
4.A Architecture of CNN-A used in Section 4.3 120
4.B Architecture of the neural networks used for TD3 algorithm . . 120
4.C Parameters for the TD3 algorithm 121

The material for this chapter has been preprinted in [92] (submitted to ESAIM Proceed-
ings in the special issue gathering contributions from the research projects initiated during the
6 week long summer research school CEMRACS 2021)..

Abstract.
Molecular systems often remain trapped for long times around some local minimum of the

potential energy function, before switching to another one – a behavior known as metastability.
Simulating transition paths linking one metastable state to another one is difficult by direct
numerical methods. In view of the promises of machine learning techniques, we explore in this
work two approaches to more efficiently generate transition paths: sampling methods based
on generative models such as variational autoencoders, and importance sampling methods
based on reinforcement learning.

104 Chapter 4. Generative methods for transition paths

4.1 Introduction

Molecular dynamics aims at simulating the physical movement of atoms in order to sample
the Boltzmann–Gibbs probability measure and the associated trajectories, and to compute
macroscopic properties using Monte Carlo estimates [48, 5]. One of the main difficulties when
performing these numerical simulations is metastability: the system tends to stay trapped
in some regions of the phase space, typically in the vicinity of local maxima of the target
probability measure. In this context, transitions from one metastable state to another one are
of particular interest in complex systems, as they characterize for example crystallisation or
enzymatic reactions. These reactions happen on a long time scale compared to the molecular
timescale, so that the simulation of realistic rare events is computationally difficult.

On the one hand, many efforts have been devoted to the development of rare events
sampling methods in molecular dynamics. The goal of these methods is to characterize tran-
sition paths and to compute associated transition rates and mean transition times; see for
instance [56] for a review of rare event sampling methods in molecular dynamics. The most
notable methods can be classified in two groups:

(i) importance sampling techniques, where the dynamics is biased (by modifying the po-
tential for instance) to reduce the variance of Monte Carlo estimators when computing
expectations, see for instance [47, 25] for more details, and also [94, Section 6.2]. It is
possible to use adaptive importance sampling strategies to choose the importance func-
tion, see [93, Chapter 5]. Another viewpoint is offered by the framework of stochastic
control, as in [56] where the modification in the drift of the dynamics is determined by
the solution of an optimal control problem.

(ii) splitting methods, where the idea is to decompose the rare event to sample as a succession
of moderately rare events. In the context of trajectories relating two local maxima of
the target probability measure, this can be done in an adaptive manner using the so-
called Adaptive Multilevel Splitting algorithm, where an ensemble of trajectories are
concurrently evolved, removing the ones that lag behind in terms of progress towards
the target state, and replicating the ones exploring more successfully the path towards
the target state; see [34, 8, 28, 29].

On the other hand, generative models aim at generating samples whose distribution ap-
proximates some unknown target distribution. They have attracted a lot of attention lately
due to their wide range of applications, such as text translation, out-of-distribution detec-
tion, generation of new human poses, etc. The currently most popular generative models are
Generative Adversarial Networks (GANs) [53], Variational AutoEncoders (VAEs) [71, 124], as
well as Energy-Based Models and their extensions; see [20] for a review of the most important
models. Generative models have also been used in the context of rare event sampling. For
instance, GANs can be used to generate data from extreme tails of (heavy tailed) distribu-
tions, as discussed in [6] and references therein. Generative models also offer the perspective
to detect anomalies which can be considered as rare events [7, 40], or maybe even generate
anomalous states by sampling from outlier regions in the embedding space [80]. In the context
of molecular dynamics, machine learning techniques have been used to study transition path-
ways [151, 133, 161]. In [133], the authors suggest to use a neural network to approximate the
committor function giving the probability of reaching a metastable state before another one,
importance sampling techniques being used to reduce the statistical error in these computa-
tions. VAEs have been used in [151] to find collective variables by using mixtures of Gaussian
priors in the latent space to encode the trajectories.

The goal of this work is to explore some machine learning techniques to efficiently generate
transition paths in molecular dynamics. We first tried a data-driven generative method:
from a given data set of transition paths, we learn to generate new ones using variational

4.2. Sampling transition paths of metastable processes 105

autoencoders. Using VAEs naively, the temporal aspect of the trajectories is not encoded in
the latent variables, which produces unconvincing results when generating new trajectories.
We tested two techniques to learn the temporal aspect on the latent space, namely vector
quantized variational autoencoders [149] and variational recurrent neural network [33] but
these approaches were not successful. We therefore turned to a data free approach, relying on
reinforcement learning algorithms to construct trajectories following the dynamics introduced
in (4.2), while guiding it to transition from one well to another one. Reinforcement learning
is more convenient than generative approaches learning from a dataset when the construction
of the data set is computationally challenging.

This work is organized as follows. We introduce the main settings of the molecular dy-
namics problem we tackle in Section 4.2. In Section 4.3, we briefly present variational autoen-
coders, and the methods used to learn the temporal aspect on the latent space. Section 4.4
is dedicated to results obtained with reinforcement learning.

4.2 Sampling transition paths of metastable processes

We present in this section the main settings of the problem we tackle.

Sampling from the Boltzmann–Gibbs distribution. Let us consider a diffusion pro-
cess (qt)t>0 with values in D = Rd, whose drift derives from a potential V : D → R. We
typically consider the case when the potential V has many local minima. We want to sample
from the Boltzmann-Gibbs distribution given by µ(dq) = Z−1e−βV (q) dq. In this case, one
of the main issues when sampling trajectories is metastability: the system remains trapped
for a long time around some local minimum of V before jumping to another local minimum.
Our goal is to simulate transition paths, that we define in this work as trajectories which,
from a fixed initial condition q0 located in an initial potential well A, reach a pre-specified set
B ⊂ Rd before time T > 0. Typically, B corresponds to another well in the energy landscape.

Overdamped Langevin dynamics. The evolution of molecular systems can be modelled
by Langevin dynamics, which are stochastic perturbations of the Hamiltonian dynamics. For
simplicity in this work, we consider that the system evolves according to the overdamped
Langevin diffusion

dQt = −∇V (Qt) dt+

√
2

β
dWt, (4.1)

where (Wt)t>0 is a standard d-dimensional Wiener process. The dynamics (4.1) admits
the Boltzmann–Gibbs distribution as a unique invariant probability measure (see for in-
stance [73]). In practice, we use a Euler–Maruyama discretization with a time step ∆t > 0
to approximate the exact solution of the stochastic differential equation (4.1). We obtain the
following discrete-time process:

qk+1 = qk −∇V (qk)∆t+

√
2∆t

β
Gk, (4.2)

where Gk ∼ N (0, Id) for all k > 0 are independent Gaussian random variables. We assume
that the drift of the dynamics is globally Lipschitz or that Lyapunov conditions are satisfied, so
that the Markov chain corresponding to the time discretization (4.2) admits a unique invariant
probability measure, denoted by µ∆t; see [101]. It is well known that the Euler–Maruyama
discretization (4.2) is consistent (weakly and strongly) of order 1, and that µ∆t agrees with µ
up to errors of order ∆t (see for instance [144] and [101, Theorem 7.3] for the latter point).

106 Chapter 4. Generative methods for transition paths

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

−3.271

−3.271

−2.549
−2.5

49

−1
.8

28 −1.828

−1.828

−1.107

−1
.1

07

−0
.38

5

−0.385

−0.385
0.3

36

0.3361.
05

7
1.057

1.779 1.
77

9

1.
77

9
1.779

2.5
00

2.500

3.
22

1 3.221

transition path
non transition path

Figure 4.1 – Transition path and non transition path in the 2-dimensional potential given
by (4.3).

Two–dimensional numerical example. To illustrate the metastability issue, we present
a simple two dimensional example, which will be the running numerical example of this paper.
We assume that D = R2, and consider the following potential for q = (x, y) (already used
in [117, 105]):

V (q) = 3 exp

(
−x2 −

(
y − 1

3

)2
)
− 3 exp

(
−x2 −

(
y − 5

3

)2
)
− 5 exp

(
− (x− 1)2 − y2

)
− 5 exp

(
− (x+ 1)2 − y2

)
+ 0.2x4 + 0.2

(
y − 1

3

)4

.

(4.3)
We plot in Figure 4.1 two trajectories generated using the discretization (4.2), with ∆t =
5 × 10−3, β = 3.5 and a final time T = 10. The first trajectory displayed in orange re-
mains trapped in the first well A (located around (−1, 0)), whereas the second trajectory
displayed in red jumps to the second well B by going through the local minimum of V on
the top. An alternative path for the particle to go from the first to the second well passes
through the bottom. We performed direct numerical simulations of trajectories initialized
from (−1.05,−0.04) to confirm that sampling paths transitioning from A to B is rare, with a
probability of the order of 0.01. Directly integrating (4.2) to explore the configurational space
is therefore inefficient in this case. The issue becomes even more acute in higher dimensions,
especially when the potential V has many local minima.

4.3 Generating transition paths with Variational AutoEncoders

The purpose of this section is to use a data set of transition paths to generate new ones
using variational autoencoders (VAEs). We first present VAEs in Section 4.3.1. We briefly
recall in Section 4.3.2 the convolutional layers which are the building blocks of the various
architectures used in this section. The construction of the data set used to train the various
models is discussed in Section 4.3.3. We then present in Section 4.3.4 the 2-dimensional VAE
we consider, alongside with the numerical results for this model. Finally, in Section 4.3.5 we
describe some methods to incorporate the temporal aspect of the data in the latent space,
first with a “naive" VAE, and then using vector quantized VAEs (VQ-VAEs) and variational

4.3. Generating transition paths with Variational AutoEncoders 107

recurrent neural networks.

4.3.1 Presentation of Variational AutoEncoders

Variational AutoEncoders, as introduced by [71, 124], are a class of generative models based
on latent variables. Assume that the data consists of n observed variables, which we denote
by q = (q1, . . . , qn) ∈ Dn, distributed according to some probability measure p(·). In our
context, each element qi is a trajectory, i.e. a time ordered sequence of configurations of the
system (see Section 4.3.3 for a more precise description).

The aim is to approximate the distribution of the data by a parametric distribution pθ ≈ p.
Instead of considering simple but limited parametric distributions, generative models assume
that there exist latent, unobserved variables, which we denote by z = (z1, . . . , zn) ∈ (R`)n,
where `, the dimension of the latent variables (called the intrinsic dimension), is generally
smaller than the dimension of the data. In this context, the likelihood is given by

pθ(q) =

∫
R`
pθ(q, z) dz =

∫
R`
pθ(q|z)pθ(z) dz. (4.4)

The aim is to maximize the likelihood of (q1, q2, ..., qn) with respect to θ. Note that, with
some abuse of notation, the joint distributions of z and q, the marginal distributions in q
and z and the prior distribution on z are all denoted by pθ. The joint distribution of (q, z) is
defined through a parametric model with unknown parameter θ as

zi ∼ pθ(z),
qi|zi ∼ pθ(q|zi).

(4.5)

Variational inference. In the setting considered here, computing the likelihood (4.4), as
well as the conditional probability pθ(z|q), is intractable. In view of Bayes’ relation, the
likelihood pθ(q) and the conditional likelihood pθ(z|q) are related as

pθ(q) =
pθ(q, z)

pθ(z|q)
.

From a Bayesian perspective, one of the aims of VAEs is the inference of the posterior distri-
bution of the latent variables, pθ(z|q). To do so, VAEs rely on variational inference (see, e.g.,
[17]), which can be seen as an alternative to Markov Chain Monte Carlo sampling in complex
Bayesian models where pθ(z|q) is intractable. The idea of variational inference is to posit a
family of probability distributions Π, and to approximate the posterior pθ(z|q) by a distribu-
tion in the family Π of distributions in z indexed by q which minimizes the Kullback–Leibler
divergence

π? = argmin
π∈Π

KL (π(z|q)||pθ(z|q)) , KL(π(z|q)||pθ(z|q)) =

∫
R`
π(z|q) log

(
π(z|q)
pθ(z|q)

)
dz.

(4.6)
However, the minimization problem (4.6) cannot be solved directly, as it involves the compu-
tation of the intractable marginal log-likelihood log pθ(q):

KL(π(z|q)||pθ(z|q)) = Eπ(·|q)[log π(z|q)]− Eπ(·|q)[log pθ(z|q)]
= Eπ(·|q)[log π(z|q)]− Eπ(·|q)[log pθ(z, q)] + log pθ(q).

(4.7)

Reordering the terms in (4.7), we obtain:

log pθ(q)− KL(π(z|q)||pθ(z|q)) = −Eπ(·|q)[log π(z|q)] + Eπ(·|q)[log pθ(z, q)]

= Eπ(·|q)[log pθ(q|z)]− KL(π(z|q)||pθ(z)).︸ ︷︷ ︸
ELBO

(4.8)

108 Chapter 4. Generative methods for transition paths

The term on the right hand side of the previous equality is called the Evidence Lower Bound
(ELBO). On the one hand, for pθ(q) fixed, solving the minimization problem (4.6) is equivalent
to maximizing the ELBO with respect to the variational distribution π(z|q). On the other
hand, since KL(π(z|q)||pθ(z|q)) > 0, the ELBO is a lower bound on the marginal log-likelihood
log pθ(q). Thus, maximizing the ELBO with respect to θ provides a proxy for the maximum
likelihood estimate of parameter θ. Note that this is an important goal, since approximating θ
yields an approximation to the distribution of the observed data q, and thus allows to generate
new samples.

Variational autoencoders. The idea of variational inference is to choose a class of dis-
tributions Π which is consistent with our intuition of the problem, and yields a tractable
optimization problem. Variational Autoencoders rely on a different class of distributions Π,
defined as follows:

π(z|q) = Ψ(z|gφ(q)). (4.9)

In (4.9), {Ψ(.|γ), γ ∈ G } is a parametric family of densities, and gφ : D → G is a differentiable
function. For instance, Ψ(z|µ,Σ) can be chosen as the multivariate Gaussian distribution
with mean µ and covariance matrix Σ. In this case, gφ(q) = (µφ(q),Σφ(q)), where µφ and Σφ

are parametrized by a neural network with weights φ. The function gφ is referred to as the
encoder : it allows to construct the distribution of the latent variables, given the observations.

Autoencoding variational bound algorithm. Assembling the concepts of the previous
paragraphs, VAEs aim at solving the following optimization problem:

argmin
θ,φ

n∑
i=1

L(θ, φ; qi), (4.10)

where

L(θ, φ; qi) := Ez∼Ψ(.|gφ(qi))

[
log pθ

(
qi
∣∣z)]− Ez∼Ψ(.|gφ(qi))

[
log Ψ

(
z
∣∣gφ(qi)

)
− log(pθ(z))

]
,

where (q1, ..., qn) is the given data set of observed quantities. Problem (4.10) is solved using
a stochastic gradient descent (SGD) algorithm. While computing the gradient with respect
to θ is straightforward, using a Monte Carlo estimator to compute the gradient of L(θ, φ; qi)
with respect to φ however leads to a large variance [115, 71]. It is suggested in [71] to use
the so-called reparametrization trick to obtain expressions of gradients both with respect
to φ and θ. The method goes as follows. Considering a diagonal covariance matrix Σφ =
diag(σ2

φ) with σφ ∈ R`, and since {Ψ(.|γ), γ ∈ G } corresponds to a family of multivariate
Gaussian distributions Ψ(q|µφ,Σφ) with mean µφ, the random variable z ∼ Ψ(z|gφ(qi)) can
be reparametrized as

z = µφ(qi) + diag(σφ(qi))ε, ε ∼ N (0, I`). (4.11)

Note that similar reparametrizations can be considered whenever Ψ is a “location-scale" family
of distribution (Laplace, Student, etc.). Alternatively, if Ψ has a tractable CDF, one can
reparametrize z with a uniform random variable ε ∼ U([0, 1]). With the choice (4.11),

L(θ, φ; qi) = Eε∼N (0,1)[log pθ(q|µφ(qi) + σφ(qi)ε)]

− Eε∼N (0,1)[log Ψ(µφ(qi) + σφ(qi)ε|gφ(qi))− log pθ(µφ(qi) + σφ(qi)ε)].
(4.12)

To make the loss function (4.12) even more explicit, we consider that the prior pθ(z) is a
centered reduced Gaussian distribution. In this case, the term on the second line, which cor-
responds to the Kullback–Leibler divergence of two Gaussian distributions, can be analytically

4.3. Generating transition paths with Variational AutoEncoders 109

computed. The term on the first line can be approximated by a Monte Carlo discretization us-
ing (ε1, . . . , εL) independent `-dimensional standard normal Gaussian vectors. This amounts
to considering the following estimator L̂(θ, φ; qi) of L(θ, φ; qi):

L̂(θ, φ; qi) =
1

L

L∑
j=1

log pθ(q
i|µφ(qi) + σφ(qi)εj) +

∑̀
k=1

[
1 + log(σ2

φ(qi)k)− µ2
φ(qi)k − σ2

φ(qi)k
]
,

(4.13)
where we denote by µφ(q)k and σφ(q)k the components of the vectors µφ(q) and σφ(q). In
practice, we consider L = 1 as suggested in [71]. We also assume that pθ(q|z) = Φ(q|fθ(z)),
where {Φ(·|η), η ∈ H } is a family of densities parametrized by η ∈ H . For instance, one
can consider for Φ(q|µ,Σ) the multivariate Gaussian distribution with mean µ and covariance
matrix Σ, and fθ(z) = (µθ(z),Σθ(z)) where Σθ(z) = σ2

θ(z)Id. This particular case amounts
to considering pθ as an infinite mixture of Gaussians. The function fθ : R` → H is called the
decoder : it allows to reconstruct the distribution of the data given the latent variables. In
general, one assumes fθ to be parametrized by a neural network with weights θ. Note that in
this specific Gaussian setting,

log pθ(q|z) = −d
2

log(2π)− d log(σθ(z))−
‖q − µθ(z)‖2

2σ2
θ(z)

, (4.14)

where z is given by (4.11). In fact, for the VAEs we used, we considered σθ as a constant and
fixed it to σθ = 1.2× 10−2. As a result, the terms in (4.13) and (4.14) are differentiable with
respect to φ and θ, and the gradients can be computed using backpropagation.

To summarize, we use a neural network as the encoder, which takes as input a trajectory
qi, and gives as output µφ(qi), σφ(qi). We use the reparametrization trick to compute the
latent variable zi, which is given as input to the decoder (which is itself a neural network).
The output of the decoder is the trajectory µθ(z

i). The loss function in (4.10) (using in
particular (4.14)) can then be minimized with respect to θ, φ with gradients computed using
backpropagation. It is approximated in practice by minibatching. The building block of the
encoder and decoder we use are convolutional neural networks presented in the next section.

4.3.2 Convolutional neural networks

Convolutional neural networks [81, 82] are generally used for data invariant under translation
and scaling. They are composed of hidden stacked layers: convolutional layers, pooling layers,
normalization layers, to which one generally adds a fully connected layer at the end. We
focus on convolutional layers, since they are the only ones used in the various architectures
we consider alongside the fully connected layers and batch normalization layers. The input,
which corresponds to the first layer, is a trajectory q.

A convolutional layer transforms an input time series (xt)16t6Tin ∈ RTin×min into a time
series y ∈ RTout×mout . The parameters of a convolutional layer are the elements of the mout

convolution kernels of size k × min, denoted by W ∈ Rk×min×mout , with k < Tin. More
precisely, each convolution kernel W j ∈ Rk×min for j ∈ {1, ...,mout} performs Frobenius
products (denoted by :) with parts of the input time series. The kernel W j convolves through
the input to form a new time series, which is then passed to an activation function. The stride
s controls the shift of the kernel through the input time series. More precisely, yjt is defined
for 1 6 t 6 Tout and 1 6 j 6 mout as

yjt = f
(
W j : x[(t−1)s+1;(t−1)s+k]

)
.

There are several important things to notice. The first one is that the output time series
(yt)16t6Tout does not have the same dimension as the input time series. Its length Tout is

110 Chapter 4. Generative methods for transition paths

defined by the following formula:

Tout =
Tin − k
s

+ 1. (4.15)

If we want it to have the same size as the input, we should set s = 1 and use some padding to
compensate for the missing entries. For all the models considered in this work, we use ReLU,
given by f(x) = max(0, x), as an activation function. The learnable parameter is W , and
the other parameters are defined by the user (including k and mout). The integer min is the
number of channels of the input and mout the number of channels of the ouput. In our model,
we use a convolutional neural network obtained by stacking together convolutional layers. In
this context, the receptive field is defined as the number of elements of the input time series
contributing to the value of one element of the output. It is traditionally considered that a
good network is one that has a receptive field of the size of the largest characteristic scale
(the characteristic time of the transition from A to B here), while also reducing the temporal
complexity. A trade off from an optimization perspective is to have Tout � T and mout � d.

4.3.3 Data set for training

To train VAEs, one needs a data base of transition paths. We use the system described
in Section 4.3.1 for which we generate 12, 968 trajectories. We start from a fixed initial
condition q0 = (−1.05,−0.04), and integrate the dynamics using (4.2) with the potential (4.3)
to construct a discrete trajectory (q0, q1, . . . , qT), where T = 1984. We finally classify the
trajectories as transitions through the bottom, transitions through the top and absence of
transition. A trajectory is considered a transition if there exists k ∈ {1, ..., T} such that
xk > 0. If yk is greater than 0.7, the trajectory is classified as transitioning through the top,
otherwise it is classified as transitioning through the bottom. The data set used to train all
the models in this section is composed of 1743 transition paths (510 with a transition through
the top and 1, 233 through the bottom) and 11, 225 non transition paths. We use 80% of
the data to train the models, whereas 20% of the data is used for testing. We also tried to
train the models without the non transition paths from the data set, but the results were
very similar. Let us emphasize here that constructing a data set containing transition paths
can be computationally hard and possibly infeasible (i) if β is large; (ii) if the energy barriers
are too high; (iii) for problems in high dimension. However, exploring data based approaches
remains interesting, at least for academic reasons.

4.3.4 "Naive" Variational AutoEncoders to generate transition paths

We first use VAEs with a bottleneck of dimension 2. The encoder is composed of a convolution
block denoted by CNN-A (which is a combination of some 1–dimensional convolutional layers
and batch normalization layers; see Appendix 4.A for the exact architecture). The CNN-A
is stacked with an additional linear layer that produces as output µ(q), σ(q) ∈ R2 (which is
the output of the encoder). The decoder structure is the “transpose" structure of CNN-A
(meaning that the convolutional blocks are defined with the transposed convolutional layer
and the architecture parameters are the same as CNN-A but taken in the inverse order). We
used the AdamW PyTorch [97] optimizer with learning rate 10−4 and trained the VAE for
1400 epochs with a batch size of 64.

The results presented in Figure 4.2 provide a representation of the data in the 2-dimensional
latent space corresponding to the bottleneck of the VAE. We can clearly distinguish between
the three types of trajectories in this 2-dimensional space: transition paths are on the outer
part of the space, while non transition paths concentrate around the origin. Once the VAE
is trained, one can sample new points in the 2–dimensional latent space, in order to generate
new trajectories.

4.3. Generating transition paths with Variational AutoEncoders 111

We first plot in Figure 4.3 some reconstructed trajectories and the original ones (from
the test set) using the trained VAE. The trajectories reconstructed by the VAE have the
correct shape but the magnitude of oscillations of the configurations are small compared to
the original ones. The sampling of the well A is also better in the original trajectories.

We plot in Figure 4.4 some generated trajectories using points from the latent space repre-
sented in Figure 4.2 by crosses, in an attempt to obtain new trajectories by an extrapolation
procedure in latent space. Although their overall shape is rather correct (except for some
trajectories far from the data points in latent space), most of the generated trajectories are
not really convincing. Using this VAE architecture, we do not take into account the temporal
aspect of the trajectory, since everything is encoded in R2 (which is the dimension of the bot-
tleneck). This bi-dimensional space is too small to account for the fluctuations of the whole
trajectory. One way to deal with this issue would be to post-process the generated trajecto-
ries using transition path sampling techniques [19] to locally relax the generated paths, for
instance by relying on the so-called Brownian tube proposal suggested in [142]. We take an
alternative route in Section 4.3.5 and try instead to incorporate the temporal aspect in the
latent space by increasing the dimension of the bottleneck.

Figure 4.2 – Illustration of the mean embeddings for the test set for the "naive" VAE.
The crosses represent the points used to generate new trajectories, see Figure 4.4.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

−3.271

−3.271

−2.549

−2.5
49

−1
.8

28 −1.828

−1.828

−1.107

−1
.1

07

−0
.38

5

−0.385

−0.385

0.3
36

0.3361.
05

7

1.057

1.779 1.
77

9

1.
77

9

1.779

2.5
00

2.500

3.
22

1 3.221

original trajectory
reconstructed trajectory

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

−3.271

−3.271

−2.549
−2.5

49

−1
.8

28 −1.828

−1.828

−1.107

−1
.1

07

−0
.38

5

−0.385

−0.385
0.3

36

0.3361.
05

7
1.057

1.779 1.
77

9

1.
77

9
1.779

2.5
00

2.500

3.
22

1 3.221

original trajectory
reconstructed trajectory

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

−3.271

−3.271

−2.549

−2.5
49

−1
.8

28

−1.828

−1.828

−1.107

−1
.1

07

−0
.38

5

−0.385

−0.385

0.3
36

0.3361.
05

7

1.057

1.779 1.
77

9

1.
77

9

1.779

2.5
00

2.500

3.
22

1 3.221

original trajectory
reconstructed trajectory

Figure 4.3 – Comparison between original and reconstructed trajectories using the trained
"naive" VAE. The orange lines represent the original trajectories (from the test set) and the
brown lines the reconstructed ones.

112 Chapter 4. Generative methods for transition paths

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
y

−3.271

−3.271

−2.549

−2
.54

9

−1
.8
28 −1.828

−1.828

−1.107

−1
.1
07

−0
.38

5

−0.385

−0.385

0.3
36

0.3361.
05
7

1.057

1.779 1.
77
9

1.
77
9

1.779

2.5
00

2.500

3.
22
1 3.221

(a) z = (−7.5, 17.5)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

−3.271

−3.271

−2.549
−2
.54

9

−1
.8
28 −1.828

−1.828

−1.107

−1
.1
07

−0
.38

5

−0.385

−0.385
0.3

36

0.3361.
05
7

1.057

1.779 1.
77
9

1.
77
9

1.779
2.5
00

2.500

3.
22
1 3.221

(b) z = (0, 17.5)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

−3.271

−3.271

−2.549

−2
.54

9

−1
.8
28 −1.828

−1.828

−1.107

−1
.1
07

−0
.38

5

−0.385

−0.385

0.3
36

0.3361.
05
7

1.057

1.779 1.
77
9

1.
77
9

1.779

2.5
00

2.500

3.
22
1 3.221

(c) z = (12.5, 17.5)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

−3.271

−3.271

−2.549

−2
.54

9

−1
.8
28 −1.828

−1.828

−1.107

−1
.1
07

−0
.38

5

−0.385

−0.385

0.3
36

0.3361.
05
7

1.057

1.779 1.
77
9

1.
77
9

1.779

2.5
00

2.500

3.
22
1 3.221

(d) z = (−7.5, 7.5)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

−3.271

−3.271

−2.549
−2
.54

9

−1
.8
28 −1.828

−1.828

−1.107

−1
.1
07

−0
.38

5

−0.385

−0.385
0.3

36

0.3361.
05
7

1.057

1.779 1.
77
9

1.
77
9

1.779
2.5
00

2.500

3.
22
1 3.221

(e) z = (0, 7.5)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

−3.271

−3.271

−2.549

−2
.54

9

−1
.8
28 −1.828

−1.828

−1.107

−1
.1
07

−0
.38

5

−0.385

−0.385

0.3
36

0.3361.
05
7

1.057

1.779 1.
77
9

1.
77
9

1.779

2.5
00

2.500

3.
22
1 3.221

(f) z = (12.5, 7.5)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

−3.271

−3.271

−2.549

−2
.54

9

−1
.8
28 −1.828

−1.828

−1.107

−1
.1
07

−0
.38

5

−0.385

−0.385

0.3
36

0.3361.
05
7

1.057

1.779 1.
77
9

1.
77
9

1.779

2.5
00

2.500

3.
22
1 3.221

(g) z = (−7.5, 0)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

−3.271

−3.271

−2.549
−2
.54

9

−1
.8
28 −1.828

−1.828

−1.107

−1
.1
07

−0
.38

5

−0.385

−0.385
0.3

36

0.3361.
05
7

1.057

1.779 1.
77
9

1.
77
9

1.779
2.5
00

2.500

3.
22
1 3.221

(h) z = (0, 0)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

−3.271

−3.271

−2.549

−2
.54

9

−1
.8
28 −1.828

−1.828

−1.107

−1
.1
07

−0
.38

5

−0.385

−0.385

0.3
36

0.3361.
05
7

1.057

1.779 1.
77
9

1.
77
9

1.779

2.5
00

2.500

3.
22
1 3.221

(i) z = (12.5, 0)

Figure 4.4 – Generated trajectories using the trained "naive" VAE, for various values of the
latent variables (see crosses in Figure 4.2).

4.3.5 VAEs with larger embedding space

To take into account the temporal aspect of the data, we use a VAE composed of the same
convolutional blocks denoted by CNN-A in Appendix 4.A, and an additional linear layer as
encoder to produce an output µ(q), σ(q) ∈ RTz×2, where Tz = T/26 = 31 (because we chose
to work with a neural network composed of 6 convolutional layers for which the length of the
input is divided by 2). This means that each trajectory is encoded by a latent variable of
dimension Tz × 2. The inputs of the decoder are z = (z1, ..., zTz), with zi = µ(q)i + σ(q)iεi,
where (εi)16i6Tz are independent and identically distributed standard 2-dimensional Gaussian
random vectors. Again, the decoder is simply the "transpose" of the encoder. To train the
model, we use again the AdamW PyTorch optimizer with learning rate 10−4 for 1400 epochs
with batch size 64.

We first plot in Figure 4.5 the mean embeddings for the test set, corresponding to the
scatter plot of the elements of the vectors µ(q) for each trajectory q in the test set. We can
see the zone indicating the windows that are in A or in B, as well as the reactive parts of
the trajectory which corresponds to the part of the transition path between the last time it
leaves A and the first time it enters B. We plot in Figure 4.6 the trajectories reconstructions
when passed through our VAE architecture for trajectories in the test set. The results are
much better than the ones obtained in Section 4.3.4. The fluctuations in the generated
trajectories are more representative of the ones of the original trajectories. The problem with

4.3. Generating transition paths with Variational AutoEncoders 113

such a model is that we cannot generate new trajectories since we need a sequence (z1, ...zTz)
in the bottleneck space. This requires a more refined modeling of the distribution on the
latent space, taking into account correlations between subsequent values of the variables zi.

Figure 4.5 – Illustration of the mean embeddings for the test set (using the VAE
with embedding space of dimension 31 × 2). Each trajectory is represented by 31
points.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

−3.271

−3.271

−2.549

−2
.54

9

−1
.8
28 −1.828

−1.828

−1.107

−1
.1
07

−0
.38

5

−0.385

−0.385

0.3
36

0.3361.
05
7

1.057

1.779 1.
77
9

1.
77
9

1.779

2.5
00

2.500

3.
22
1 3.221

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

−3.271

−3.271

−2.549
−2
.54

9

−1
.8
28 −1.828

−1.828

−1.107

−1
.1
07

−0
.38

5

−0.385

−0.385
0.3

36

0.3361.
05
7

1.057

1.779 1.
77
9

1.
77
9

1.779
2.5
00

2.500

3.
22
1 3.221

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

−3.271

−3.271

−2.549

−2
.54

9

−1
.8
28 −1.828

−1.828

−1.107

−1
.1
07

−0
.38

5

−0.385

−0.385

0.3
36

0.3361.
05
7

1.057

1.779 1.
77
9

1.
77
9

1.779

2.5
00

2.500

3.
22
1 3.221

Figure 4.6 – Comparison between original and reconstructed trajectories using the trained
VAE with an embedding space of dimension 31. The orange lines represent the original
trajectories (from the test set) and the brown lines the reconstructed ones.

In order to do so, we tried a very recent development for learning tasks on data with a
recursive structure (be it one dimensional time series as audio or two dimensional data like
images): the vector quantized variational autoencoder network (VQ-VAE) [149]. The main
idea of this method is to first learn a quantization of our feature space z so that each input
trajectory q1, ..., qT is represented by z1, ..., zTz where zi is an element of a finite set of vectors
Z = {z̃1, ..., z̃K} ∈ R`, which is also learned by the autoencoder. Once a good quantized
autoencoder is available, it can be used to learn an autoregressive model, defined on the finite
set of possible elements of Z. More precisely, denoting by Ii the index of the embedding for
the part i of the sequence represented in Z, namely zi = z̃Ii , the autoregressive model learns
a transformation predicting Ik from I1, ..., Ik−1. The trajectories generated with VQ-VAE
were however not convincing, which is why we do not report their results here. We also
considered introducing a variational recurrent neural network [33] between the encoder and
the decoder to learn the distribution on the latent space, but this also led to poor performances
when generating trajectories. This motivates moving to a data free approach, as we do in
Section 4.4.

114 Chapter 4. Generative methods for transition paths

4.4 Generating transition paths with reinforcement learning

In this section, we first present the main setting of reinforcement learning alongside with the
Q-learning framework in Section 4.4.1. We next present in Section 4.4.2 how we apply it to
our problem, and make precise in particular the reward function used to train the models.
Finally, we present in Section 4.4.3 the numerical results obtained with this approach.

4.4.1 Overview of reinforcement learning

The conceptual framework behind reinforcement learning is the theory of Markov decision
processes. A Markov decision process is defined by a 4-tuple (Q, A, T , r) with

• a set of states Q;

• a set of actions A;

• a family of transition kernels T (qk+1|qk, ak) where qk, qk+1 ∈ Q and ak ∈ A;

• a reward function rak(qk+1, qk) where qk, qk+1 ∈ Q and ak ∈ A.

This framework allows to simulate a "game" consisting of a set of states Q, where at each step
an action ak is selected depending on the current state qk of the system. This action ak leads
to a transition to the state qk+1 with probability T (qk+1|qk, ak), with an associated reward
rak(qk+1, qk). In this work, actions are selected according to a deterministic policy function
P : Q → A. For a given policy P , an important function is the value function VP , which gives
the (discounted) cumulated expected reward obtained when starting from the position qk at
time k when the agent follows the policy P :

VP (qk) = ETP

[∞∑
i=k

γi−krP (qi)(qi+1, qi)

]
, (4.16)

In the latter expression, expectations are taken with respect to realizations of the Markov
chain with transition kernel TP (qk+1|qk) := T (qk+1|qk, P (qk)), and γ ∈ (0, 1) is a discount
factor, which balances the importance between having a gain at time step k and having a
gain in the future. We also recall the action value function (also called the Q-function), which
returns the average expected reward of taking an action ak from state qk and then following
the policy P . The action value function reads

QP (qk, ak) = ET (·|qk,ak)⊗TP

[
rak(qk+1, qk) +

∞∑
i=k+1

γi−trP (qi)(qi+1, qi)

]
, (4.17)

where the expectation is taken over realizations of qk+1 distributed according to T (·|qk, ak),
and qi+1 ∼ TP (·|qi) for i > k + 1. In particular, VP (qk) = QP (qk, P (qk)). The optimal value
function is defined for each state qk by finding a policy which maximizes the value function
(in particular, this policy depends a priori on the state qk):

V ∗(qk) = max
P :Q→A

VP (qk), (4.18)

Similarly, the optimal action value function is defined for each state-action pair (qk, ak) as

Q∗(qk, ak) = max
P :Q→A

QP (qk, ak). (4.19)

An important issue at this stage is to find a policy which is optimal in some sense. A
natural way to define a partial order on the policies is the following: P1 > P2 if VP1(q) > VP2(q)

4.4. Generating transition paths with reinforcement learning 115

for any q ∈ Q. An optimal policy P ∗ is therefore such that VP ∗(q) > VP (q) for any q ∈ Q.
One can prove that P ∗ given by

P ∗(q) = arg max
a∈A

Q∗(q, a), (4.20)

is an optimal policy [121]. Furthermore, V ∗ = VP ∗ and Q∗ = QP ∗ , see again [121] for a
proof. One way to determine the optimal policy is then to solve the problem (4.20), using the
expression (4.19) for Q∗(qk, ak).

Q-Learning. When the action space is finite, a common approach for solving the opti-
mization goal stated in (4.19) is to rely on the Hamilton–Jacobi–Bellman formulation of the
Q-function, directly obtained from (4.17):

QP (qk, ak) = ET (·|qk,ak) [rak(qk+1, qk) + γQP (qk+1, P (qk+1))] , (4.21)

where the expectation is over all realizations of qk+1 distributed according to T (·|qk, ak). For
a discrete action space A, the algorithm for Q learning is based on the fact that QP can be
seen as a fixed point of the mapping appearing in (4.21). We briefly describe the method
following [156]. An initial Q-table is considered, for instance by providing random values
for the Q-function for each pair (qk, ak). At each time step k, the agent takes an action ak
(either randomly or by choosing the best one among the current estimates for the Q function,
see [156] for more details) and moves from the state qk to qk+1 with a reward rak(qk+1, qk).
In view of (4.21), the Q-table is then updated as follows

Q(qk, ak)← (1− α)Q(qk, ak) + α

(
rak(qk+1, qk) + γmax

a∈A
Q(qk+1, a)

)
,

where α is the learning rate. The convergence of Q-learning algorithms can be shown under
mild hypotheses, see [156, 143] for more details. Once the algorithm has converged and a final
Q-function is obtained, the optimal policy at state qk is defined as arg maxa∈AQ(qk, ak).

In large state spaces, either discrete or continuous, a better way to maximize (4.17)
is to consider a family of functions f(qk, a, θ) parametrized by θ to approximate the Q-
function. This is more efficient in terms of computational time if the state space is dis-
crete but large. Typically, θ are the parameters of a NN. The policy in this case would be
Pθ(qk) = arg maxa∈A f(qk, a, θ). In practice, one iterates between updating a data set of
realizations (here, snapshots of the trajectory instead of full trajectories, in fact; see Sec-
tion 4.4.2 below), and the approximation of the Q function via f(qk, a, θ). At each iteration,
the algorithm consists in adding a sample of realization as

DN = DN−1 ∪ {(qN , aN , qN+1)}, , D0 = ∅,

and updating the parameters of the NN as

θ∗ = arg min
θ′

N∑
i=1

[
f(qi, ai, θ

′)−
(
rai(qi+1, qi) + γmax

a∈A
f(qi+1, a, θ

′)

)]2

. (4.22)

The precise procedure, as well as various strategies to make the numerical method more stable,
can be read in [108].

Infinite action space. When the action space is continuous, taking the maximum over the
action space is impossible. One way to solve the Q-learning task, is to introduce an additional
neural network: the policy network P(qk, ω), which aims at learning the optimal policy P ∗(qk).
The policy network is used in conjunction with the critic network Q(qk, ak, θ) in an ensemble

116 Chapter 4. Generative methods for transition paths

called the actor-critic setting. The function Q is the counterpart for continuous action spaces
of the function f introduced above for discrete action spaces. In this framework, one aims at
solving the following optimization problem:

ω∗ = arg max
ω

N∑
i=1

Q(qi,P(qi, ω), θ∗), (4.23)

θ∗ = arg min
θ

N∑
i=1

[
Q(qi,P(qi, ω

∗), θ)−
(
rai(qi+1, qi) + γmax

a∈A
Q(qi+1, a, θ)

)]2

. (4.24)

Note that the policy network implicitly appears in (4.24) through the generation of the dataset.
The maximizations in (4.23)-(4.24) are more challenging than the corresponding maxi-

mization problem (4.22) for finite action spaces. Naive strategies are known to be ill behaved,
leading notably to overconfident predictions on the Q networks (i.e. the resulting approxi-
mation of the Q-function gives values higher than the actual ones). Several ways of dealing
with this issue have been proposed over the years. We follow the so called Twin Delayed Deep
Deterministic policy gradient (TD3) algorithm defined in [50].

This algorithm introduces several tools to stabilize the learning of Q and P. One of the
main ideas is to replicate the Q network into two Q networks with parameters θ1, θ2. Taking
the minimal value of Qθ1(q, a) and Qθ2(q, a) allows to mitigate the issue of overconfident
Q networks mentioned above. Another important idea is to use delayed networks that are
copies of Q and P but in which the weights are updated with some memory function (as
an exponentially weighted linear combination of current and past weights). We refer to the
original paper [50] for a more in-depth discussion of these points.

4.4.2 Application to sampling transition paths

We now describe how to adapt the reinforcement learning framework previously described to
the problem of sampling transition paths described in Section 4.2. We successively define all
the elements of the Markov decision process introduced in Section 4.4.1.

State space and action space. The state space is simply defined as the space D of the
diffusion process, D ⊂ Rd. The action space is the same space as the image of the gradient of
the potential, i.e. Rd. In this context, we consider the policy to be a vector field, introduced
as a bias into the governing equation (4.1) to alter the trajectory. This is similar to the choice
made in [136, 57] where controlled stochastic differentials are considered. More explicitly, the
controlled version of (4.1) we consider reads

dqt = (−∇V (qt) + P (qt)) dt+

√
2

β
dWt, (4.25)

discretized in the actor-critic framework as

qk+1 = qk + (−∇V (qk) + P(qk, ω))∆t+

√
2∆t

β
Gk, (4.26)

where ω denotes the state of the policy network. We chose here to work with a generic policy,
although we could have looked for it in gradient form according to results of stochastic optimal
control (as reviewed in [94, Section 6.2]). We also denote by TP the corresponding transition
kernel in the sequel (not explicitly writing out the state ω of the neural network).

Probability kernel. Given a policy P(·, ω), the probability kernel to go from a configura-
tion qk to a new one qk+1 can be deduced from (4.26) to be

TP (qk+1|qk) =

(
β

4π∆t

)d/2
exp

(
−β ‖qk+1 − qk −∆t(−∇V (qk) + P(qk, ω))‖2

4∆t

)
. (4.27)

4.4. Generating transition paths with reinforcement learning 117

Reward function. We want to maximize the likelihood of trajectories leaving the well A.
The reward function we consider to this end reads (omitting the dependence on the action in
the notation)

r(qk+1, qk) = log

(
T0(qk+1|qk)
TP(qk+1|qk)

)
+ αh(qk, q0), (4.28)

where α > 0 and h(·, q0) is a function which measures the distance of the current configuration
to the center q0 of the well A; for instance, h(qk, q0) = ‖qk−q0‖2. The first term of the reward
function compensates for the bias introduced in the dynamics by computing the relative
likelihood with respect to an unbiased evolution. The second term of the reward function
forces the particle to leave the well A. A simple computation gives

log

(
T0(qk+1|qk)
TP(qk+1|qk)

)
=

β

4∆t

[
‖qk+1 − qk −∆t(−∇V (qk) + P(qk, ω))‖2 − ‖qk+1 − qk + ∆t∇V (qk)‖2

]
=

β

4∆t

[
−2∆t(qk+1 − qk) · P(qk, ω) + ∆t2(‖P(qk, ω)‖2 − 2∇V (qk) · P(qk, ω))

]
.

(4.29)
Using equation (4.26),

log

(
T0(qk+1|qk)
TP (qk+1|qk)

)
=
β

2

[
−
√

2∆tβ−1Gk · P(qk, ω)−∆t2‖P (qk, ω)‖2
]
. (4.30)

Note that, when summing up over k the contributions from the transitions between qk
and qk+1, one ends up with a discretization of the logarithm of the Girsanov weight allowing
to compare the path probabilites between two dynamics differing in their drifts.

Remark 4.1. Other choices for the function h can be considered. In particular, we tried
h(qk, q0) = log(‖qk−q0‖2) but the results were less convincing than with the choice h(qk, q0) =
‖qk− q0‖2. Other works consider reward functions favoring that the final state is in B, rather
favoring exits out of A as we do, but this requires knowing in advance the target metastable
region [36].

4.4.3 Numerical results

We trained neural networks using the TD3 Algorithm [50] to generate parameters (θf , ωf)
which are approximations of the optimal parameters (θ∗, ω∗) in (4.23)-(4.24). We use the open
source code provided by the authors of [50], available at https://github.com/sfujim/TD3.
We fix ∆t = 5× 10−3 and α = 0.071. Precise information on hyper parameters and network
architectures can be found in Appendices 4.B and 4.C.

The final actor network obtained is depicted in Figure 4.7 where we plot the final pol-
icy P(q, ωf) alongside with the final value function. We can see that the drift corresponding
to the policy network biases the trajectories towards the saddle point of the potential in the
vicinity of (0, 1). It does not bias the trajectories towards the saddle point around (0,−0.25),
and even discourages them from performing a transition from A to B. This therefore biases
transitions towards transitions through the upper channel. Note also that the closer the cur-
rent state is to the well B, the smaller the drift is, and therefore the closer the evolution is
to the true dynamics. We were not able to produce transitions through the bottom saddle
point.

118 Chapter 4. Generative methods for transition paths

Figure 4.7 – Left: Visualization of the policy P(q, ωf). The action field "pushes" the simulation
from A through the upper saddle point and diminishes in magnitude in the neighborhood of
the second metastable region. Right: Visualization of the critic value at a given position for
the optimal action, namely Q(q,P(q, ωf), θf).

In order to generate new transitions, we initialize the system at (−1, 0) and then run
the discrete dynamics (4.26) using the final policy P(·, ωf) for 600 time steps with ∆t =
5×10−3. We generated 1000 trajectories, and observed transitions from one metastable state
to the other for more than 99% of the trajectories. Some of these trajectories are plotted
in Figure 4.8. They are visually more realistic than those produced in Figures 4.3 and 4.6.
Another advantage of the method is that, once the network is trained, there is no need to
sample a latent variable to generate a new trajectory, as for example in Figure 4.6.

Figure 4.8 – Sample trajectories generated using (4.26) (one per picture, except the top left
in which 25 trajectories are represented).

4.5. Discussion and perspectives 119

4.5 Discussion and perspectives

The results presented in this work suggest that reinforcement learning provides a way to sam-
ple transition paths by finding some biasing force field guiding the system in its excursion out
of A and into B. Approaches based on generative methods such as variational autoencoders
are intrinsically more limited, especially given that they need a database of transition paths
to start with. Even when such a database is available, the generation of new paths may
be cumbersome as this requires a large latent space with some structure to reproduce the
temporal organization of the components of the latent variables.

While writing up this work, we became aware of recent works in the computational statisti-
cal physics community making use of reinforcement learning and neural networks to construct
effective biases and favor otherwise unlikely transitions (in particular, one work where rein-
forcement learning is used to obtain transition paths but not using neural networks [36], and
one work making use of neural networks to compute rare events but not in the reinforcement
learning context [160]). We believe that further efforts are required to better understand
various choices in the reinforcement learning procedure, in particular the reward function.
From a theoretical perspective, this calls for a better understanding of the links between re-
inforcement learning and optimal importance sampling in path space (see for instance [94,
Section 6.2] and references therein).

120 Chapter 4. Generative methods for transition paths

Appendix

4.A Architecture of CNN-A used in Section 4.3

The following sequence of block parameters was used for the encoder network CNN-A, for an
input of size T × d with d = 2:

• layer 1: m1
in = 2, m1

out = 30, kernel size k = 4, stride s = 2, T 1
out = T/2.

• batch normalization layer.

• layer 2: m2
in = 30, m2

out = 20, kernel size k = 4, stride s = 2, T 2
out = T 1

out/2.

• batch normalization layer.

• layer 3: m3
in = 20, m3

out = 15, kernel size k = 4, stride s = 2, T 3
out = T 2

out/2.

• batch normalization layer.

• layer 4: m4
in = 15, m4

out = 10, kernel size k = 4, stride s = 2, T 4
out = T 3

out/2.

• batch normalization layer.

• layer 5: m5
in = 10, m5

out = 20, kernel size k = 4, stride s = 2, T 5
out = T 4

out/2.

• batch normalization layer.

• layer 6: m6
in = 20, m6

out = 20, kernel size k = 2, stride s = 2, T 6
out = T 5

out/2.

The batch normalization layer standardizes the inputs to a layer for each mini-batch to sta-
bilize the learning. The properties of the CNN:

• receptive field: 125

• jump between two consecutive starts: 64

• overlap: 61 at each extremity

The length of the output time series is T/32, with T = 1984.

4.B Architecture of the neural networks used for TD3 algo-
rithm

The actor network P(·, ω) had the following architecture:

• layer 1: Linear(2, 128) + ReLU

• layer 2: Linear(128, 256) + ReLU

• layer 3: Linear(256, 2) + Tanh

The output of the network was then multiplied by a user specified maximum value cmax. In
our experiments we set cmax = 10. The critic network Q(·, ·, θ) had the following architecture:

• Layer 1: Linear(4, 256) + ReLU

• Layer 2: Linear(256, 256) + ReLU

• Layer 3: Linear(256, 1)

4.C. Parameters for the TD3 algorithm 121

4.C Parameters for the TD3 algorithm

The TD3 algorithm used in this work is the one described in [50], available at the follow-
ing link: https://github.com/sfujim/TD3/blob/master/TD3.py. We have used the following
parameters for the code:

• τ = 5× 10−2

• discount: 0.99

• policy_noise: 0.2

• policy_frequency: 60

• max_action: 10

• noise_clip: 0.5

• action_dim: 2

• state_dim: 2

• learning rate: 3× 10−4

The parameters for the training (game related) are the following:

• dataset maximum size: 30000

• number of games: 50000

• batch size: 512

• number of rounds per game T = 600

• train periodicity (in rounds per game): d = 100

• exploration noise: 0.1

• ∆t = 5× 10−3

• Probability of random step decay coefficient: 0.99

• Random step decay period (in rounds per game): 2000

The optimization routine used was the Adam optimization algorithm [70] from the PyTorch
library.

https://github.com/sfujim/TD3/blob/master/TD3.py

CHAPTER 5

RÉSUMÉ DE LA THÈSE EN FRANÇAIS

Le but de cette section est de fournir un résumé en français de la thèse. Pour chacun des
problèmes considérés, on commence par introduire les motivations puis on donne un bref
résumé des contributions.

5.1 Réduction systématique de l’erreur de minibatching dans
l’inférence Bayésienne à l’aide de la dynamique de Langevin
adaptative

5.1.1 Motivation pour l’inférence Bayésienne

Commençons par présenter d’abord le contexte de l’inférence Bayésienne [127, 84]. Consid-
érons un jeu de données contenants Ndata points indépendants et identiquement distribués
(i.i.d.) qu’on note x = (x1, ..., xNdata

) ∈ (Rddata)Ndata . Nous supposons que les éléments du jeu
de données sont distribués selon une mesure de probabilité paramétrée par un vecteur θ ∈ Rd
et qu’on note Pelem(·|θ). La vraisemblance de l’ensemble de données est alors donnée par

Plikelihood(x|θ) =

N∏
i=1

Pelem(xi|θ).

L’idée principale de l’approche Bayésienne est de considérer que le vecteur de paramètres θ est
lui-même une variable aléatoire, et qu’en capturant son incertitude/dispersion, on peut éviter
un ajustement excessif à l’ensemble des données. On commence par fixer une distribution a
priori sur le vecteur des paramètres, notée Pprior(θ), qui exprime l’information initiale sur les
paramètres. En utilisant la formule de Bayes, la distribution a postériori π(θ|x) du vecteur
de paramètres θ est donnée par

π(θ|x) =
Pprior(θ)Plikelihood(x|θ)

Z
, Z =

∫
Rd
Pprior(θ)Plikelihood(x|θ) dθ, (5.1)

où Z est la constante de normalisation. Dans la plupart des cas, cette constante est dif-
ficile à calculer. Par exemple, lorsque d est grand, les méthodes standards de quadrature
ne peuvent pas être utilisées pour calculer cette quantité. L’objectif principal de l’approche
Bayésienne est d’échantillonner la mesure de probabilité π. Les quantités d’intérêt sont les es-
pérances par rapport à la mesure cible π. Dans la section 1.2, nous rappelons quelques méth-
odes d’echantillonnage, qui constituent une base pour la version étendue de la dynamique
de Langevin adaptative [137] introduite dans le Chapitre 2. Utiliser des algorithmes de

124 Chapter 5. Résumé de la thèse en français

Markov chain Monte Carlo (MCMC) pour échantillonner π nécessite généralement le cal-
cul de ∇θ log π(·|x) à chaque itération, ce qui a un coût de calcul élevé. L’approximation
de ce terme par minibatching permet de limiter le coût de calcul comme discuté dans la
Section 1.3.

5.1.2 Contributions

Ce travail, présenté dans le Chapitre 2, est pré-publié dans [137] et soumis au Journal of
Machine Learning Research.

Le minibatching est un moyen simple de réduire efficacement le temps de calcul des al-
gorithmes MCMC basés sur la discrétisation des équations différentielles stochastiques (voir
Section 1.3.1 pour plus de détails). L’idée est de remplacer le terme ∇θ log π(·|x) par un
estimateur stochastique donné par

F̂n(θ) = ∇θ(logPprior(θ)) +
Ndata

n

∑
i∈In

∇θ(logPelem(xi|θ)),

= ∇θ(log π(θ|x)) +
√
ε(n)Σ

1
2
x (θ)Zx,Ndata,n.

(5.2)

Les termes ε(n), Σx et Zx,Ndata,n sont détaillés dans le Chapitre 1. Le bruit introduit par
l’estimateur du gradient est encodé dans le terme

√
ε(n)Σ

1
2
x (θ)Zx,Ndata,n.

Pour ce travail, nous nous plaçons dans le cas où Zx,Ndata,n n’est pas nécessairement une vari-
able aléatoire Gaussienne standard. Le Chapitre 2 est d’abord consacré à l’analyse numérique
de l’erreur de minibatching dans le cadre de l’inférence Bayésienne pour les algorithmes de
type Langevin. La première contribution est le raffinement du premier ordre de l’erreur faible
sur la mesure invariante. En particulier, nous montrons que le biais sur la mesure invariante
est d’ordre O((1 + ε(n))∆t) pour l’algorithme du "Stochastic gradient Langevin dynamics"
et d’ordre O((∆t + ε(n))∆t) pour les discrétisations de second ordre de la dynamique de
Langevin.

La deuxième partie du Chapitre 2 est consacrée à la dynamique du Langevin adaptative
(AdL) introduite dans la Section 1.2.2.4. Nous contestons d’abord numériquement l’hypothèse
selon laquelle Σx est constant, auquel cas la procédure de minibatching n’induit aucun biais
sur la distribution a posteriori π lors de l’utilisation de la discrétisation d’AdL. Nous four-
nissons une analyse de l’erreur de minibatching pour la discrétisation d’AdL dans le cas où
Σx dépend de θ, montrant que là encore l’erreur est linéaire en ε(n) à condition que ε(n)∆t
soit suffisamment petit. L’expression de l’erreur peut être résumée comme suit

ε(n)∆t‖Σx − S∗‖L2(π),

où

• S∗ =
1

d
Σx =

∫
Θ

Σx(θ)π(θ|x) dθ pour AdL matriciel ;

• S∗ est une matrice diagonale avec des entrées
∫

Θ
[Σx(θ)]i,i π(θ|x) dθ, où 1 6 i 6 d pour

AdL diagonal.

• S∗ =
1

d
Tr(Σx)Id pour l’AdL scalaire.

5.2. Réseaux de neurones Bayésiens 125

5.2 Réseaux de neurones Bayésiens

5.2.1 Motivations pour les réseaux de neurones Bayésien

Le deuxième problème que nous considérons est la simulation de réseaux de neurones Bayésiens
(BNNs). Notons y = (y1, ..., yNdata

) ∈ YNdata les labels associés à un ensemble de données
x = (x1, ..., xNdata

) ∈ XNdata = (Rddata)Ndata . En général, on peut distinguer deux types de
problèmes. Premièrement, les problèmes de classification, où chaque entrée xi est classée dans
l’une de deux ou plusieurs classes. La classification binaire correspond au cas où YNdata =
{0, 1}Ndata (0 correspondant à la première classe et 1 à la seconde). La classification multi-
label correspond au cas où YNdata = {0, ..., dlabel}Ndata , où dlabel est le nombre de classes. Le
deuxième type de problèmes sont les régressions où les labels y sont des éléments continus.
Dans ce cas, YNdata = (Rdlabel)Ndata , où dlabel représente la dimension des labels.

Nous supposons que les éléments de l’ensemble de données sont des échantillons indépen-
dants d’une certaine distribution inconnue qu’on note φ, à savoir (xi, yi) ∼ φ pour tout
1 6 i 6 Ndata. En apprentissage automatique, l’objectif de l’apprentissage supervisé est,
étant donné un ensemble de données (x,y), construire un prédicteur qui, à partir d’une nou-
velle entrée x, prédit une sortie y. L’idée est d’apprendre une fonction f : X → Y, qui lie
les entrées et les sorties, de sorte que l’espérance par rapport à φ d’une certaine fonction de
perte, désignée par Lf , soit minimisée. La fonction de perte quantifie la qualité de la pré-
diction fournie par f . Étant donné que la distribution φ est inconnue, et que nous n’avons
accès qu’à un échantillon de φ, une approximation raisonnable de l’espérance de la fonction
de perte par rapport à la distribution φ est donnée par

Eφ[Lf (X,Y)] ≈ 1

Ndata

Ndata∑
i=1

Lf (xi, yi).

Cette approximation est justifiée par la loi des grands nombres. Par exemple, dans un prob-
lème de régression, on peut considérer la fonction de perte des moindres carrés, donnée par

Lf (x, y) =
1

2
(f(x)− y)2, (5.3)

pour x ∈ X et y ∈ Y. Pour un problème de classification binaire, une fonction de perte
adaptée est l’entropie relative binaire, donnée par

Lf (x, y) = y log(f(x)) + (1− y) log(1− f(x)), (5.4)

pour x ∈ X et y ∈ Y (voir Section 1.1.2 pour une explication de cette fonction). Pour
la classification multi-label, on peut utiliser la généralisation donnée par l’entropie relative
catégorique. Dans ce cas, les résultats du prédicteur sont les probabilités d’appartenir à
chacune des classes.

Les réseaux de neurones [81, 82, 16] sont une classe de fonctions (prédicteurs) qui ont
montré une grande capacité à résoudre les problèmes d’apprentissage automatique. Ils sont
définis comme des fonctions Nθ : X → Y paramétrées par θ ∈ Rd. Dans ce travail, nous
nous concentrons sur les réseaux de neurones feed-forward entièrement connectés. Ceux-ci
peuvent être définis comme des compositions successives de transformations linéaires et de
fonctions d’activation non-linéaires. Un réseau de neurones est typiquement composé de K
couches cachées. Chaque couche ` ∈ {1, ...,K} prend en entrée xin,` ∈ Rd` et produit une
sortie xout,` ∈ Rd`+1 telle que

xout,` = σ(b` +W`xin,`),

ou b` ∈ Rd`+1 correspond au biais, W` ∈ Rd`+1×d` correspond au poids et σ : Rd`+1 → Rd`+1

est une fonction non–linéaire appelée fonction d’activation. Par exemple, on peut utiliser

126 Chapter 5. Résumé de la thèse en français

la fonction linéaire redressée ReLU, qui, pour un vecteur z ∈ Rd`+1 , agit composante par
composante comme suit

(σ(z))i = max(0, zi), (5.5)

pour i ∈ {1,, d`+1}. Il est clair que pour ` = 1, la dimension de l’entrée est d1 = ddata

de sorte que la matrice W 1 devrait avoir ddata colonnes. La dernière couche dépend du
problème à résoudre : (i) pour un problème de régression, dK+1 = dlabel ; (ii) pour un
problème de classification binaire dK+1 = 1 ; (iii) pour un problème de classification multi-
labels dK+1 = dlabel. Le réseau Nθ peut être défini récursivement comme suit

z1 = x,

zk = σ(bk−1 +W k−1zk−1), 2 6 k 6 K

Nθ(x) = σK(bK +WKzK).

(5.6)

Les paramètres du réseau de neurones sont composés de toutes les matrices et les biais, i.e.
θ = (W `, b`)16`6K . Pour les réseaux de neurones, nous notons la fonction de perte par
L(x, y, θ) au lieu de LNθ(x, y). Dans ce contexte, une façon de déterminer un bon prédicteur
consiste à résoudre le problème d’optimisation suivant

θ∗ = arg min
θ∈Rd

Eφ[L(X,Y, θ)].

Optimisation. Une approximation raisonnable de θ∗ consiste à minimiser la perte em-
pirique, le problème devient donc

θ∗ ≈ θ̂∗Ndata
= arg min

θ∈Rd

1

Ndata

Ndata∑
i=1

L(xi, yi, θ). (5.7)

Une fois les paramètres du réseau de neurones définis, pour une entrée x donnée, une prédiction
du label est donnée par y = N

θ̂∗Ndata

(x), où, par abus de notation, nous désignons par θ̂∗Ndata

une solution approximative du problème (5.7). L’un des principaux problèmes rencontrés
lors de l’étude des prédicteurs basés sur (5.7) est le surajustement. Les performances du
réseau peuvent être très faibles en dehors de l’ensemble d’apprentissage x, même lorsque le
problème (5.7) est parfaitement résolu.

Echantillonnage. Le paradigme Bayésien a été introduit dans le cadre des réseaux de neu-
rones comme une alternative à l’optimisation pour éviter le surajustement aux données [111].
L’idée est de considérer les paramètres du réseau de neurones comme des variables aléatoires
et d’inférer leur distribution a posteriori π(θ|x,y) qui est donnée, en considérant la formule
de Bayes, par

π(θ|x,y) ∝ Pprior(θ)

N∏
i=1

Pelem(yi, xi|θ), (5.8)

où Pprior(θ) est la distribution a priori du vecteur des paramètres et Plikelihood la vraisemblance
des données, donnée en terme de fonction de perte par

Pelem(x, y|θ) ∝ exp(−L(x, y, θ)).

Dans ce contexte, pour une entrée donnée x, le label est prédit pour un problème de classifi-
cation binaire basé sur la quantité

p(y|x,x) =

∫
Θ
Nθ(x)π(θ|x) dθ,

5.3. Méthodes génératives pour les chemins de transition 127

comme

y =

{
1 si p(y|x,x) > 1/2,

0 si p(y|x,x) < 1/2.
(5.9)

Comme dans la Section 5.1.1, le but ici est d’échantillonner la densité de probabilité a pos-
teriori et de calculer des moyennes par rapport à celle-ci. Nous renvoyons à la Section 1.2
pour un aperçu de certaines méthodes d’échantillonnage, et au Chapitre 3 pour une analyse
de l’erreur de minibatching sur la distribution a posteriori à travers l’analyse numérique de la
matrice de covariance de l’estimateur stochastique du gradient et l’utilisation de l’AdL pour
échantillonner la mesure π dans le cadre des réseau de neurones bayésien.

5.2.2 Contributions

Ce travail a débuté à l’université d’Edimbourg lors d’un programme de mobilité doctorale de
deux mois, à travers des interactions avec Ben Leimkuhler et Tiffany Vlaar.

Dans le Chapitre 3, nous abordons l’échantillonnage des distributions a posteriori ans le
cadre de réseaux de neurones Bayésiens. Suite aux résultats du Chapitre 2, nous commençons
par analyser numériquement la matrice de covariance de l’estimateur stochastic du gradient.
Pour cela, nous considérons deux modèles numériques : (i) un modèle de classification jouet ;
(ii) un modèle de données spirales jouet [88]. Les principales conclusions obtenues par les
résultats numériques peuvent être résumées comme suit :

• La moyenne de la matrice de covariance Σx semble être grossièrement isotrope, ce qui
suggère que les versions scalaire, diagonale et matricielle de l’AdL produiront le même
biais sur la mesure invariante ;

• La matrice de covariance est de rang faible, ce qui suggère qu’elle peut être efficacement
approximée de manière peu coûteuse. Cela ouvre la voie à une alternative à l’AdL
matriciel, où au lieu d’apprendre la moyenne de Σx, on apprendrait les premières valeurs
propres de celle-ci, réduisant ainsi le biais sans recourir à une friction matricielle (ce qui
est infaisable dans le cadre des réseaux de neurones).

• La forme particulière de la matrice de covariance associée à la dernière couche suggère
d’utiliser AdL uniquement pour cette dernière. Notez que l’échantillonnage d’uniquement
la dernière couche a déjà été suggéré dans [77].

5.3 Méthodes génératives pour l’échantillonnage de chemins de
transition en dynamique moléculaire

5.3.1 Motivations

Le dernier problème que nous considérons dans ce manuscrit est l’échantillonnage de certaines
trajectoires de dynamiques stochastiques. Considérons une équation différentielle stochastique
donnée par {

dyt = b(t, yt) dt+ σ(t, yt)dWt, (5.10)

avec y0 fixé, où yt ∈ Rd, b : R× Rd → Rd, σ : R× Rd → Rd×d′ et Wt ∈ Rd′ est un processus
de Wiener standard de dimension d′. Sous certaines conditions sur b et σ, on peut prouver
l’existence d’une solution unique de (1.11) (voir par exemple [69, 123]).

Une trajectoire est définie comme étant une réalisation du processus stochastique (yt)06t6T .
Pour certains choix de b et de σ, qui seront explicités d’abord dans la section 1.2.2.2 et avec
plus de détails dans le Chapitre 4, une trajectoire telle que y0 ∈ A ⊂ Rd et yT ∈ B ⊂ Rd peut
être un événement rare, et peut donc être difficile à simuler en pratique. Nous considérons

128 Chapter 5. Résumé de la thèse en français

le cas où σ est constant et b = −∇θV , où V représente une certaine fonction d’énergie po-
tentielle. Dans ce cas, le système a tendance à rester piégé dans certaines régions de l’espace
des phases, à savoir au voisinage des minima locaux de V . Typiquement, A et B seraient les
voisinages de deux minima locaux distincts de V . Le but est alors de simuler efficacement des
trajectoires de transition, définis comme des trajectoires qui, à partir d’une condition initiale
fixe y0 située dans le puits de potentiel initial A, atteignent l’ensemble B avant le temps
T > 0.

Ce problème a attiré beaucoup d’attention et de nombreuses méthodes ont été dévelop-
pées pour échantillonner efficacement les trajectoires de transition. On peut distinguer deux
grandes classes : les techniques d’échantillonnage d’importance [47, 25, 94] et les techniques
de fractionnement [34, 8, 28, 29]. Nous avons appliqué des méthodes génératives issues de
la littérature d’apprentissage automatique pour échantillonner les trajectoires de transition.
Plus de détails sont donnés dans la section 4.1 (avec un résumé des contributions de cette
thèse dans la section 1.4.3).

5.3.2 Contributions

Ce travail a débuté pendant l’école d’été CEMRACS au CIRM. Il est pré-publié dans [92] et
soumit.

Nous considérons la discrétisation de la dynamique de Langevin suramortie dans le con-
texte de la dynamique moléculaire par le schéma Euler–Maruyama. Nous nous plaçons dans
le cas où le potentiel V a de nombreux minima locaux. Un problème principal dans cette
situation est la métastabilité : la trajectoire reste piégée dans des sous-domaines restreints
de l’espace des phases, empêchant un échantillonnage précis. La trajectoires de chemins
de transition est particulièrement intéressante. Prenons par exemple la Figure 5.1 où nous
traçons deux trajectoires typiques en utilisant la discrétisation Euler–Maruyama de la dy-
namique de Langevin suramortie avec une fonction potentielle définie en (4.3) introduite dans
le Chapitre 4. La trajectoire orange n’est pas une trajectoire de transition car elle reste piégée
dans le premier puits A ; alors que la trajectoire rouge passe du puits A au puits B et est donc
une trajectoire de transition. De telles trajectoires sont rares, et d’autant plus rares quand la
dimension est grande.

L’objectif du Chapitre 4 est d’utiliser des modèles génératifs issus de la littérature de
l’apprentissage automatique pour générer des trajectoires de transition. Nous commençons
par considérer des approches génératives basées sur ll’apprentissage à partir de données, à
savoir des autoencodeurs variationnels, d’abord avec un espace latent bi-dimensionnel, qui
s’est avéré trop petit pour rendre compte des fluctuations de la trajectoire entière, conduisant
à des trajectoires trop lisses (qu’elles soient reconstruites ou générées). L’incorporation de
l’aspect temporel dans l’espace latent permet d’obtenir de meilleures trajectoires reconstruites.
Cependant, la génération de nouvelles trajectoires nécessite une modélisation raffinée de la dis-
tribution dans l’espace latent, ce qui conduit à des résultats pas très convaincants. Nous nous
tournons donc vers des approches sans données, en utilisant des techniques d’apprentissage
par renforcement. Cela permet d’apprendre une perturbation sur la force de la dynamique de
Langevin suramortie en maximisant une certaine fonction de récompense, rendant la transi-
tion d’un puits à un autre plus probable. Les résultats sont visuellement plus réalistes qu’avec
les méthodes basées sur les données.

5.3. Méthodes génératives pour les chemins de transition 129

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

−3.271

−3.271

−2.549
−2.5

49

−1
.8

28 −1.828

−1.828

−1.107

−1
.1

07

−0
.38

5

−0.385

−0.385
0.3

36

0.3361.
05

7
1.057

1.779 1.
77

9

1.
77

9
1.779

2.5
00

2.500

3.
22

1 3.221

transition path
non transition path

Figure 5.1 – Trajectoire de transition et trajectoire de non-transition dans le potentiel bidi-
mensionnel donné par (4.3).

BIBLIOGRAPHY

[1] A. Abdulle, D. Cohen, G. Vilmart, and K. C. Zygalakis. High weak order methods for
stochastic differential equations based on modified equations. SIAM J. Sci. Comput.,
34(3):A1800–A1823, 2012.

[2] A. Abdulle, G. Vilmart, and K. C. Zygalakis. High order numerical approximation of
the invariant measure of ergodic SDEs. SIAM J. Numer. Anal., 52(4):1600–1622, 2014.

[3] A. Abdulle, G. Vilmart, and K. C. Zygalakis. Long time accuracy of Lie-Trotter splitting
methods for Langevin dynamics. SIAM J. Numer. Anal., 53(1):1–16, 2015.

[4] S. Ahn, A. Korattikara, and M. Welling. Bayesian posterior sampling via stochastic gra-
dient Fisher scoring. ICML’12, page 1771–1778, Madison, WI, USA, 2012. Omnipress.

[5] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University
Press, Inc., 2nd edition, 2017.

[6] M. Allouche, S. Girard, and E. Gobet. Tail-GAN: Simulation of extreme events with
ReLU neural networks. HAL preprint, 03250663, 2021.

[7] J. An and S. Cho. Variational autoencoder based anomaly detection using reconstruction
probability. Special Lecture on IE, 2(1):1–18, 2015.

[8] D. Aristoff, T. Lelièvre, C. G. Mayne, and I. Teo. Adaptive multilevel splitting in
molecular dynamics simulations. ESAIM: Proceedings and Surveys, 48:215–225, 2015.

[9] J. Baker, P. Fearnhead, E. B. Fox, and C. Nemeth. Control variates for stochastic
gradient MCMC. Stat. Comput., 29(3):599–615, 2019.

[10] D. Bakry, I. Gentil, and M. Ledoux. Analysis and geometry of Markov diffusion opera-
tors. Springer, 2014.

[11] R. Bardenet, A. Doucet, and C. Holmes. Towards scaling up Markov chain Monte Carlo:
an adaptive subsampling approach. In International Conference on Machine Learning
(ICML), Proceedings of the 31st International Conference on Machine Learning (ICML),
pages 405–413, Beijing, China, 2014.

[12] D. P. Bertsekas. Convex optimization algorithms. Athena Scientific, Belmont, MA, 2015.

[13] A. Beskos, N. Pillai, G. Roberts, J. Sanz-Serna, and A. Stuart. Optimal tuning of the
hybrid Monte Carlo algorithm. Bernoulli, 19(5A):1501–1534, 2013.

132 Bibliography

[14] R. N. Bhattacharya. On the functional central limit theorem and the law of the iterated
logarithm for Markov processes. Z. Wahrsch. Verw. Gebiete, 60(2):185–201, 1982.

[15] J. Bierkens, P. Fearnhead, and G. Roberts. The zig-zag process and super-efficient
sampling for Bayesian analysis of big data. Ann. Statist., 47(3):1288–1320, 2019.

[16] C. M. Bishop. Pattern recognition and machine learning. Information Science and
Statistics. Springer, New York, 2006.

[17] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for
statisticians. Journal of the American statistical Association, 112(518):859–877, 2017.

[18] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in
neural network. In International conference on machine learning, pages 1613–1622.
PMLR, 2015.

[19] P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler. Transition path sampling:
Throwing ropes over rough mountain passes, in the dark. Annual Review of Physical
Chemistry, 53(1):291–318, 2002.

[20] S. Bond-Taylor, A. Leach, Y. Long, and C. G Willcocks. Deep generative modelling: A
comparative review of VAEs, GANs, normalizing flows, energy-based and autoregressive
models. arXiv preprint, 2103.04922, 2021.

[21] D. Bone, M. S. Goodwin, M. P. Black, C. C. Lee, K. Audhkhasi, and S. Narayanan. Ap-
plying machine learning to facilitate autism diagnostics: pitfalls and promises. Journal
of autism and developmental disorders, 45(5):1121–1136, 2015.

[22] N. Bou-Rabee and H. Owhadi. Long-run accuracy of variational integrators in the
stochastic context. SIAM J. Numer. Anal., 48(1):278–297, 2010.

[23] S. Brooks, A. Gelman, G. Jones, and X. L. Meng. Handbook of Markov Chain Monte
Carlo. Chapman & Hall/CRC Handbooks of Modern Statistical Methods. CRC Press,
2011.

[24] N. Brosse, A. Durmus, and E. Moulines. The promises and pitfalls of stochastic gradient
Langevin dynamics. Advances in Neural Information Processing Systems, 31, 2018.

[25] J. A. Bucklew. Introduction to Rare Event Simulation. Springer Series in Statistics.
Springer-Verlag, New York, 2004.

[26] E. Cancès, F. Legoll, and G. Stoltz. Theoretical and numerical comparison of some sam-
pling methods for molecular dynamics. ESAIM: Mathematical Modelling and Numerical
Analysis, 41(2):351–389, 2007.

[27] R. Caruana, S. Lawrence, and C. Giles. Overfitting in neural nets: Backpropagation,
conjugate gradient, and early stopping. In T. Leen, T. Dietterich, and V. Tresp, editors,
Advances in Neural Information Processing Systems, volume 13. MIT Press, 2000.

[28] F. Cérou, A. Guyader, T. Lelièvre, and D. Pommier. A multiple replica approach to
simulate reactive trajectories. J. Chem. Phys., 134(5):054108, 2011.

[29] F. Cérou, A. Guyader, and M. Rousset. Adaptive Multilevel Splitting: Historical per-
spective and recent results. Chaos: An Interdisciplinary Journal of Nonlinear Science,
29(4):043108, 2019.

Bibliography 133

[30] P. Chaudhari and S. Soatto. Stochastic gradient descent performs variational inference
converges to limit cycles for deep networks. In International Conference on Learning
Representations, pages 1–10, 2018.

[31] T. Chen, E. Fox, and C. Guestrin. Stochastic Gradient Hamiltonian Monte Carlo. In
E. P. Xing and T. Jebara, editors, Proceedings of the 31st International Conference
on Machine Learning, volume 32 of Proceedings of Machine Learning Research, pages
1683–1691, Bejing, China, 22–24 Jun 2014. PMLR.

[32] L. Chizat and F. Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. Advances in neural information pro-
cessing systems, 31, 2018.

[33] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio. A recur-
rent latent variable model for sequential data. In C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems, volume 28. Curran Associates, Inc., 2015.

[34] F. Cérou and A. Guyader. Adaptive Multilevel Splitting for rare event analysis. Stochas-
tic Analysis and Applications, 25(2):417–443, 2007.

[35] A. S. Dalalyan and L. Riou-Durand. On sampling from a log-concave density using
kinetic Langevin diffusions. Bernoulli, 26(3):1956–1988, 2020.

[36] A. Das, D. C. Rose, J. P. Garrahan, and D. T. Limmer. Reinforcement learning of rare
diffusive dynamics. J. Chem. Phys., 155:134105, 2021.

[37] A. Debussche and E. Faou. Weak backward error analysis for SDEs. SIAM J. Numer.
Anal., 50(3):1735–1752, 2012.

[38] A. Dieuleveut, A. Durmus, and F. Bach. Bridging the gap between constant step size
stochastic gradient descent and Markov chains. The Annals of Statistics, 48(3):1348–
1382, 2020.

[39] N. Ding, Y. Fang, R. Babbush, C. Chen, R. D. Skeel, and H. Neven. Bayesian sampling
using stochastic gradient thermostats. In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 27, pages 3203–3211. Curran Associates, Inc., 2014.

[40] N. Dionelis, M. Yaghoobi, and S. A. Tsaftaris. Tail of distribution GAN (tailGAN):
Generative Adversarial-Network-based boundary formation. In 2020 Sensor Signal Pro-
cessing for Defence Conference (SSPD), pages 1–5. IEEE, 2020.

[41] J. Dolbeault, C. Mouhot, and C. Schmeiser. Hypocoercivity for kinetic equations with
linear relaxation terms. C. R. Math. Acad. Sci. Paris, 347(9-10):511–516, 2009.

[42] J. Dolbeault, C. Mouhot, and C. Schmeiser. Hypocoercivity for linear kinetic equations
conserving mass. Trans. Amer. Math. Soc., 367(6):3807–3828, 2015.

[43] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo. Phys.
Lett. B, 195(2):216–222, 1987.

[44] A. Durmus, A. Enfroy, E. Moulines, and G. Stoltz. Uniform minorization condition and
convergence bounds for discretizations of kinetic Langevin dynamics. arXiv preprint,
2107.14542, 2021.

134 Bibliography

[45] A. Durmus, E. Moulines, and E. Saksman. On the convergence of Hamiltonian Monte
Carlo. arXiv preprint, 1705.00166, 2017.

[46] A. Durmus, U. Simsekli, E. Moulines, R. Badeau, and G. Richard. Stochastic gradient
Richardson–Romberg Markov chain Monte Carlo. In D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 29. Curran Associates, Inc., 2016.

[47] W. H. Fleming. Exit probabilities and optimal stochastic control. Appl. Math. Optim.,
4(4):329–346, 1977/78.

[48] D. Frenkel and B. Smit. Understanding Molecular Simulation: From Algorithms to
Applications. Academic Press, 2002.

[49] A. Friedman. Stochastic differential equations and applications. Volume 1. Academic
Press, 1975.

[50] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in
actor-critic methods. In J. Dy and A. Krause, editors, Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 1587–1596. PMLR, 10–15 Jul 2018.

[51] Y. Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.

[52] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on pattern analysis and machine intelligence,
(6):721–741, 1984.

[53] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems 27, pages 2672–2680. Curran Associates, Inc., 2014.

[54] M. Gürbüzbalaban, X. Gao, Y. Hu, and L. Zhu. Decentralized stochastic gradient
Langevin dynamics and Hamiltonian Monte Carlo. Journal of Machine Learning Re-
search, 22(239):1–69, 2021.

[55] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration: Structure-
Preserving Algorithms for Ordinary Differential Equations, volume 31 of Springer Series
in Computational Mathematics. Springer-Verlag, 2006.

[56] C. Hartmann, R. Banisch, M. Sarich, T. Badowski, and C. Schütte. Characterization
of rare events in molecular dynamics. Entropy, 16(1):350–376, 2014.

[57] C. Hartmann and C. Schütte. Efficient rare event simulation by optimal nonequilibrium
forcing. Journal of Statistical Mechanics: Theory and Experiment, 2012(11):P11004,
2012.

[58] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their appli-
cations. Biometrika, 57:97–109, 1970.

[59] F. Heber, Z. Trstanova, and B. Leimkuhler. Tati-thermodynamic analytics toolkit:
Tensorflow-based software for posterior sampling in machine learning applications. arXiv
preprint arXiv:1903.08640, 2019.

Bibliography 135

[60] M. Hein, M. Andriushchenko, and J. Bitterwolf. Why ReLU networks yield high-
confidence predictions far away from the training data and how to mitigate the problem.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 41–50, 2019.

[61] F. Hérau. Hypocoercivity and exponential time decay for the linear inhomogeneous
relaxation Boltzmann equation. Asymptot. Anal., 46(3-4):349–359, 2006.

[62] G. E. Hinton. Learning translation invariant recognition in a massively parallel networks.
In International Conference on Parallel Architectures and Languages Europe, pages 1–
13. Springer, 1987.

[63] W. G. Hoover. Canonical dynamics - Equilibrium phase-space distributions. Phys. Rev.
A, 31(3):1695–1697, 1985.

[64] P. Izmailov, S. Vikram, M. D. Hoffman, and A. G. Wilson. What are Bayesian neural
network posteriors really like? In Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages
4629–4640. PMLR, 2021.

[65] A. Jones and B. Leimkuhler. Adaptive stochastic methods for sampling driven molecular
systems. J. Chem. Phys., 135(8):084125, 2011.

[66] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to
variational methods for graphical models. Machine learning, 37(2):183–233, 1999.

[67] L. V. Jospin, H. Laga, F. Boussaid, W. Buntine, and M. Bennamoun. Hands-on Bayesian
neural networks - A tutorial for deep learning users. IEEE Computational Intelligence
Magazine, 17(2):29–48, 2022.

[68] K. Kawaguchi. Deep learning without poor local minima. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 29. Curran Associates, Inc., 2016.

[69] R. Khasminskii. Stochastic Stability of Differential Equations, volume 66 of Stochastic
Modelling and Applied Probability. Springer, Heidelberg, second edition, 2012.

[70] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 12 2014.

[71] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings, 2014.

[72] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, and et al. Overcoming catastrophic forget-
ting in neural networks. Proc. Natl. Acad. Sci. USA, 114(13):3521–3526, 2017.

[73] W. Kliemann. Recurrence and invariant measures for degenerate diffusions. Ann.
Probab., 15(2):690–707, 1987.

[74] P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations,
volume 23 of Applications of Mathematics (New York). Springer-Verlag, Berlin, 1992.

[75] A. Korattikara, Y. Chen, and M. Welling. Austerity in MCMC land: Cutting the
Metropolis–Hastings budget. In E. P. Xing and T. Jebara, editors, Proceedings of the
31st International Conference on Machine Learning, volume 32 of Proceedings of Ma-
chine Learning Research, pages 181–189, Bejing, China, 22–24 Jun 2014. PMLR.

136 Bibliography

[76] A. Korattikara, V. Rathod, K. P. Murphy, and M. Welling. Bayesian dark knowledge.
Advances in Neural Information Processing Systems, 28, 2015.

[77] A. Kristiadi, M. Hein, and P. Hennig. Being Bayesian, even just a bit, fixes over-
confidence in ReLU networks. In International conference on machine learning, pages
5436–5446. PMLR, 2020.

[78] A. Krogh and J. Hertz. A simple weight decay can improve generalization. Advances
in Neural Information Processing Systems, 4, 1991.

[79] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing
systems, 30, 2017.

[80] N. Laptev. AnoGen: Deep anomaly generator, 2018. https://research.facebook.
com/file/969101687155819/AnoGen-Deep-Anomaly-Generator.pdf.

[81] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural
Computation, 1(4):541–551, 1989.

[82] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[83] F. Legoll, M. Luskin, and R. Moeckel. Non-ergodicity of the Nosé-Hoover thermostatted
harmonic oscillator. Arch. Ration. Mech. Anal., 184(3):449–463, 2007.

[84] E. L. Lehmann and G. Casella. Theory of Point Estimation. Springer Texts in Statistics.
Springer-Verlag, New York, second edition, 1998.

[85] B. Leimkuhler and C. Matthews. Rational construction of stochastic numerical methods
for molecular sampling. Appl. Math. Res. Express, pages 34–56, 2013.

[86] B. Leimkuhler and C. Matthews. Molecular Dynamics: With Deterministic and Stochas-
tic Numerical Methods. Interdisciplinary Applied Mathematics. Springer, 2015.

[87] B. Leimkuhler, C. Matthews, and G. Stoltz. The computation of averages from equi-
librium and nonequilibrium Langevin molecular dynamics. IMA J. Numer. Anal.,
36(1):13–79, 2016.

[88] B. Leimkuhler, C. Matthews, and T. Vlaar. Partitioned integrators for thermodynamic
parameterization of neural networks. Foundations of Data Science, 1(4):457–489, 2019.

[89] B. Leimkuhler and S. Reich. Simulating Hamiltonian Dynamics. Cambridge University
Press, 2004.

[90] B. Leimkuhler, M. Sachs, and G. Stoltz. Hypocoercivity properties of adaptive Langevin
dynamics. SIAM J. Appl. Math., 80(3):1197–1222, 2020.

[91] B. Leimkuhler and X. Shang. Adaptive thermostats for noisy gradient systems. SIAM
J. Sci. Comput., 38(2):A712–A736, 2016.

[92] T. Lelièvre, G. Robin, I. Sekkat, G. Stoltz, and G. Victorino Cardoso. Genera-
tive methods for sampling transition paths in molecular dynamics. arXiv preprint
arXiv:2205.02818, 2022.

[93] T. Lelièvre, M. Rousset, and G. Stoltz. Free Energy Computations: A Mathematical
Perspective. Imperial College Press, 2010.

https://research.facebook.com/file/969101687155819/AnoGen-Deep-Anomaly-Generator.pdf
https://research.facebook.com/file/969101687155819/AnoGen-Deep-Anomaly-Generator.pdf

Bibliography 137

[94] T. Lelièvre and G. Stoltz. Partial differential equations and stochastic methods in
molecular dynamics. Acta Numerica, 25:681–880, 2016.

[95] C. Li, C. Chen, D. Carlson, and L. Carin. Preconditioned stochastic gradient Langevin
dynamics for deep neural networks. In Thirtieth AAAI Conference on Artificial Intelli-
gence, 2016.

[96] S. Livingstone, M. Betancourt, S. Byrne, and M. Girolami. On the geometric ergodicity
of Hamiltonian Monte Carlo. Bernoulli, 25(4A):3109–3138, 2019.

[97] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. International
Conference on Learning Representations, 2019.

[98] Y-A. Ma, T. Chen, and E. Fox. A complete recipe for Stochastic Gradient MCMC. In
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

[99] Y-A. Ma, Y. Chen, C. Jin, N. Flammarion, and M. I. Jordan. Sampling can be faster
than optimization. Proceedings of the National Academy of Sciences, 116(42):20881–
20885, 2019.

[100] C. Matthews and J. Weare. Langevin Markov Chain Monte Carlo with stochastic
gradients. arXiv preprint, 1805.08863, 2018.

[101] J. C. Mattingly, A. M. Stuart, and D. J. Higham. Ergodicity for SDEs and approxi-
mations: locally Lipschitz vector fields and degenerate noise. Stochastic Process. Appl.,
101(2):185–232, 2002.

[102] J. C. Mattingly, A. M. Stuart, and M. V. Tretyakov. Convergence of numerical time-
averaging and stationary measures via Poisson equations. SIAM Journal on Numerical
Analysis, 48(2):552–577, 2010.

[103] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equa-
tions of state calculations by fast computing machines. J. Chem. Phys., 21(6):1087–1091,
1953.

[104] N. Metropolis, A.W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equa-
tion of state calculations by fast computing machines. J. Chem. Phys., 21(6):1087–1092,
1953.

[105] P. Metzner, C. Schütte, and E. Vanden-Eijnden. Transition path theory for Markov
jump processes. Multiscale Modeling & Simulation, 7(3):1192–1219, 2009.

[106] S. Meyn and R. Tweedie. Markov Chains and Stochastic Stability. Springer-Verlag,
1993.

[107] G. N. Milstein and M. V. Tretyakov. Stochastic Numerics for Mathematical Physics.
Scientific Computation. Springer Berlin Heidelberg, 2013.

[108] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing Atari with deep reinforcement learning. arXiv preprint,
1312.5602, 2013.

[109] W. Mou, Y.-A. Ma, M. J. Wainwright, P. L. Bartlett, and M. I. Jordan. High-order
Langevin diffusion yields an accelerated MCMC algorithm. Journal of Machine Learning
Research, 22(42):1–41, 2021.

138 Bibliography

[110] T. Nagapetyan, A. Duncan, L. Hasenclever, S. Vollmer, L. Szpruch, and K. Zygalakis.
The true cost of Stochastic Gradient Langevin Dynamics. arXiv preprint, 1706.02692,
2017.

[111] R. M. Neal. Bayesian Learning for Neural Networks, volume 118. Springer Science &
Business Media, 2012.

[112] S. Nosé. A unified formulation of the constant temperature molecular-dynamics meth-
ods. J. Chem. Phys., 81(1):511–519, 1984.

[113] Roberts G. O. and Tweedie R. L. Exponential convergence of Langevin distributions
and their discrete approximations. Bernoulli, 2(4):341 – 363, 1996.

[114] B. Oksendal. Stochastic Differential Equations: an Introduction with Applications.
Springer Science & Business Media, 2013.

[115] J. Paisley, D. Blei, and M. Jordan. Variational Bayesian inference with stochastic search.
Proceedings of the 29th International Conference on Machine Learning, ICML 2012, 2,
06 2012.

[116] A. Pakman, D. Gilboa, D. Carlson, and L. Paninski. Stochastic bouncy particle sampler.
In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages
2741–2750. PMLR, 2017.

[117] S. Park, M.K. Sener, D. Lu, and K. Schulten. Reaction paths based on mean first-
passage times. J. Chem. Phys., 119(3):1313–1319, 2003.

[118] G. A. Pavliotis. Stochastic Processes and Applications: Diffusion Processes, the Fokker-
Planck and Langevin Equations. Texts in Applied Mathematics. Springer New York,
2014.

[119] P. H. Peskun. Optimum Monte-Carlo sampling using Markov Chains. Biometrika,
60(3):607–612, 1973.

[120] S. Pesme, L. Pillaud-Vivien, and N. Flammarion. Implicit bias of SGD for diagonal
linear networks: a provable benefit of stochasticity. Advances in Neural Information
Processing Systems, 34, 2021.

[121] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, 2014.

[122] M. Quiroz, R. Kohn, M. Villani, and M. Tran. Speeding up MCMC by efficient data
subsampling. J. Amer. Statist. Assoc., 114(526):831–843, 2019.

[123] L. Rey-Bellet. Ergodic properties of Markov processes. In Open quantum systems. II,
volume 1881 of Lecture Notes in Math., pages 1–39. Springer, Berlin, 2006.

[124] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and ap-
proximate inference in deep generative models. In E.P. Xing and T. Jebara, editors,
Proceedings of the 31st International Conference on Machine Learning, volume 32 of
Proceedings of Machine Learning Research, pages 1278–1286, Bejing, China, 22–24 Jun
2014. PMLR.

[125] H. Ritter, A. Botev, and D. Barber. A scalable laplace approximation for neural
networks. In 6th International Conference on Learning Representations, ICLR 2018-
Conference Track Proceedings, volume 6. International Conference on Representation
Learning, 2018.

Bibliography 139

[126] H. Robbins and S. Monro. A stochastic approximation method. Ann. Math. Statistics,
22:400–407, 1951.

[127] C. P. Robert. The Bayesian choice. Springer Texts in Statistics. Springer, New York,
second edition, 2007. From decision-theoretic foundations to computational implemen-
tation.

[128] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer Texts in
Statistics. Springer-Verlag, New York, second edition, 2004.

[129] G. O. Roberts and J. S. Rosenthal. Optimal scaling of discrete approximations to
Langevin diffusions. J. R. Stat. Soc. Ser. B Stat. Methodol., 60(1):255–268, 1998.

[130] G. O. Roberts and J. S. Rosenthal. Optimal scaling for various Metropolis-Hastings
algorithms. Statist. Sci., 16(4):351–367, 2001.

[131] G. O. Roberts and R. L. Tweedie. Exponential convergence of Langevin distributions
and their discrete approximations. Bernoulli, 2(4):341–363, 1996.

[132] P. J. Rossky, J. D. Doll, and H. L. Friedman. Brownian dynamics as smart Monte Carlo
simulation. J. Chem. Phys., 69(10):4628–4633, 1978.

[133] G. M. Rotskoff and E. Vanden-Eijnden. Learning with rare data: using active im-
portance sampling to optimize objectives dominated by rare events. arXiv preprint,
2008.06334, 2020.

[134] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations
by error propagation. Technical report, California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

[135] T. Salimans, D. Kingma, and M. Welling. Markov Chain Monte Carlo and variational
inference: Bridging the gap. In International Conference on Machine Learning, pages
1218–1226. PMLR, 2015.

[136] C. Schütte, S. Winkelmann, and C. Hartmann. Optimal control of molecular dynamics
using Markov state models. Mathematical Programming, 134(1):259–282, 2012.

[137] I. Sekkat and G. Stoltz. Removing the mini-batching error in Bayesian inference using
Adaptive Langevin dynamics. arXiv preprint arXiv:2105.10347, 2021.

[138] X. Shang, Z. Zhu, B. Leimkuhler, and A. J. Storkey. Covariance-controlled adaptive
Langevin thermostat for large-scale Bayesian sampling. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 28, pages 37–45. Curran Associates, Inc., 2015.

[139] T. Shardlow. Modified equations for stochastic differential equations. BIT Numerical
Mathematics, 46(1):111–125, 2006.

[140] D. Silver, T. Hubert, J. Schrittwieser, and et al. A general reinforcement learning
algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419):1140–
1144, 2018.

[141] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

[142] G. Stoltz. Path sampling with stochastic dynamics: some new algorithms. J. Comput.
Phys., 225:491–508, 2007.

140 Bibliography

[143] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT press,
2018.

[144] D. Talay. Second-order discretization schemes of stochastic differential systems for the
computation of the invariant law. Stochastics and Stochastic Reports, 29(1):13–36, 1990.

[145] D. Talay. Stochastic Hamiltonian dissipative systems: Exponential convergence to the
invariant measure, and discretization by the implicit Euler scheme. Markov Proc. Rel.
Fields, 8:163–198, 2002.

[146] D. Talay and L. Tubaro. Expansion of the global error for numerical schemes solving
stochastic differential equations. Stochastic Anal. Appl., 8(4):483–509, 1990.

[147] Y. W. Teh, A. H. Thiery, and S. J. Vollmer. Consistency and fluctuations for stochastic
gradient Langevin dynamics. Journal of Machine Learning Research, 17:Paper No. 7,
33, 2016.

[148] M. Tuckerman. Statistical Mechanics: Theory and Molecular Simulation. Oxford Uni-
versity Press, 2010.

[149] A. van den Oord, O. Vinyals, and K. Kavukcuoglu. Neural discrete representation learn-
ing. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

[150] A. W. van der Vaart. Asymptotic Statistics, volume 3 of Cambridge Series in Statistical
and Probabilistic Mathematics. Cambridge University Press, Cambridge, 1998.

[151] Y. B. Varolgüneş, T. Bereau, and J. F. Rudzinski. Interpretable embeddings from molec-
ular simulations using Gaussian mixture variational autoencoders. Machine Learning:
Science and Technology, 1(1):015012, 2020.

[152] L. Verlet. Computer "experiments" on classical fluids. i. thermodynamical properties
of Lennard-Jones molecules. Physical review, 159(1):98, 1967.

[153] T. Vlaar and B. Leimkuhler. Multirate Training of Neural Networks. arXiv preprint
arXiv:2106.10771, 2021.

[154] S. J. Vollmer, K. C. Zygalakis, and Y. W. Teh. Exploration of the (non-)asymptotic bias
and variance of stochastic gradient Langevin dynamics. Journal of Machine Learning
Research, 17:Paper No. 159, 2016.

[155] H. Wang and D.-Y. Yeung. A survey on Bayesian deep learning. ACM Comput. Surv.,
53(5), 2020.

[156] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3):279–292, 1992.

[157] M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient Langevin dynamics.
In Proceedings of the 28th International Conference on International Conference on
Machine Learning, ICML’11, pages 681–688, USA, 2011. Omnipress.

[158] Y. Wen, P. Vicol, J. Ba, D. Tran, and R. Grosse. Flipout: Efficient pseudo-independent
weight perturbations on mini-batches. arXiv preprint arXiv:1803.04386, 2018.

[159] P. J. Werbos. Generalization of backpropagation with application to a recurrent gas
market model. Neural networks, 1(4):339–356, 1988.

Bibliography 141

[160] J. Yan, H. Touchette, and G. M. Rotskoff. Learning nonequilibrium control forces to
characterize dynamical phase transitions. Phys. Rev. E, 105:024115, 2022.

[161] W. Zeng, S. Cao, X. Huang, and Y. Yao. A note on learning rare events in molecular
dynamics using LSTM and transformer. arXiv preprint, 2107.06573, 2021.

[162] Z. Zhu, J. Wu, B. Yu, L. Wu, and J. Ma. The anisotropic noise in stochastic gradi-
ent descent: Its behavior of escaping from sharp minima and regularization effects. In
K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 7654–7663. PMLR, 2019.

[163] K. C. Zygalakis. On the existence and the applications of modified equations for stochas-
tic differential equations. SIAM J. Sci. Comput., 33(1):102–130, 2011.

	Introduction
	Motivating sampling problems
	General presentation of Bayesian inference problems
	Bayesian neural networks
	Sampling rare events: transition paths

	Review of some sampling techniques
	Metropolis–Hastings algorithms
	Stochastic differential equations
	Some elements on stochastic differential equations
	Overdamped Langevin dynamics
	Langevin dynamics
	Adaptive Langevin dynamics

	Other algorithms

	Sampling methods in the large data context
	Methods based on estimators of the log-likelihood gradient
	Minibatching
	Minibatching error for stochastic differential equations

	Metropolis–Hastings based algorithms for large data sets

	Contributions
	Removing the mini-batching error in Bayesian inference using Adaptive Langevin dynamics
	Bayesian neural networks
	Generative methods for sampling transition paths in molecular dynamics

	Removing the mini-batching error with AdL
	Introduction
	Stochastic gradient Markov Chain Monte Carlo
	Some elements on error analysis for discretizations of SDEs
	Mini-Batching procedure
	Stochastic Gradient Langevin Dynamics
	Description of the method
	Effective SGLD

	Langevin dynamics with mini-batching
	Standard Langevin dynamics
	Error estimates for Langevin dynamics with mini-batching
	Effective dynamics for Langevin dynamics with mini-batching

	Numerical illustration
	Gaussian posterior
	Mixture of Gaussians

	Adaptive Langevin dynamics
	General formulation of Adaptive Langevin dynamics
	Adaptive Langevin dynamics for gradient estimators with constant covariance
	Invariant probability measure of AdL
	Numerical scheme
	Numerical illustration for Gaussian likelihoods

	Impact of a non constant covariance matrix
	Mini-batching bias for Adaptive Langevin dynamics and non constant covariance
	Mixture of Gaussians

	Extended Adaptive Langevin Dynamics
	Presentation of the dynamics
	Numerical scheme and estimates on the bias
	Choice the basis functions

	Numerical illustrations
	One dimensional toy model
	Mixture of Gaussians
	Logistic regression

	Discussion and perspectives
	Appendices
	Proof of some technical estimates
	Proof of (2.18)
	Proof of (2.28), (2.29) and (2.30)
	Proof of (2.55)

	Unbiasedness of the mean for Langevin dynamics with mini-batching and Gaussian posterior

	Minibatching error for Bayesian Neural Networks
	Introduction
	Presentation of the models
	Mathematical framework
	Numerical toy models
	Neural network architectures

	Analysis of the covariance matrix
	Adaptive Langevin for neural networks
	Numerical results

	Sampling of the posterior distribution
	Perspectives

	Generative methods for transition paths
	Introduction
	Sampling transition paths of metastable processes
	Generating transition paths with Variational AutoEncoders
	Presentation of Variational AutoEncoders
	Convolutional neural networks
	Data set for training
	"Naive" Variational AutoEncoders to generate transition paths
	VAEs with larger embedding space

	Generating transition paths with reinforcement learning
	Overview of reinforcement learning
	Application to sampling transition paths
	Numerical results

	Discussion and perspectives
	Appendices
	Architecture of CNN-A used in Section 4.3
	Architecture of the neural networks used for TD3 algorithm
	Parameters for the TD3 algorithm

	Résumé de la thèse en français
	Réduction systématique de l'erreur de minibatching dans l'inférence Bayésienne à l'aide de la dynamique de Langevin adaptative
	Motivation pour l'inférence Bayésienne
	Contributions

	Réseaux de neurones Bayésiens
	Motivations pour les réseaux de neurones Bayésien
	Contributions

	Méthodes génératives pour les chemins de transition
	Motivations
	Contributions

