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Abstract

Information measured by lidar depends on the observed vegetation and the acquisition geometry, which
is a function of the acquisition parameters and the terrain properties. The thesis aims to understand the
relationship between lidar acquisition geometnd dorest attribute predictions, focusing on the
assessment and management of impacts of lidar scan angle on lidar metrics and ABA models. Four
different forest types were studied with three forest types (broadleaf, coniferous and mixed) in
mountainous teain and one forest type (riparian) in relatively flat terrain. The thesis was divided into
three parts. The first part assessed the effect of lidar scan angle on lidar metrics commonly used in ABA
predictions. It was observed that different lidar metbiebave differently under changing scan angles.
Subsequently, the effect of including metrics with different sensitivities to scan angle was investigated
in the second part of the study. A model involving a set of predefined metrics with different d&rssitivi

to scan angle was used. Existing lidar datasets were resampled based on the flight lines 1) to simulate
lidar acquisitions with different scan geometries, 2) to build models for a set of scan patterns and 3) to
further compare the quality of estimat# resulting from each scan pattern. These comparisons
highlighted that introducing metrics sensitive to scan angle led to a decrease in model robustness. Also,
the variation in the accuracy of ABA models was found to be higher for datasets consistirgf of p
clouds scanned from only one flight line as opposed to those consisting of point clouds scanned from
multiple flight lines. The normalisation of lidar metrics sensitive to scan angle was also attempted using
voxelisation. Voxebased metrics contribed by increasing either the precision or the accuracy, or both.

In the last part of the study, the terrain properties and acquisition parameters were considered explicitly.
As the interaction between lidar acquisition parameters, terrain, and vegetatjpmrtips can be
complex, neural networks were used to model the relationships between various lidar metrics and the

acquisition geometry, resulting in significantly better ABA predictions

Keywords: lidar, forest, scan angleoxelisation, neural networksustainable management



Résume

/ITLQIRUPDWLRQ PHVXUpH SDU /LGDU DpURSRUWpP GpSHQG GH OI
l'acquisition lidar, ellenéme fonction des paramétres d'acquisition et des propriétés du t€etie.

thése vise & comprendre la relation entre la géométrie d'acquisition du lidar et les prédictions d'attributs
forestiers en se focalisant sur I'évaluation et la gestion des impacts de l'angle de balayage du lidar sur

les métriques lidar et les modeleSRQVWUXLWY j OfpFKHOOH GX SHXSOHPHQW
ABA). Quatre types de foréts différents ont été étudiés, dont trois types de foréts (feuillus, coniféres et
mixtes) en terrain montagneux et un type de forét (ripisylve) en terrairveshaint plat. La thése est

divisée en trois parties. La premiére partie évalue l'effet de l'angle de balayage du lidar sur les mesures
lidar couramment utilisées dans les prédictions de type ABA. On a ainsi montré que les différentes
métriques lidar ne sompias impactées de la méme fagon par des changements d'angle de balayage. La
GHX[LgPH SDUWLH GH O pWXGH VILQWpPpUHVVH DX[ FRQVpTXHQFH
dans ces modéles de métriques lidar présentant des sensibilités différeamigteade balayagéin

modéle basé sur un jeu de métriques Lidar prédéfinies, plus ou moins sensibles auwteabalayage,

estutilisé.

Les jeux de données lidar existants sortaiéantillonnés selon les lignes de vol pour 1) simuler des
acquisitiondidar avec différentes configurations de balayage, 2) construire des modéles pour une série

de configurations de balayage différentes, et 3) comparer la qualité des estimations qui résultent de
FKDTXH FRQILJXUDWCd Qongp&irBisonsX myhtrgibR OTLQWURGXFWLRQ GH
VHQVLEOHV j OfYDQJOH GH EDOD\DJH D@ plBd, Q ¥aHatorDddJRpESSISIMW HV V H G
GHV PRGqQOHV $%$ VIHVW UpYpOpH rWUH SOXV pOHYpH SRXU OHV
acquis depuis ungeule ligne de vol que pour ceux composés de nuages de points obtenus en combinant

les mesures de plusieurs lignes de vol.

Nous avons aussi tenté de normaliser les métriques lidar en utilisant des méthodes de voxellisation pour
limiter les impacts des€ DQJHPHQWV G Y D Qué©OrhEliqGed issue©des Bohhkes voxellisées
contribuent a augmenter la précision des prédictions ou a augmenter leur justesse, ou, dans certains cas,
les deux en méme temps. Dans la derniére partie de I'étude, les gsofiétrrain (topographie) et les
parameétres d'acquisition sont explicitement pris en compte dans les modeéles. Comme les interactions
entre les parameétres d'acquisition lidar, le terrain et les propriétés de la végétation peuvent étre
complexes, un réseae neurone (perceptron multicouche) est utilisé pour modéliser les relations entre

les attributs forestiers et les métriques lidar en tenant compte de ces interactions entre métriques lidar et

géométrie d'acquisition. Cela a permis d'améliorer signifieatent les prédictions ABA.

Mots clés lidar, forét, angle de scawoxellisation réseau de neuronagestion durable
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ABA: Area-based Approach

ALS: Airborne Laser Scanning
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Résumé long en Francais

Développement du potentiel duLidar aéroporté pour la gestion durable des foréts prise en
FRPSWH HW JHVWLRQ GHV HIIHWV GH OfDQJOH GH EDODaDJH VXU
de modéles surfaciques (ABA)

Contexte et objectifs de la these

Contexte

Nos vies quotidiennesont étroitement liées muécosysteme foresties, de par les nombreuses
ressourcegue nous entirons WHOOHYV TXH OH SDSLHU OH EhRW¥, e9HEHUJLH
permettent la subsistance de plus d'un milliard de personnes damglle @hte maintien de nombreuses
populations autochtones (Bernier et Schoene, 2009). Les foréts abritent égalergnatndeliversité
GeBpecesvégétales et animales. Cette biodiverstt essentiellea la préservatiordes équilibres

écologiques et doit étre préservée tout en assurant le maintien des fonctions économiques et sociales de

la forét(FAO, 2020). Dans le contexte du changement climatique, les fmssituentGfLPSRUWD QW \
puits de carbon@aturels indispensadd a la réduction des émissions de gaz a effet de &Hee

contribuent égalementa lutter contre le réchauffement climatique grace au refroidissement par
évaporation (Bonan, 2008). Parallelement, les foréts sont constamment menacéesppessuns

d T R UL ahtQrépique (déforestation, fragmentah et pollution) et climatigue(changements
phénologiques, déplacements d'aires de répartépinpdesie dépérissement, infestations d'insectes)

ou une combinaison des deusLVSDULWLRQ G fircerlies; ehdnde@enk Déddriposition

des peuplements e6H SURGXFWLYLWp SULPDLUH QHWWH FKDQJHPHQW)\
$ X MR X U 6sfEkosysténas forestiemibissent constamment dpsrturbationset il est devenu

primordial de les géreavec la volonté denaintenir cet équilibre fragile entre les facteurs soeio
économiques et écologiques (Kuuluvainen et al., 2021 ; Lazdinis et al., 2019 ; MacDicken et al., 2015 ;
3UY OLH

Historiquement, la gestion des foréts était principalémmativée et guidéepar un objectif de

production de bois et d'autres ressources naturelles (Gadow et al., 2000). Autour des années 1990, la
biodiversité est devenue une composante essentielle de la gestion forestiere (ONUW, dc®&ption
auximpactsdu changement climatique sur les écosystémes forestegrara a ellepris une importance
considérable au XXle siécle (Bernier et Schoene, 2009 ; Jandl et al., 2019 ; Spittlehouse et Stewart,
2003).$YHF OfDFFURLVVHPHQW FRQVWDQW GH OD SRSXODWLRQ KXI
gérés dans une perspective a long teida@ns un contexte de changement climatida@réservation
desforétsHW GHV VHUYLFHV pFRV\\éMhégcekshtetde\guitet'§laboraibnvisplanR F X U

de gestion pales derniéres connaissancasentifiques(Bergeron et al., 2004 ; Seidl et al., 2011 ;

TorresRoo et al.,, 2016 ; Willamsonet Edwards, 2014). Ainsiune information actualisée en
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permaence HVW DX F°XU GH OD JHVWh&garti€ deedebddrimatidth \pelRatre W V
collectéepar le biais d'inventaires forestigéalisés a plusieurs échellgangas et Maltamo, 2006).

Différents pays disposent de programmes d'inventairestferenational (IFN) pour quantifier les
ressources forestiéres et élaborer des politiques de gestion forestiére adaptées (Barrett et al., 2016 ; Bohn
et Huth, 2017 ; Breidenbach et Astrup,12 ; McRoberts et Tomppo, 2Q¥ilsson et al., 2017).

Traditiomellement, l'inventaire forestier implique l'identification des espédagpeise danesuresur

les arbres individuels powstiner des attributsau niveau des peuplemeritgestiers Ces attributs
comprennenta hauteudominantedes arbres (m), la heaur moyenne (m), la surfaterriere(mz2 hat),

la densité des tigesgmbre daigesparha), le volume total brut (hha?), la biomasse aérienne totale
(Kg hal) (McRoberts et Tomppo, 2007 .es relevés sont parfois complétés par des informations
concernant la végétation arbustive et herbatéecollecte de mesuresur leterrain est longueet
colteuse, et est donc effectuéelsuéchantillorde placettesont la surface reste limitég/piquement

GH OTRUGUH GH j P 0 Cét @chaRtillon\esivepiéseptakip des foréts de la zone
inventoriée Les informations sorgensuiteH{ WUDSROpHYVY j O HQVHPEOH GH OD ]RQH
des estimations des différents attribfdasestiers, du niveau local au niveau national (McRoberts et
Tomppo, 2007 ; White et al., 2017).

La télédéteciooDpURSRUWpH HW VSDWLDOH SHUPHW GIDFTXpULU GHV
surfaces diacilite la mise a I'échelle des inventaifesestiergpassage du terrain aux échelles régionales

ou nationales Gréace a la télédétection, l'inventaire forestier traditioasi@mélioré au niveau régional

et national (White et al., 2017 ; Wulder et al., 2012a)télédétection faitinsi partieintégrante des
PPWKRGHY GILQYHQWDLUHY PRGHUQHV HW H Vpporxanklr&dv&spH VHOF
WHUUDLQ HW VRXUFH GYLQIRUP D W $oRr€eVdefidRi&&sOguillidi@sviourU H V
améliorer la précision des inventaietspraluire des estimations sur de petits territoge8) pour la

cartographigMcRoberts and Tomppo, 2007)

Dans ce contexte,al technologieLidar («light detection and ranging présente un potentiel
particulierement intéressant pozaractériser les forétkes Lidars sont des systémes de télédétection
DFWLYH EDV pW WiXRHOS WILRY \GLRRAurésuwiiQde GratiBs\shrfacedes capteurs
équipés de systemes a balayag@mst montés sur des platesmes aéroportég@LS (airborne laser
scanning) ouasera balayage@éroport§ ou, depuisplus récemmentjes capteurs pouvant acquérir des
GRQQpPHYVY OH ORQJ GT1XQ QtRte Entbbrq@ssiPdey/gngBdspatiauR, pat ¥xdrple la
mission ICESat{Schutz et al., 2005qui a acquis des données entre 2003 et 280@s missions
GEDI (Dubayah et al., 2020) et ICESat2 (Magruder et al., 28&Lllement opérationnelles.

Les ystémes aéroportés (ALS) sont reconpasr leur capacité a générexsdmesures spatialisées de
la structureen 3Dde la végétation plus précises et derpesles autres technologies de télédétection

(Holmgren and Nilsson, 2003; Nelson, 2013gs mesuresont généralememproduitessous la forme
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de nuages de points 3J@olocalisésdont la densité vari€s H PRL QV @4 & plufidud Wzaines

de points par m3d.a position de chaque point indepfO D SUpVHQFH GYpOpPHQWY GH Yp
bois ou tronc) ou du sol ayant interagi avec le faisceau laser émis par le systériuzar permet ainsi

GH GpWHFWHU OH KDXW GH OD FDQRSpH HW OH VBubayaB §rdVWLPHU
Drake, 2000; Hudak et al., 2009; Naesset, 1997; Nelson, 2013; Rempel and Parkel ¥96&HTHQ Gp G XL U
GIDXWUHV LQIRUPDWLRQVY FRPPH OD VXUIDFH WHUULqQUH OH YR

Les approches dites surfaciques (ABA eamlais pour Area Based Approash sont couramment

utilisées pour produire des informations forestiauesiveau peuplement (par opposition aux approches

DX QLYHDX GH OTYDUEUH (OOHV FRQVLVWHQW j pWDE®d U j O9YD
des attributs forestiers issus des mesures de terrain et des varidbtemlculées a partides nuages

de points 3D au niveau des placettes de te(Nsesset, 2002; White et al., 2017; Wulder et al., 2012)

Les métriquedidar SHXYHQW rWUH HQVXLWH FDOFXOpHV HQ WRXW SRLQ
pour cartogD SKLHU OHV DWWULEXWV IRUHVWLHUV GTLQWpUrw

Les métriquesidar utilisées dans les modéles sont eésumé» des milliers de points qui représentent

OH SHXSOHPHQW DX QLYHDX G{XQH SODFHWWH IRUHVWLqUH 6L (
a avoir systématiquement le méme nuage de point. Cependant la distribution desspdartement
GpSHQGDQWH GHYVY FRQGLWLRQV HW SDUDPqQWUHV GYDFTXLVLWLF
puissance et la divergence du laser, les caraayéiést du récepteur) et les spécifications de
OfDFTXLVLWLRQ FRPPH OD KDXWHXU GH YRO OD IUpTXHQFH C

balayage (ou de scan), le recouvrement entre ligne de vols.

/ITDYDQWDJH GHYV DS SUR F K Hr¥stéhXpgitfarmantaXdinépadiviiaitefdsfjeu® deH V
donnéed.idar D\DQW GHV GHQVLWpPYV GH SRLQWYV IDLEOHV H J GH Of!
SDV FRPPH FfddM&DGIS UHODRKHY j OTDUEUH GfpWDSH GH VHJPHQV
ressources de calcul pouegdrésultats de qualité trés variable. Cependdi®@ SDUDPqgWUH GIDFTX
VXVFHSWLEOH GYDIIHFWHU OD TXDOLWp GHV PRGgqOHass&zXUIDFLT
SHX pWXGLp ,0 VIDJLWuUGRIOMmRBQ@IH VEHGEHD®D \OYPHPSDFW GH FH S
gualité des modeles surfaciquesetla fiabilité des prédictions des attributs forestiers qui en découle

HVW DX F°XU GH FH WUDYDLO GH WKqgVH

Questions de recherche et objectifs de la these

$ORUV TXH OYDQJOH GH VFDQ HVW UHFRQQX FRPPH pWDQW XQ !
surfaciques,lisemble y avoir deux écoles de penséecernantO 1D QJOH G HdiRHba@tequi
UHFRPPDQGH GH OLPLWHU OYDMJ@siQ®IE IMFDQ jf GHW [DADXAW UW LT
TX{DFFURVWUH OHV DQJOHV GH VFDQ SHXW DSSRUWHU GH QR
peuplements forestiers.



'"HSXLV OH GpEXW Gidar@n 6néf la@ehdabcd/d &éeCoimandrde OLPLWHU OTDQJ
de scara maximum 15°DILQ GH IDYRULVHU OD SpQpW lgOmedurRrQde&ndutéur JIQD O M
des arbresAinsi, la plupart des études qui amalysée fLPSDFW GH OYDQJOH GH VFDQ RQ
de jeux de données avec des angles ne dépassdbt-20°. Plusieurs études ont ainsi conclu au faible
LPSDFW GH OTDQJOH GH VFDQ VXU @hbWaeRah 2D eCdés\AhglesUDL Q VI
< 15°), sur les estimations des hauteurs des adl@gnussen and Bdewyn (1998avec des angles

<12°), sur le taux de troug@Chen et al. (2014vec des angles < J)5Keranen et al., (201@nt trouve

gue la prédiction des hauteurs moyennes des arbres et des volumes de bois étaient plus précises avec
des angleslimités f TXTIDYHF GHV D QJO.KCsrtdnes@Dde/ stnbapplyess sur la

simulation de donnédsdar pouranalyser dedonnéesaractérisées paXQH JDPPH @&%EQ JOHV
plus large que celle des données expérimentales habituellement digsonibDisney et al., 2010;

Holmgren et al., 2003; Qin et al., 201Qin et al. (2017)ont ainsi montré que des angles de 20°
permettaient de mieux reconstruire les profils de distribution desefeqille des angles plus faiblas.

partir de données expérimentatean Lier et al., (2021dntrécemmentF R Q F O X sa@rxi§sxddhhéed

DYHF GHVY DQJOHV GH VFDQ DOODQW MXVTXTj f DYDLW SHX GTfL
méme si les métrigudsdar SRXYDLHQW r'WUH VLIQLILFDWLYHPHQW LPSDFWp
Kamoske et al., (2019)nt aussi suggéré gue des angles de scans plus élevés permettraient de mieux

comprendre la distribution des trouées dans la canopée.

Par ailleurs RQ FR Q V WiDdwtempJégdhglesle scamaximunsonttendance a augmenidans

les jeux de données LidarSUREDEOHPHQW HQ UDLVRQ GH OfpYROXWLRQ (
pratiquessisant dimiter les coltsDe plus en plus deays planifentdes acquisitions au niveau national

pour répondre a plusies objectifs applicatifsy comprisle suivi des forétsPour ces acquisitions sur

de vastes territoires, les angles maximums sont généralemenff (Q SDUDOOgOpPHarOHV DFT
Lidar embarqués sur drone en faétdéveloppenpour des études aniveau localavecdes angles de

scans élevés (>20°) en raison de la faible hauteur déGab et al., 2019; Liu et al., 2018; Lu et al.,

2020; Ma et al., 2022)

En raison de l@omplexité de la végétation, mesurer sa structurd_jolar dépend fortement de la
JpRPpWULH GH ®SUQ¥IXDWRWMIXTXQ HIIHW SUREDEOH GH OfDC
VXUIDFLTXHV HVW UdéEdRSRI3us sur @s GnfitesCac&pedipour ce parametre, ni sur
OfLPSRUWDQFH GH VRQ LPSDFW VXU OHYVDeRGq@/H\g W b DD BLTHPXHX
se sont intéressées a daatégiepour traiter des donnéearactérisées par des angles de sopBrieur

a 209 alors néme quale telles donnéeommencent a saultiplier.

Ces constats souligneldH EHVRLQ GYDPpOLRUHU QRWUB JHRRRoABHKHQVLRQ
lesmesured.idar en forét et sula qualité de prédiction des attributs forestadis de déterminesi plus
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GIDWWHQWLRQ GRLW rWUH SRUWpPH | F HidsrRt4D degadppeméntde Vv GH O

modeles surfaciques.
Pourcela deux hypotheses de travaitt été formulées

H1: OHV SUpGLFWLRQV GAPMWMWHLEN WR GROHVWDHMUBHELTXHY QH VHL
GH OTDQJOH GH VFDQ QYfHVW SDV SULV HQ FRPSWH ORUV GH OD

et variabled.idar.

La question de recherche principale découlant de cette hypatisés« Quels sont les impacts des
angles de scan sur les métriquetar et sur les prédictions des modeles surfaciques

H2 : La normalisation des métriqueslar SDU UDSSRUW DX[ FKDQJHPHQWY GH OD .
RX OfLQFRUSR U&istiquesQle @aity géométizFddhs les modélegepeaider a atténuer
OYLPSDFW GHVY DQJOHV GH VFDQ VXU OD TXDOLWp GHV SUpGLFW

La question de recherche principale découlant de cette hypothese @R PPHQW JpUHU OfLPSD
angles de scasur lesprédictions desnodéles surfaciques»

Dans le cadre de ces delmypothéses OTREMHFWLI SULQFLSDO GH OD WKgVH HV
FRPSWH GH OTLPSDFW GH O 1D QdaDdst €ésenteFi@ &/ deikidppeivierd 8Q Qp H 'V
PRGQOHV VXUIDFLTXHVY UREXVWHY HW SUpFLV SRXU OD SUpGLFW

Les sousbjectifs suivants ont été définis pour ce travail de thése

1) (YDOXHU OYLPSDFW GHV DQJOHYV stitdargwRo@uespbur@ibergxsD O LW p
peuplements forestiers complexes
a. (Q HVWLP D Q Wesanplek S.bdesndEriduleisiar communément utilisées dans
les modeles
b. (Q HVYWLPDQW OYLPSDFW GH OTXWLOLVDWLRQ GH PpWUl
de scan sur la qualité des prédictions des modéles.
2) Développer des méthodes pour gérer les effets des angles de scan sur les modéles de prédiction
a. (Q FRQVLGpUDQW GLIIpPUHQWHY FRPELQDLVRQV GH JpRP
b. En utilisant des métriges calculées apres avoir mobilisé des approches de voxellisation
pour normaliser des effets des angles de scan
c. En modélisant les effetomplexesles angles de scgnace a des réseaux de neurones
artificielsavec enentréedes modéledescaractéristiges de la geométrie I DFTXLVLWLRC
en plus des métriques Lidar
3) Proposersur la bases des résultats obtenus, des recommandations et des perspectives, pour une

utilisation opérationnelle des donnddgdar pour des applications forestiéres.
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Cette these copmend quatre chapitres qui sont résumés dans ce qui suit. Les trois premiers ont été
UpGLJpV VRXV IRUPH .Gddatdigv tHagitie rEésimdlesxdsi@d<de la thése et propose
des pistes pour de futures recherches.

Chapitre 2: ,PSDFW GH OfDQJOH GH WhkdarQutiNs&ed dand s pdet) LT X HV
de prédiction des caractéristiques des peuplements forestiersine analyse basée sur un

découpage des données selon une grileguliere.

Le sousobjectif1-a HVW D X FRtHdgitré guidborde la question suivantQueleVW OTLPSDFW Gt
angles de scan sur les métriquetar communément utilisées dans les modéles surfacques

Ce chapitrea été publié dans laternational Archives of the Photogrammetry, Remote Sensing and

Spatial Information Sciences(Dayal et al., 2020).

Les gproches dites surfaciques (ABAY I DSSXLHQW VXU GHV PRGQqOHV GH UpJu
UHODWLRQ HQWUH OHV DWWULEXWYV IRUHVWLH Uidar,GfidoeWpUrWw
appeées métriquekidar. Les P R G D Oacqusior@ds donnéekidar déterminat la qualité et les
caractéristiques des nuages de points 3D utijieés le calcul des métrique€es caractéristiques
peuventvarierGTXQH DFTXLVLWLR Qogalenfedt® W WHH P@ IGA PFAVWPH MHX GH G

/IfDQJOH GH EDOD\DJH RX DQJOH GH VFDQ HVW OfXQH GHV FD
LPSDFW VXU @Y muthiqued Dlay etRIncGur les modéles surfaciques qui utilisent ces
métriques. kes métriques standards les plus utilisées comprennent les caractéristiques des distributions

GH OD KDXWHXU HW Glidad W\ B @ V L TWKpH OBy fEHR H@MEle ©) Sipsk- D U W
gue des métriques de densités par strates de hawteles métrigues de rugosité du sommet de la

canopée (Rumple index). Ces métriques standards sont parfois complétées par des métriques spécifiques
développées pour mieux représenter certaines caractéristiques du peuplement, par exemple le taux de
couvert @l le tauxde trouées. Ces métriques sont calculées sur une surface représentative du peuplement
local,iie. sLPLODLUH j FHOOH XWLOLVpH SRXU OHV LQYHQWDLUHV Gt
LPSRUWDQW GTpWXGLHU Qidai ¥ bR Q HERN W QO HRQ P p\W. RETIGHd MO 1D QJO
sensibilité a ce parametteadurait un manque de robustesse des variables explicatives pour la

construction des futurs modéles.

/I TREMHBEW FH FKDSLWUH HVW GfpYDOXHKREDBMX @H YHIDXQ G N QG B H

11 métriques (9 métriques de hauteur des points et 2 autres métriques communément utilisées).

/ID JRQH GTpWXGH HVW OD ULSLViany lES@ERuest dé R@rarGd QU/c®O® HV /D (
site, caractérisé par des peuplatsefeuillus et des mélanges feuillus/pins de structure complexe,
OYDFTXLVLWIsRi@Gar ®Hp®/RQI@hM H | O 1 DLidérHeger fekarané\suy §BNH en
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favorisant un recouvrement entre lignes de vol supérieur a 35% et en passant a plusisessstepr

certaines zones. Ainsi, une part significative de la zone a été observée depuis plusieurs points de vue.

/ID JRQH GTpWXGH D pWp GLYLVpH VHORQ XQH JULOOH GplLQLVV]
chaque cellule, les lignes de vol aypriduit un nuage de points couvrant au moins 90% de la surface

de la cellule ont été identifiées et retendss,pour chaque nuage de pant VVX GIXQH GH FHV C
devol, XQH FODVVH GTDQJOH GH VF D@ B QWO BWINJAsHorfpd-toRekU) OD ED)
dans la cellule. Quatre class®s été définies 0°-10°, 10220°, 20%30° and 30°40°. Pourlescellules
contenantSOXVLHXUV QXDJHV GH SRLQWYV DIIHFWpV j OD PrPH FODVYV
est le plus proche du e de la classe a été retenu. Les 11 métribigkss ont ensuite été calculées
parlignedevot HW GRQF SDU fpoubchagde Gfule(xddDitant en un maximum de 4 valeurs

par celluleetparPpWULTXH /D FRPSDUDLVRQ GH FHV YDOHXUV SHUPHW
HQ IRQFWLRQ GH OYDQJOH GH VFDQ &HWWH FRP-2&)aphicRQ D pW|

et de régressions linéaires.

Les résultats montrent que, pold | SOXSDUW GHV PpWULTXHV OHV YDOHXUV
VFDQ DXJPHQWH OHV YDOHXUV DX QDGLU pWDQW SULVHV FRPP
UXJRVLWp GH OD FDQRSpH 5XPSOH LQGH[ VRQW -§@X¢s LPSDFW
KDXWHXUV GHV SRLQWYV /D KDXWHXU PD[LPDOH VITHVW UpYpOpH
percentiles de la distribution des hauteurs, les percentiles les plus élevés se sont révélés moins sensibles
j OTDQJOH GH VFDQ DHY GOK\SHDNVHQWHWOHMVXOWDWY PRQWUH
impacter de facon significative certaines métriques couramment utilisées dans les modéles surfaciques.
/ITLPSDFW VXVFHSWLEOH GYHOQPURNXGRHW VWU Hje\Wop@dBaine WV Bl X\
chapitre.

Chapitre 3: $QDO\VH GH OYLPSDFWLIiGH 8r 2 Qrédictiovi dedattNnbEtD Q

forestiers dans différents environnements forestiers

Ce chapitre aborde les trois questions suivantes

- Quel est l'effet de I'inckion de métriquekidar sensibles a l'angle de scan sur les modéles ABA?

(sousobijectif 1-b)

- Peuton gérer les effets des anglds scan sur la qualité des modé&escombinant des nuages de

points acquis selon différents points de ¥(sousobjectif 2a)

- Peuton gérer les effets des angles de scan sur la qualité des modeles en normalisant les métriques

Lidar par rapport aux effets de ces angles grace a la voxelligatimusobjectif 2-b)
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,O D IDLW OfREMHW G % A @ vEXxauwnalFoDRdtdgr@mmeRy>aRrd_Reémote Sensing
(P&RS)» G HSPRE (International Society for Photogrammetry and Remote Sensiagublication
a étéacceptéetresoumisapres prise en compte dasrections eavis des évaluateurs.

Des édudes, dont celle présentée au chapitre précédent, ayaohtié queplusieuramétriquedérivées
des donnéekidar et couramment utiliséedans les approches surfaciqétaient sensibles aux angles

de scanles deux objectifs suivants ont été fixés pcettepartie de la thése

1) AnalyserOfLPSDFW GH FHWWH VHQVLELOLWp VXU OHV SUpGLFWI
modeles surfaciques;

2) Evaluer OH SRWHQWLHO GefifaSos puF Kormaliseles midrriqued.idar des
changements dus aaxgles de scaret atténuerO  Hdd ee¥/anglesurla qualité @s modéles

surfaciques.

/ITpWXGH D SRUWp VXU TXDWUH HQYLURQQ R2plageattes) psutdéisuaV LHU V |
du Ciron dans le SugDuest de ld&rance gt trois peuplements de montagpeur le site du Parc Natl
Régional du massif des Bauges (PNR des Bauges) situé dans les Alpes fraiecelissg42 placettes),

résineux (31 placettes) et mixtes (45 placettes)).

Pour atteindre nosbjectifs, nous avons sélectionné un modele basé sur quatre métrigdas
présentandifférentsniveaux de sensibilité aux angles de scan, i.e. la moyenne et la variance des hauteurs
audessus du sol des poirtislar de végétationucn et Vcn), le taux de trouéd$ ) et le coefficient de

variation du profil de densité de surface foligi®/.ap). Pour chaque placette, nous avons considéré
indépendamment les nuages de points scannés a partir de lignes de vols différentes. Chaque nuage a été
caUDFWpULVp SDU OTDQJOH GH VFDQ PR\HQ GHV SRLQWYV OH FRF
suivantes selota valeur decet angle moyenA (0° dMSA< 10°), B (10°dMSA< 20°) ou C (204

MSA< 30°).

Un dispositif expérimental comprenantnedFpQDULRY D pWp FRQoX SRXU pWXGLHU
surfaciques du nombre de lignes de vol (scénarios fl1, fl2 et fI3 papectivementune, deux et trois
OLJQHV GH YRO HW GH OfDQJOH GH VFDQ SUpGRPLQDQW VFpQlI
angles de scan prédominants (scénarios (A et B), (A et C), ou (B et C)). Pour les mémes placettes
forestiéres, nous avons produit potmiaque scénario 5000 jeux de données par tirage aléatoire dans
OfHQVHPEOH GHV FRPELQDLVRQV GH OLJQHV GH YRO GLVSRQLE
trois modeles surfaciques ont été construits et validés par validation croisée (LOO cdasi®nappour

prédire trois attributs forestiers, i.e. le volume de tronc (Vst), le volume total (Vtot) et la surface terriere

(BA). Trois crittresSHUPHWWDQW GYpYDOXHU O bhtEtR caldDi#¥ b woaffitienrd QW G HV
de détermination (R?),fHUUHXU TXDGUDWLTXH PR\HQQH UHODWLYH U5
pourcentage (MPE).
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/HV GLVWULEXWLRQV GH FHVY FULWqQUHYVY GH TXDOLWp RQW pWp FF
le comportement des modéles de prédiction lorsGyeenoPEUH GH OLJQHV GH YRO L H G
par placette augmente (fl1, fl2, fl3P) le jeu de donnédsddar est caractérisé par des angles de scan
VSpPpFLILTXHV $ % RX & RX XQH FRPELQDLVRQ VSpR)IEATXH GID
voxellisaton est utilisée pour calculer taux de trouée(P) etle coefficient de variation du profil de

densité foliaire(CViap), deux variablesayant montré dans certains peuplersame assez forte
VHQVLELOLWp DX[ FKDQJHPHQWY GYDQJOHYVY GH VFDQ

Les résultatenontrent que les modéles construits avec des nuages de points issus de directions de scan
multiples, i.e., acquis depuis plusieurs lignes de vol, sont plus robustes, avec un écart type plus faible
pour les critéres mesurantiden ajustement des modéles. flBoyenne, en coitgrant tous les types de

foréts les écarts types des distributions de R2 pour fl2 e3di8 inférieus de 42 % et 77 % a e

obtentv SRXU 10 1RXV DYRQV pJDOHPHQW REVHUYp TXYXQ MHX
G 1D F T X prvilegianiRI€s angles de scau nadir (i.e. scénario A), ne donnait pas toujours de
meilleures prédictionse(g.,R2 moyen plus élevé de 0.08, 0.07, (a04éc lescénario B poulesfeuillus,

les coniferes etes peuplementsiixtes). Ces analyses montreXqQ PRGqOH GI{HVWLPDWLRQ
IRUHVWLHUV FRQVWOQXHWVWRE COHD CGED \GHD DEegHbraidmvalidetihp AUD ORQ QD
modele) dépend fortement de la géométrie des acquisitiolas sur ces placetteiinsi, lors de

O D S SOL F Dak paucaBograpRies les attributs forestiers sur une zone compléte, la fiabilité des
SUpGLFWLRQV QTHVW SDV JDUDQWLH PrPH SRXU GHV SHXSOHPH(¢
terrain au niveau deglacettes G 1 p W D O RQriodDd st péiculierement élevé dans le cas

G 1D F T X ILMdr védlige€s\avec uaible taux de recouvremeantre lignes de vptonduisant a de

nombreuses zonebservées depuis un seul point de vue (i seulangle de scan).

Le remplacementans les modéleges variable$: et CViap calculées directement a partir des nuages

de points par cellesalculées aprés voxellisation du nuage de points et construction de profils de
végétationD SHUPLV GIDWWpQXHU OHV LPSDFWDLa GléNsakdt Dayigel PHQ W V
GHV HIITHWV G fRFF GAonguewp dul WéjeS diiHa3cealH Igser dans la végétattatonc
OYDQJOH Asdd ce¥d-rpQyelles variables, nous avairssi observéa) une augmentationed

moyennes des distributiondes R2 et une diminution des moyennes des erreurs, indiguant
amélioration de lgustessalesprédictions, ou bune diminution des écarts types des criteres mesurant
OYDMXVWH P H Qriwliq@ht Un@Ry@en@tid vV di précision des prédictionsy c) les deuen

méme tempsCes résultatsoulignent le potentiel de la voxellisation & normaliser les métrigdes

GHV HIIHWYV GHYVY DQJOHV GH VFDQ HW OfLQWpUrw GH FHWWH C(

robustes.
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Chapitre 4 : Améliorationde OD SUpGLFWLRQ G 1= pakirdedoxnéesid&& UHV W L H
parlaprise HQ FRPSWH GH O 1D QJO Hr&plie dadnDdpshbreéleShdséd BurW R SR J

desréseauxde neurones.

&H FKDSLWUH D E&du Gader® JeRdoMedtiomsuivan@mment intégrer la géométrie des
acquisitiond_idar dans les modéles surfaciques

Une infinité de métriquekidar décrivant les peuplements forestiers peuvent étre intégrées dans le
modéles surfaciques. Ces métriques slanplupart du tempsXWLOLVpHY VDQV TXH OfRQ |
VHQVLELOLWpP DX[ FKDQJHPItidD yu&/ d&sHbs@arer idette GetsibilkRddo@mme une
contrainte, ellgourrait étrevue comme une opportité de caractériser plus finement les propriétés de

la végétation

Pendante nombreusesannées O D pWp UHFRPPDQGpPp GH OuRPA MW EgBE§DQJIOH C
ORUV GH O9YDFTXLAdandéesRr@esGatds GoRliQafignsl fdrestiereRestreinGUH OYDQJOH G
scan entraine une réduction de la fauchée et donc de la surface couverte au sol a chaque passage de
O 1D Y LR Qouitrédpikelles 8odig.e. optimiser le temps de vol pour couvrir un territoire dosiaé)

limitation GH OTDQJOH P D péewrétre aCcbmpagid®) X QH U p GaXik i teBoQurément

entrelignes de valAu cours des derniéres années, on a pu constater une augmentation des angles de
scan dans les jeux de donnéetar utilisés pour le suivi des farWw vV ' X Q@éin@vibrigik pays ont

réalisé des acquisitiohgdar au niveau nationalvec des angles de saaaximumsde 30° et plusCes
DFTXLVLWLRQV RQW SRXU YRFDWLRQ GfrWUH XWLOLVpHV SRXU
" DX WU ks adylldtions par systémes légers se multiplient pour des études au niveau local et
VIDFFRPSDJQHQW GIYDQJOHYV GH VFDQ SOXV pOHYg&pehdaht, OHV DF’
des études ont montré que les métrididar présentent des seéhbiités dfférentes aux angles de scan

qui peuvengffecter la robustesse des modélesprédiction basés sur les approches surfac({@us)

et leur fiabilité lors de OHXU DSSOLFDWLRQ SRXU JpQpUHUWeG@Hs/ l&FDUWHV

topographe affecte également les métriquedar.

Il apparait donessengl depouvoirprendre en compt® fLPBERP®WLQp GH OD JpRPpWULH G
(anglesde scaretazimut as faisceaukidar) et dela topographie sur les métriqudadar pour améliorer
lesmodéles surfaciquesDQV FHWWH SDUWLH GX WUDYDLO GH WKgVH QRX)\

de neurones artificiels ont la capacité de gérer ces interactions complexes.

/IH VLWH GTpWXGH HVW O HnabBifWles Bauyekind sQ\pep ldnBa3&x3e sEeXte
haute montagne est caractérisé par la préserfceéds de feuillus, de coniféres et mixtes. Les mesures
terrain ont été collectéeni niveau d&91 placettes circulairede 15 m de rayoBchantillonnantes

trois types de forét Les donnéekidar ont été acquises avecgdecouvrements multiples entre lignes
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de vol et chaque placette de terrain a été scannée depuis plusieurs lignes de vol. Les nuages de point 3D

de chaque placette terrain ont été divisés en fonction des tigned, résultant en 1095 observations
pourlesquelles 55 métriquésdar standards ont été calcatgpour caractériser la végétatidde plus,

desvariables ont été introduites pour décrire la topographie au niveau des pktdestearactéristiques

GH OD JpRPpWadanhl(ahgle fieodeanet azimughaquenuage de poistobtenu avec une ligne

de vol et les métriquetidar FRUUHVSRQGDQWHYV WWereMONSpECIfldueentr©MsD W G T X (
SDUDPgWUHV G1DFT X Ldutewdn Rt@eY ca@divistiueR GelvégetatipvVevprtdonc

étre considéecomme une observation unique et indépendante dans les meddbsquesCete

facon de procéder peut étre apparentee@H PpWKRGH G D XJP HpidiE#n&fntGH GR Q(C
dudpYHORSSHPHQW GYXQ PRGgOH

Nous avons utilisé un perceptron multicouche (MLP) avec deux couches cachées pour modéliser la

surface terriereBA) et le volume totale\q). Ce réseau de neurones est supposé pouvoir mieux

modéliser les interactions complexentre les métriquegidar de végétation(e.g., métriques de

distributions des hauteurs et des intensités des fdduts, densités d@oints par strates de hauteur,

métriques de canopgiee. rugosité du sommet de la canomtéaux de couvert), la topographie locale
SHQWH RULHQWDWLRQ DOWLW X G HLidad(ahglesdelgcaénrepasiout ée i@ H O 1D |

YLVpH GLVWDQFH HQWUH OH WHUUDLQ HW OYDYLRQ

Ladivisiondes donnéesn un jeuS R X U O {p W D O 8&)alibdator®@/Alidatkeg ain jeupour

son évaluation (tesgété défine VXU OD EDVH GHV LGHQWLILDQWY GHV SODFH)
QH FRQWULEXH j OD IRLV j OfpW BG&adpdohtétélndalifexs avet)ded GHYV PR (
GIfpWDORQQDJH HW GH WHVW GLIIpUHQWYV $ FKDTXH LWpUDWLRQ
forestier(i.e., BA et Vtot)est prédiautant de fois quelnombre de nuagée points disponibles, i.e. le

nombre de lignes de vol a pardesquelles des données ont été acquises pour la placettgdiane

des prédictions est utilisée pour évaluer la performaes®dR GqOHYV j OfDLGH GH FULWQqUH'
FRHIILFLHQW GH GpWHUPLQDW PR&eBetkWe GoRnéed soanXidéid¢d/1)G TH U U H X
standardgtd), avec les métriques issues des nuages de points composés des points provenant de toutes
les lignes de vol2) augmentégug en distinguant les observations issues de chaque ligne de vol, 3)
standard et augmenté complétés avec les informations de topogrstplie, etaugerain) 4) augmenté
FRPSOpWp GHV LQIRUPDWLRQV GH WRSRJU O&iHchascad WesGH OD J
performance des différentanodéles MLP ont été compaes acelles @ modéles construit avec un

algorithme de Forét Aléatoire (ou Random Forest, BR¢, approche de régression fparamétrique

couramment utiliséet priseici comme référence

Pourle MLP, lesR2 pour les prédictionavec le jeu de donné@sigerrain+scan (R2 de 0.83 et 0.85 pour
BA et Viy) sont supérieurs a ceux obtenus avec le jeu de dostikes. , i.e. sans diviser les nuages de

points selon leur géométrie de s¢&a de 0.77 pouBA et Vi). Les résultats de ce modeéle (MLP avec
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aUQerrain+scan) SONt aussi nettement meilleurs que ceux du MLP basé sur le jeu de données &apdard

(R? de 0.66 et 0.71 powBA et Vi, respectivement)T XL QILQWqgqJUH QL YDURADEOHV W
JpRPpWULH G Dhank bixslled kadhafy@ompris celui basé sur le jeu de donr@e rain+scan

le MLP surpassée RF (R2 de 0.6 et 0.64 poBA et Vio:pourle RF appliqué aux donnéasigerain+scan-

Ces résultats, obtenus avec un réseau de neurones MLP a deux couches, soulignent le potentiel des
PPWKRGHV G1DSSU-HQ@WhNVuNE SelutiGUdRitRe® @our modéliser les interactions
complexes entre les signalidar et la végétation, qui sontgies par le changemede lagéométrie

d D F T X L Wethgo@aphia/

Chapitre 5 : Conclusion et perspectives

Par sa capacité a fournir des mesures de la structure en 3D de la végétation sur de vastes surfaces, le
Lidar aéroporté est une technologiarficulierement adaptée pour fournir des informations utiles a la
JHVWLRQ GHV IRUrwWV /1 Xidatfur\Veb wpplivaforis tbRettiéréd) € BhHpardcKilier

SRXU OTLQYHQWDLUH IRUHVWLHU HW OD F Rajpoténildl Tenktiule G 1D W W
des modelereliant des données issues de mesures de terrain au niveau de placettes forestiéres et des
variables issues des nuages de point&i8Br est la fagon la plus courante de produire des estimations

de paramétres forestiers et des cartes a grande échelle. Cette approche est appelée approche surfacique

(ou ABA, pour Area Based Approach en anglais).

&HSHQGDQW GH SDU OH Pg bdagagéd/desidanfidadar XLO LWVMVR G ISIILFLOH G
des nuages de points avec les mémes caractéristiquessité teW G 1 2 Qalayad®/ (aB de scaam)

WRXW SRpaGW &R SDIFHWV GH O $bQ qualie dsidonrd@€forétet des modeéles de

prédictiona été assepeu étudié. Cependartes derniéres annéem constateT X{XQH LPSRUWDQ
FURLVVDQWH HVW DFFRUGpPH j OD FRPSUpKHQVLRQ GiarOTLQIOXF
3DU FRQYHQWLRQ O91DQJt® ki i 1528 DpQurPaDpllpark des EBtudes en milieu

forestier. Une telle limitation est trés contraigngni@uvais rapport colt/surfagajur la réalisation de

couvertures au niveau national quievisune efficience opérationnelle. Méme a une écphlielocale,
DXWRULVHU XQ DQJOH GH VFDQ PD[LPXP SOXV pOHYp SHUPHWW
ailleurs, T XWLOLVDWLRQ GH V\§évepppdahn fortdtirpilueVveld @éeeral Ues angles

GH VFDQ PD[LPXPV S Odésd/systorrey advmbies<dubDopéddnt a plus haute altitude.

3RXU FHV UDLVRQV LO HVW LPSRUW D Qdffet @bk SderstaHIlY GH PLF
TXDOLWp GHV QXDJHV GH SRLQWV DX UHJDUG GHV DB8SOLFDWL
GLIIpUHQWHY JpRPpWULHV G{DFT X LNdandével@p¥s<pdurda-pvédRiv@q O HV V
GIDWWULEXWYV IRUHVWLHUV D pWp pWXGLp GDQV GLIIpUHQWYV HQ

I MpWXGH D pWp PHQpH VHORQ GHIX[HDYSMVH IREDF DV © VX SANHRLX
OfDQJOH GH VFD Qidaxeysu lid yyudhtp desrmddXlés Burfaciqueses suces métriques.
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/IH VHFRQG D[H VIHVW FRQFHQWUp VXU O NiHi¢xodreU|Bs\WffelRR€@ GH GLII|
angles de scan.

Les résultats obtenumt monte TXH OfDQJOH GH VFDQ SHXW LPSDFWHU GH |
métriques couramment utilieg dans les modéles surfaciques. lls ont aussi souligné le manque de
robustesse des modéles construitsmgir de jeux de données de calibration constitués de nuages de
SRLQWV LVVXV GIXQH VHXOH OLJQH GH YRO L H XQ VHXO DQ.
UplpUHQFH HW OH ULVTXH G9YHUU HI¥rkhve QR @odeles Suniliaés pely TXL HQ
cartographier les attributs forestierseditainsiapparuimpératif de gérer les effets des angles de scan

ORUV GH OfpODERUDWLRQ HW GH OfXWLOLVDWLRQ GHVY PRGqOH\

Pour se faire trois stratégies ont été évaluées.

La premierestratégieet laplus simple en théorjestdeV {DVVXUHU TXH OfDFTXLVLWLRQ C
de fagon a ce que tout pointlde] RQH GIfpWXGH HVW VFDQQp GHSXLVoikeX PRLQV
plussi possible, poutompenser les biais deprésentation de lségétatiorliés aux angles de scdres

résultats ont en effet montré que les modeles construits avec des nuages de poietslisstimds de

scan multiplesétaient plus robuste€ependant, pour des questions de colt des acquisitions, cette

V R O X \8sL paiQeri§ageable dans un contexte opérationnel.

La secondestratégie HVW GH V 1 ByhvdelesHitilisat Xdé$ ntiiquesidar peu sensibles aux

angles de scan. Dans cette optique, les résultats obtenus ont montré que la voxellisation, basée sur des
approches de suivi de rayons, était une option intéressante pour normaliser les niétiagdes effets

des angles de scahaugnenter ainsi la robustesse et la fiabilité des modeéles. La voxellisaiton peut étre
appliquéej OTpFKHOOH GHV PpdaiBEhdRY Msmode@H PADH. Y UDX\QVL VXU OTHQVHI
JRQH G 1 pWapdidueSI® Xdtlele eSURG XLUH G H \buts BbieSids\plus fidbisWLdd
approches de voxellisation ont aussi le potengadatactériser la végétation avec plus de précision. Des
développements méthodologiques sont cependant encore nécessaires pour les optimiser et les intégrer
dans des prod@ XUHV RSpUDWLRQQHOOHV G LlambidaptdobriéesHearrairRé HV W L H!
Lidar.

La troisieme satégieconsise a prendredirectementen compte dans les modéles la géométrie des
acquisitions, en la décrivant au travers de variables spéafigug angle de scan, azimut de visée pour

O 1D F T X &t\éh MtdgRaQl aussi la morphologie du terrain (pente, orientation, altiteda@sultats,

obtenus avec un réseau de neurones MLP a deux couches, ont pemustd® le potentiel des
méthodesGY{DSSUHQWLVVDJH SURIRQG SRXU PRGpOLVHUWidatey LQWHU
la végétatiomui sontmodulées paa géométrie dsacquisition et de lacéne observéke déploiement

GH FHVY DSSURFKHV QfHVW FHSHQGDQW SDV WRXMRXUV SRVVL
suffisamment de données de référence terrain contemporaines des acquisiigries inventaires

terrain étant longs et couteux a réaliser.
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Les résultats deette théseV R X O L JQ H Q W d© JduR Svrellad 2P étthesur améliorer notre
compréhensiones interactiontidar/végétationet notre capacité a gérer les effets des angles de scan

sur les donnéekidar et les modéles de prédic®@ GIDWWULEXWYV IRUHVWLHUV GDQV
variés (types de peuplements et topographis.stratégies visant & normaliser les métridudsr et a
VIDSSX\HU VXU GHVY PpWKRGHYV GYDSSUHQWLVVDJH SWRIRQG SR
évaluées indépendamment mais pourraient étre combinées afin de tirer parti des bénéfices des deux
approches. Faire appel a des donrédar simulées ouvre aussi des perspectives intéressantes pour,
GTXQH SDUW DQDO\VHU G H effBte deQarf)lesde svanswy lefriewitidesdeanO H V
différents types deSHXSOHPHQWV IRUHVWLHUV HW GI{DXWUH SDUW ¢
DGGLWLRQQHOOHY SRXU IDYRULVHU OH GpSORLHPHQW GH PpWKI

XXi
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Chapter 1: Introduction



Introduction

1.1 Sustainable ForestManagement

"Sustainable forest management means the stewardship and use of forests and forest lands in a way,
and at a rate, thatmaintains their biodiversity, productivity, regeneration capacity, vitality and their
potential to fulfil, now and in the future, relevant ecological, economic and social functions, at local,

national, and global levels, and that does not cause damaghdpecosystenis.

- Resolution H1 of the Helsinki Ministerial Conference on the Protection of Forests in Europe,
1992

A broad understanding of the definition above tells us tleaiteract with forests on two levekocic
economic and ecologicaDur dailylives are inextricably linked with forest ecosystems because of the
numerougesourcesve derivefrom forestssuch as wood, fuel, paper, food and many mdareover,
forests areesponsible for providing livelihoods to moteah a billion people worldwieand sustaining
numerous indigenous populatio(Bernier and Schoene, 2009 Europe aloneabout 2.6 million
peopledepend on various industries linked to forégisrest Europe202(Q. Forests are also home to
diverse species of plants and animals that make updlogicalbiodiversity critical for maitaining an
ecological balancevhile providing many economic benefif6AO, 2020) In the context ofylobal
climate changeforests are alseorucial carbon sinksand they help tackle global warming through
evaporative coolinglBonan, 2008) At the same time, forests arender constant threatlue to
anthropogenic (deforestaticinagmentation and pollutionglimatic factors (phenological shifts, range
shifts, dieoff events, insect infestations) or a combination of both (defaunation, fires, composition shifts,
net primary productivity shifts, biogeochemical shifts3 U Y O L H Forestsconstantly undergo
disruptive changesherefore, their management to maintaipalance between the se€eiconomic and
ecological factors assumes increased importdKeeluvainen et al., 2021; Lazdinis et al., 2019;
ODF'LFNHQ HW DO . 3U Y OLH

Forestmanagement plans identify the activities to be carriedoeuthe goals and objectives of the
forest managergBettinger et al., 2017)With the everincreasing human populatiorfored
environments musteb managed with lonterm perspectivedistorically, forest management was
mainly driven by theprimacy of timber productioand other nata resourcegGadow et al., 2000)or
example, m countries such as Finland and Swedenjdeaof sustainability was limited to economic
sustainability allowing them to make up around 15% of global sawn wood and paper pulp production
with only 2% ofthe internatioral forest aregKuuluvainen et al., 2021Ruch intensive praates are
known to jeopardise the biodiversity of forests due to degradation of habitats and loss and reduced
structural and species variabilifiguuluvainen et al., 2021Around the 1990d)iodiversitybecame an
essential componerf forest managemer{yN, 1992) While a balance between the extractioh
resources and ecological considerations may only be achiesfédignt management plans guide forest

managemet practics, dimate chage considerations are crucial in the present and the fétdespting
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Chapter 1

to the effects bclimate change on forest ecosystdmas assumedignificant importancever the 21
century(Bernier and Schoene, 2009; Jandl et al., 2019; Spittlehouse and StewartTRé@8plution

of forests in the context of climate change will require the developmeuterttifically guided plas

for effective decisiormakingconcerningharvest levels prediction, resource consumption optimisation
and maintenace of forest healtliBergeron et al., 2004; Seidl et al., 2011; TofRego et al., 2016;
Williamson and Edwards, 2014herefore, information is at the heart of sustainable forestgeamant

and is obtained throudbrest inventoriegKangas and Maltamo, 2006)

1.2 The role of remote sensing in enhancing forest inventory

Forest inventorand mappindorm crucial componesbf sustainable forest management by providing
periodic information about the avdilitity of natural resoures and the state of the forest in gendtal
involves collectng data on forest resources within an area, whddwal, nationalor global. The
guantity and quality of forest information ardtal components of forest managemeRbrest
information is collectedthrough forest inventory conduetl at several geographic levelshich is
typically carried out through field measurement of forest attributes at sfietglplots Forest attributes

are modelled using the information from sample locations and extrapolated spatially to understand the
current state of forestnd their evolution over tim®ifferent countries have national forest inventory
(NFI) programs to quantifforest resources and develop suitable forest management p(Biarestt et

al., 2016; Bohn and Huth, 2017; Breidenbach and Astrup, 2012; McRoberts and Tomppo, 2007; Nilsson
et al., 2017)

Traditionally, forest invemory involvesspecies identification ancheasuremestmade on individual
trees (and smaller vegetation) for gstimation of forest attributes such as tree heights (m), mean height
(m), basal area (m? i stem density (stems fa Gross total volumeng® ha'), Total aboveground
biomass (g ha') (McRoberts and Tomppo, 2007he measurementsin beintensive and costly and

are therefore made on sample plotise Ihformation is extrapalted to the entire forest area to derive
estimates of the various forest attributiesn local to national level@McRoberts and Tomppo, 2007;
White et al., 2017)In traditional forest inventorygccuracy dependsn the number of sampling units
and their stratification to ensure even representatthich in turn dependn cost and time constraints.
Moreover tree measurements are not méafeall the trees in the forestsnd waltto-wall coverage is

not practical

Remote sensing solves the problem of scaling forest inventories as sensors mounted on aircrafts or
satellitesare usedto make measurementsver large aras. Traditional forest inventory becomes the
enhanced forest inventoffeFI) at the regional and national levelith the support of remote sensing
(White et al., 2017; Wulder et al., 2012) general, remote sensing involves two main components, a)

acquisition of dataand b) interpretation of datBata acquisitiorinvolvesthe use offifferent kinds of
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sensors such agptical, infrared,termal, microwaver lidar to acquire data about foregtdllesand et
al., 2004) Sensors collecting such data are mounted on different platforms suehrestrialand
groundbasedaerial and satellitelepending on thepplication,data properties or coverage afEmure
1).

Spaceborne
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|
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Figure 1: (a) Variousremote sensing atforms based on the#rea of coverage anoperationaltitudes(Gili et al., 2021)
(b) Classification of remote sensing platforms based on their operations (leftjféerémt types of data resulting from
optical, infrared, lidar and microwave sensors (rigfitechner et al., 2020)

Interpretationof data may range from basic visual interpretatioto using advanced modelling
techniques to derive useful informatiahout the forestsStudies hag used various sensors to extract
information about forestsuch as landise lanecover (LULC), vegetation structure, biodiversity and
vegetation cover, among othé@artus et al., 201ubayah and Drake, 2000; Foody et al., 2003; Hall
etal., 2006; Le Toan et al., 1992; Magnussen and Boudewyn, 1998; Neumann et alMa@it0urce
forest inventoriegMFI) combine NFI information with auxiliary data, mainly remote sensing data or
forest maps derived from remote sensing datmd@aseanventories' speed and cost efficienelyile
redudéng uncertainties of forest characteristics estimalisls provide accuate results at more local
scales without increasing the effort in the field. Remote sedsitagontributes tdhesupporiof modern
NFIs through three main applicatiori$) surrogates for field observation or measurement; (2) ancillary
data to improvelte precision of traditional inventoryeal estimates; and (3) mappifdcRoberts and
Tomppo, 2007)

1.3 Enhanced forest inventory with lidar

Lidar is an active remoteeasing method that involves the emission of monochromatic energy pulses
with wavelengthsusually in the infrared region for earth observation. Lidar sensors are also mounted
on different platformsKigurel). For largescale coverages, sensors are mounted on airborne platforms
i.e. airborne laser scanning (ALS) or, since more receatlyspacecraft, e.g. the ICESatl mission
(Schutz et al., 2005)which operated from 2003 tbeendof 2009,and the ongoing GEXDubayah et

al., 2020)and ICESat2 mission@Magruder et al., 2021)ALS sensors, in particular, have gained
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recognition for their ability to generate the most accurate, spatially explicit and dense measurements of
vegetation(Holmgren and Nilsson, 2003; Nelson, 2018Bhe pulses are emitted towards objects of
interest such as buildings, vegetation etc. and the roundtrip time of the pulse is used to measure the
distances of the objects from the sensor. Part of the lass gikes an object (aoup of leavesfor
example), which is returned as an echo, and the remaining portion of the pulse continuesrfusther
process repeats to generate a waveform, which is the entire backscattgiFsgmeaR). It is possible

to have multiple echoes or returns, with the first return generally corresponding to the top of the
vegetation and the last return corresponding t@tband or lower parts of the vegetation closer to the
ground. The intermediate returns make lidar scanning exceptionally proficient in sensing the internal
canopy regions of the vegetation. The full waveforms generated as a result of the interaction of the
pulses with the objects poss#issrange information and information about the physical backscattering
properties of the object®allet and Bretar, 2009From waveforrs, a discrete set of georeferenced
points called point clouds sampled on the surfaces affjeets in threelimensional spacare obtained

along withthe intensity of returnfLillesand et al., 2004; Vosselman and Maas, 2010)

Figure 2: lllustration of an airborne lidar scanning (ALS) setup. The principle is the same for terrestrial scanners

The aility of lidarto accurately detect the top and bottom (ground) of the vegetetdreen used for
several decadewith earlier studies focusechaneasuring the height of the vegetat{@ubayah and
Drake, 2000; Hudak et al., 2009; Neesset, 1997a; Nelson, 2013; Rempel and Parketh&&4)
enabling estimation dbiophysical parameters dubiomass andoreststructuralinformationsuch as
basal area and wood volunfRecent developments in lidar scanning allimv acquiring very high
density point clouds. Identifying individual trees and directly measuring phgsicalcharacteristics
such as crown diameter height,is possibleThis method is callethe individual tree detection (ITD)
approachAlthough lidar sensomsow have veryhigh pulse frequencies that result in dense point clouds

(Figure3), it is challenging to identify individual trees in dense canopies dtleetoomplexities in the
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shapes of different crowrad difficulties in developing robust algorithnfairthermorethe density of
the points in lower parts of the forests redyoeskingit challengingo identify suppressed tre@Réty,
2020) However, there has been significant progress in ITD methods over théRFeaez et al., 2016;
Jeronimo et al., 2018; Koch et al., 2006; Kwak et al., 2007; Picos et al.,\2829get al., 2014; Zhen
et al., 2016)

Figure 3: Dense point cloud obtained for one of the field plots in this stlilg point cloud was normalised using a digital
terrain model (DTM) to convert point altitudes to point heésgibove groundConverting these dense representations to
useful information in the form of trees can be challenging.

An alternate option ianareabased approach (ABAJigure4), whereinstatistical relationshipslso

known as modelsare developed between field measurements for representative dozastfield
reference plotsand lidar metrics derived for positlouds corresponding to those ar@deesset, 2002;
White et al., 2017; Wdler et al., 2012b)The statistical relationships could be parametric regression
models(Hudak et al., 2006; Woods et al., 201dr)nonparametriacegression methods suchrasdom
forests(Nurminen et al., 2013; Yu et al., 201%-NN (Chirici et al., 2016; LeMay and Temesgen, 2005;
Packalén and Maltamo, 2007; Vastaranta et al., 2@18) in recent years, ddeprningbased methods
(Lahssini et al., @22; Liu et al., 2021; Martinkleto et al., 2021)The advantage oABA approaches
liesin the fact that they are knownperformwell even with datasets with lowi[se densitiesThe lidar
metrics can be in the form of statistical descriptors of viical distribution of points orof the
distribution ofintensity values of the points, canopy structural paramétpkinson and Chasmer,
2009) vegetation profilegBouvier et al., 2015; Fischer et al., 201@xels (Carrasco et al., 2019;

Pearse et al., 201,9r any metrics meant to capture the structural characteristics of the vegetation

Figureblillustrates different ways in whididar data could be summarised.
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Figure 4: lllustration of areabased approaches.

Lidar metrics are nothing but summaries of Hexeral thousands of points in the point cloud that
represent a given plot of forest. If the forest plot remains constant, one would expect the lidar metrics to
stay constant. This would be true if lidar data acquisitions were carried out with the shene agd

constant acquisition parameters. However, by its very nature, lidar scanning can be highly variable.
Lidar scanning is governed by parameters such as the flying height, pulse repetition rate of the
transmitter, overlap requirements and the scagieafor the field of view), and other sensetated
properties, e.g. wavelength, beam divergence, power and recorder type. These parameters are dynamic
and can vary across different acquisitions, collectively governing the quality of the point clouds.
Furthermore, the relationship between lidar metrics and forest parameters also depends on the forest
type and terrain characteristiG&he latter has been shownitpact point distributions and th&BA

model based on distributional metri¢dansen et al., 2017)

Voxel-based metrics are alternatives to standard lidar mefines; have also been explored in recent
yearsto summarise and characterigegetationmore accuratelyPoint clouds are subdivided into
smaller threedimensional units called voxels. A voxel (umetric pixel) is analogous to a pixel in
image data, wherein each pixel contains some summary information of the area it represents.-The three
dimensional distribution of vegetation elements is captured better by discretising the point clouds using
voxels (Pearse et al., 2019; Yan et al., 2019). The number of points in each voxel can also be related to
the distribution of foliage to obtamsimplified but more accurate spatial distribution of the vegetation
(Béland et al., 2011; Carrasco et al., 2019; Grau et al., 2017; Soma et al. \aEbased metrics

have been demonstrated to improve the accuracy of forest attribute predKinores al., 2016; Pearse

et al., 2019)Their use in ABA models has given rise to exciting possibilities in the future. ITD or ABA
approacheslependon aspecific minimum point density relatetb the pulse density. Nonetheless,

studies have found that ABA methods tend to perform well even in low pulse defBuisser et al.,
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2019; Disney et al., 2010; Jakubowski et al., 2013; Lovell et al., 2005; Qin et al., W @pproaches,
on the other hand, need higher pulse densities (>5 pulses /m?) for the delineation of differ@Réityees
2020)

Standard metric8/Vhite et al., 2017) Vegetation profilegBouvier et al., 2015) Voxels(Vincent et al., 2017)

Figure 5: Different ways to summarise lidar @ainto statistical descriptors

Lidar sensor developmeaver the yearsow allows for scans at very high pulse repetition frequencies
and with multiple echo detection capabilities. For ABA models, #gteally, therds no upper limit to

the point/pulse densities, which amainly governed bythe field of studyoperational considerations
andstorage capabilitieStudies have benchmarked thenimium pulse densitigs be aroundne pulse
permz for ABA approaches to perform wells regards the lidar scan angle, there are nodefihed

upper limits.

1.4 Understanding the role of lidar scan angle in forestry
applications

As it often happens that an invention or a technology goes on to serve a garpesih it was not
envisioned lidar, or light detection and ranging, was never developed as a remetegsol to study
forestsNelson(2013)notes that thenitial use of lidaremote sensingias driven by a need to accurately
characterise terrain propertisga ice roughness and thicknésstchum, 1971; Toomajr and Tucker,
1971)andbathymetric measurementidickman and Hogg, 1969lidar remote sensing was not used
for foresty in the early yeardHowever, sudiesattempted to employ lidar to penetrate the foceser
andextract the underlying surfadérabill et al., 1980)Still, Rempel and Parker (196dhdLink (1969)
were some of the early studies thaknowledgedhe possibilityof using the lidar profile measements
for studying forests. Howevehese findings weralso aby-product of using lidar to profiltheterrain
below forest coverin profiling lidar, thesensor is generally locked in its positigrointing nearly
vertically downwarsg, i.e. the scaangle is fixed at around @a).
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Rempel and Parkdgi964)acknowledgedhat vegetation heightsould be directly estimated even if
only"5 percent of the forest cover permits an optical path to the gfotmdbill et al.(1980)noted the
possibility of using lidaiscanningo measure tree heights if part of thedrpulsewas reflected from

the canopy and the remaining from tleefst floor

(a) (b)

(€) (d)

Figure 6: (a) Profiling lidar fixed ata scan angle 00°, (b) rotating scanning mechanism tredtows for scans of larger
area, (9 higher scan angles catoveran evengreater surfacereaon the ground(d) different acquisitions for the same
area of interestwith wider scansNote: In reality, the pulses are diverging.

In the same decade, in a hydrography workshioped at developing a lidar system for detecting
underlying terrain, it was established thatamical scan angleof 15°, expandable to 25°, would be
suitable for the purpog®lelson, 2013)The underlying principle was thaee height accuracy depends
on how accurately thé&reetopsand the ground below could be identifiethis was a reasonable
assumption since an increase in lidar scan angle means that it islmflemgingto have an optical
path to the ground due to an increase in the apparent density of the ved&atissel et al., 2018)
Besides, many early systems had a pulse repetition frequeRE&y ¢f a few hundred pulses per second
(Nelson, 2013)Naturally, limiting the scan angle to a predominantly nadir configuratidr0°-15°
ensured that laser pulses Had resistance on thway to the ground and bacBver the decades, this

principle has been followed as a conventioextract tree heights awther forest attributes.
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Extractionof accurate tree height measurements using lidar was the basis of lidar measurements during
the 80s and 90s using profiling lidar configuratifNsesset, 1997b, 1997dyee height measurements

were used to extractimel other forest attributé®ubayah and Drake, 200@jowever, profiling lidar

does not offer the benefit of scaling up operations, which is the primclgntagef remote sesing.
Eventually, aotating mechanism was incorporatetbilidar instrumentsenabling a broadeoverage

to emit laser pulses at different angles in a sweeping or scanning féiséfsky et al., 2002)In the

90s studies began exploring the potential of increasing lidar scan angle up (dl&8%et, 1997b,
1997a) The scan angle was not found to be an influential parameter in predictions of tree heights
(Neesset, 1997ay timber volumegNaesset, 1997kgf boreal forestsHowever the need to quantify the
effects of'looking' throughthe canopy at different angles was emphasised

Over the years, the has been some investigation into thituence of scan angle on various lidar
metrics and forest attributestill, the datasets in nsd of the studies were coff at the 15°20°
threshold, keeping in line with some of the early conventidffesgnussen and Boudewy1998)
observed that the lidar scan angle has minor effecestimatingstand heightdHowever, their study
was ona dataset with maximum scan angle of 12 orsdorf et al(2008)observed fractional cover to
be affected by scan angle despite using a lidar system with a maximum scan angleAbRas et al.
(2005)foundthatthe DTMs derived from lidar data were sagnificartly affeciedby scan angkeof up

to 15°. Chen et al(2014)found that gagraction was stable up to 15°, which was the scan angle
threshold in the studKeréanen et al(2016)tested the effect of scan angle on the prediction of plot
volume and mean height and found that a narrower scan angle ra@jg°afflas more accate than a

scan angle range d&20°.

Even fullwaveform data has been studied for the effect of scan abggepePeremarch and Ruiz
(2020)found that theeturn waveform energy (RWE) metric derived from fldlwaveform lidar, hac

lower radiometric error when computed for-afidir pulses. RWE is sensitive to the energy loss along
the trajectory. However, they limited the study to lidar pulses with a scan angle of less than 20°. They
also found that predicti@nof forest fuel variables were marginally more accurate with inclined pulses.
Interestingly,Kamoske et al(2019)alsorecommended that higher scan angles would ensure a better
sampling of the vegetation resafyin amore accurate understing of the gaps in the canag¢elliner

et al.(2019)also suggest that point clouds acquingth wider scan angles cdnesolve individual tree

and branch structure and are similar to TLS

Limited by cost considerations, lidar data acquisition does not allow for a comprehensive scanning of
forestplots from multiple locationsnaking it difficult to understand tteffect of scan angle for a range
of acquisition geometrieas most operational lidar acquisitiohgve beerconstrained to a scan angle
of 15°20°. On the one hand, acquisition costs could be brought down by increasing the scan angle to

30°, and on the other, data users prefer a 50% of overlap to minimise trendmoake the dataliable
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The resulting tradeof, thereforenderlines a need for a comprehensive investigation of the effects of
higher scan angles, which were atstdressedrom a data simulation pohuf-view. Studies tried to
overcomeacquisitionlimitation on diversity in lidar scan angles in dataskyssimulating lidar point
clouds for different forest typgBisney etal., 2010; Holmgren et al., 2003; Qin et al., 20S&ithulation
enabled generation of lidar davéh different characteristiosithout the practical constraintdolmgren

et al. (2003)simulated lidar data with scan angles up to 30° im&rvalsfrom computer models of
pine and spruce treesimilarly, Disney et al(2010)also smulated lidar data with scan anglesugfto
30°.Qin et al.(2017)simulated lidar datasets in intervals of 5° up to 30°famah different altitudes.
They observed that foliage profiles from simulategetation models wergmilar to those retrieved
from simulated lidar data with a scan angle of 209hlighting thebenefitsof inclined observations.
ConverselyRoussel et al2018)proposed a mathematical framework to normalise effects of the scan
angle on lidar metric&lassical lidar descriptors suak mean, standard deviation, percentiles, kurtosis
and skewness and height distribution entrapyjesult in metrics as if they wereraputed for nadir
point clouds.When using voxisation approaches, the path length is aleasideredto nornalise
information(Grau et al., 2017; Soma et al., 201Rgcently,van Lier et al(2021)tested the effect of
using lidar data with scan anglag to 3° on forest attribute predictions. They concluded alithbugh

lidar metrics were significantly affected, their impact on the predicti@snot of greatmagnitude

Over the yeas, there has been a gradual increiastine lidar scan angle marking a shift away from the
traditional practice of limiting the scan angle to nadir or just -ofdir angles owing to practical
considerationsnd the development of systems with high pulse repetition frequency capabilities.
flexibility of lidar allows for largescale nationwide multipurpose acquisitiof&N, n.d.) Recent
innovations such as the Leica SPL1tve fixedFOV capabilities of up to 60Gallowing wide-area
acquisition at lower cost per data point (Leica Geosystertsyecent years UAV acquisitions have
been carried out at local levelghich involvescan anglekigher than @° (Cao et al., 2019; Liu et al.,
2018; Lu et al., 2020; Ma et al., 2022 the coming yearsincreasingthe use of such lowflying
platforms with high scan anglevill entail the need fosimultaneouknowledge hilding concerning

the influence of lidar parameters

There seem to be two schools of thought, a) one that prefers to limit the scan angle to nadir er just off
nadir and b) one that believes it is possible to obtain new insights by incréessan arlg. Roussel

et al.(2018)remarked that the effect of stangleof forest predictionsiight vary from one forest type

to anotheandmay also depend on the chosen lidar metrics and subsequent ABA nSmettimes
contrasting observations in different studies evidenseThere is a lack of conclusikmowledge about

the lower and upper thresholds for scan arigigeed this further reinforces the needitoprove our

understanding of the problem.
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Additionally, in any given scen#he acquisition geometry is defined thye Idar scanning parameters,
theterrainand vegetation type physical characteristicsteep environments, if the aircratft is relatively
‘upslopéof the forest being scanned, the pulses must travel through some vegetation immediately next
to the area of interest. Furthermore, tinees growwith some inclination in steep terrains with
asymmetrical crowns due to competition for ligBteidenbach et al., 2008}onsideing the acquisition
geometry is thus essential to understantlad|y scan angle.

Although some of the research so fashtétempted to study the influence of lidar scan angle on lidar
metrics and, to a lesr extenton attribute estimations using lidar datgere is certainly scope for more

work to be done in this regard. @me one hand, amentioned before, the general understanding is to
limit lidar acquisition to 20° ofilter out datasets acquired with high inclinati®@SM, 2010) Using

50% overlap is one way to ensure sufficient sampling of forest plots. However, ensuring a high degree
of overlapcan be costlyln NFI recommendations of some countries, there are speicifisaf overlap

criteria of 30%(Ministry of Forests, Lands and GeoBC, 2020hile some other countries do not have

an explicit consideration of the saif®CT, n.d.; IGN, n.d.; Swisstopo, n.d.)

1.5 Research questions and objectives

For sustainabléorest management, accurate information about the forests is critical. With differing data
acquisition practices across local, regional, national and global scales and different platforms, it is
essential to move towards harmonisation of information vérikuring coseffectiveness. While lidar

scan angle has been ackhesged to impact ABA models, there is a latkconvergence among some

of the studiesEven lesser attention has been given to strategies to deal with datasets comprising inclined
scan angds while the incidence okuch datasets is increasing either due to new technological
developments or due to limitations in @®ue tothecomplexityof vegetationmeasuringts structure

using lidar highly depends on the acquisition geom8&tydyingthese interactions and better evaluating

their impacton forest attribute estimations from lidar data is essetttidletermine if more attention

should be pal to this acquisition parameter.
Two main hypotheses were

H1: ABA predictions will be unreliale if influences of scan angle are not considered when modelling

relationships between forest attributes and lidar variables
The main research question based on the hypothesis is:
Q1: Whatare the impacs of lidar scan angle on lidar metrics and ABA predictions?

H2: The effect of scan angles on the accuracy of ptied& can be reduced by normaigg lidar metrics

to changes imcquisitiongeometry or byncorporatingthis geometry ilrABA models.
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The mainresearch question based on the hypothesis is:
Q2: How to manage the impact of lidar scan angle on ABA predictions?

In the context of the hypothesethe mainobjective of this PhD studywasto understand whether
accounting for the impact of scan angbadidar datacouldbehelgful in the development abbust and
accurate ABA modeltor thepredicton forest attributs, andthereforegfostering use of lidar for forestry

application.
The subobjectives of the study were:

1) To assess the impact of lidar s@ngle on ABAmodelsmetricson a diversity of complex forest
environments
a. By assessing the impact of sa@mgle oncommonly usedidar metics that are used in
ABA models
b. By assessing the impact of using metrics thaeaptanatory busensitive to lidar scan
angle on ABA predictios
2) To develop methods to manage the impacts of lidar scan angle on ABA models
a. By considering different combinations of acquisition geometries (scan angle)
b. By developing metrics using voxbhsed approaches mormalise for effects of scan
angle
c. By modellingthe effects of scan angles by considering overall acquisition geometry
using deep learning approaches.
3) Draw perspectives anegecommendationsom our findings for the operational use dtiar data

for forest applications

1.5.1 Impact of scan angle on ABA models

The impact of scan angle on ABmodelswas addressed via the sobjectives & and b. The

fundamentathallenge as illustrated ifFigure5| is thatalthoughincreasing the scan angle will help

improve the operational efficien, we do not know the implicatiored doing soon lidarmetricsandon
subsequent forest attribute predictions using ABA models. The challangesfrom the fact that
numerous lidar metrics used in ABA models are notssegbfrom the point of view ¢he impact of

scan angldeforethedevelopment of ABA models. Studies have documented the effect of various scan
anglesin different forest envonmentgKeranen et al., 2016; Montaghi, 2013; Roussel et al., 2018; van
Lier et al., 2021)For exampleKerénen et al. (2016pbservedhata scan angle lower than 15° was
preferable fothe prediction ofvolumein pine-dominated managed forestghile van Lier et al. (2021)
found marginal effects of lidar scan angle eugnto30° for forest attribute predictions in bals#im
dominated stand#s forests are not homogenarsviranments,viewing them from different locations

can result in varying information. Furthermoessforests havevarying physicalcharacteristicsit is
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imperative toassess the impact of scan anglezamiousforest environmentsespecially in complex

stands and mountainous areas

This part of the studgompriseswo stages. In the first stagié was hypothesised that lidar metrics
would be influenced by changing acquisition geometry (scagle), driven by the spatial heterogeneity

of complex foresenvironments. Theffect of lidar scan angle on a & lidar metrics was studigfdr

the riparian forests along the river Ciron in southwestern France. The riparian forests were relatively flat
terrain with average slope of 8.9 degregle set of metcis comprised statistical descriptorstoé
distribution of point heights and forest structural characteridiosthe secondtage of thestudy, it

was hypothesised thABA modelscalibrated basedn a set of plotscanned with specific geometries
(which depends on the flight plam)ay beprone toprediction errors when applied tssesstand
characteristics adimilar stands scanned with different acquisition geomethiethis stage, three other

types of forests were also consideradhich consistedf broadleaf, coniferous and mixed stands in

mountainous terrain witAnaverage slope of 26 degrees.
The specific questions that were addressed in this part of the study were:
Q1) What is the impact of lidar scan angle on commonly used lidar metrics?

Q2) What is theeffect of theinclusion of lidar metrics sensitive to scan angle on ABA models?

1.5.2 Strategies to deal with impacts of lidar scan angle

This part of the studgoncerns the secorslibobjective So far, nostlidar acquisitions are planned
basedon the hypothesis that high scan angles (above 20°) must be avoided to ensure ground detection
As a strategy to manage lidar datasets with inclined scanning, studies have ptioposeahalisation

of lidar metrics for point clouds acquired from inclinecans to correspond to those acquired from

vertical scangRoussel et al., 2018)

Accurate charaerisation of the canopy properties is an essential requirement for a better understanding
of spatial and temporal properties of vegetatanmd voxelbased metrics have been shown to perform
well in these taskfCarrasco et al., 2019; Kim et al., 2016; Pearse et al., 2Z0h8estrategies were

proposedand evaluatetb managecan angle impacend improve ABA model robustness

The simplest method for reducing the impact of scan affiglete was investigated in the first strategy
(S1), which involved mixing point clouds from several flight lines widrious scan anglesThe
performance of ABA models was also studied when the data consisted of point clouds from single flight
lines As it can be costly to ensure overlafigs technique is not feasgbin an operational environment.
Therefore two different strategies wemdsoinvestigatedThe second strategy (S2) suggested a voxel
based approach to normalising lidar metricarashypothesised thahé impacts of the lidar scan angle

could benormalised by voxebased 3D reconstruction techniques based ondae fiulse trajectory
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retrace resulting ia calculation of voxelevel plant area density (PAD)ith higher accuracied-igure

.

Figure 7: Ray-tracing

The third strategy(S3) hypothesised that any given acquisition geometisults fromthe unique
interaction letween lidar acquisition parameters, terrain properties and vegetation characteristics.
Therefore, changes in lidar metrics, if any, due to varying scansgrglddesomeunique insights into

the properties of the vegetatiofhe innovative aspedf this part of the study was to consider point
cloudsfor the same plots bdtom different flight lines as independent and unique obsenation
augment standard lidar datastis ABA modek. The variables describing ttaequisition geometry

were thus consitedcritical explanatoryariables to be included in the model.

The specific questions that were addressed in this part of the study were:
Q3) How does overlap in lidar data acquisition influence the quality of ABA models?
Q4) How to normalise lidametrics sensitive to lidar scan angle?

Q5) How tomodelacquisitiongeometry in ABA models?

1.6 Overview of the thesis
This thesis is divided into threeainchaptersorresponding to three publications

Chapter Zmainly addresse®1. The influence of lidar sm angle was assessed on commonly used lidar
metrics that were computed for an entire forest. ABA approaches involve developing models for a given
set of field plots followed by dividing thehole forest into a grid with a gridell areacomparable to
thearea offield plots used. Similarly, the forest was divided iatgrid and metrics were computed for
different scan angles engrid cell. The study site is a riparian area along the Ciron river and some of its
tributaries in Southwestern France. It ird#s broadleaved and mixed standsh low levels of
management intensitystands are charactexd by a high diversity in species and by their structural

complexity.The variability of the metrics wamalysedy comparing metrics computed for point clouds
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acquired with inclined scan angles to those computeddmt clouds obtained with nadir acquisition
The study highlighted #t metrics were differently sensitive to scan angle and that metrics such as gap
fraction, commonly used in modelgere amongst the most sensitive.

This chapterwaspublished in the ISPRS Archives in 2020 as a part of the proceedings of the ISPRS
Congress Nice 202Mitially accepted as an oral presentation, it alaspresented aa poster in the
ISPRS Congress Nice 2020/2021/2022.

In Chapter 3 several questiorsreaddressedsing lidar datasets for varying types of forests and terrain
properties. The first studgrea(riparian regioh was studied along witkthreedifferent foreg types
(coniferous, broadleaf and mixed) in tMassif des Baugeim eastern Francd-or both sites,idiar
datasets were acquired with multiple overjapsd different regions werscanned with different
acquisitiongeometry or viewing characteristitsdar datasets were resampled from the exisdaigto
datasetswith constraints on the lidar scan angle other words, for the same area, different and
independent lidar acquisitions were simulated. A predefined ABA model with metrics with varying
sendivities to scan angle was chosen to model forest attribkitessly, the impact of scan angle on the
lidar metrics chosen or the ABA model was assessed at the level of théoplibiee forest types at
Bauges Then the effect of using lidar metricssgive to scan angle on the forest attribute predictions
was investigated (Q2Xhe lack of robustness wasflected in the ABA predictions for models built

with metrics sensitive to scan angle for datagéts different acquisition geometries.

In this Chapter3, questions Q3 and Q4 were also addressed to evéheapotential of two suggested
strategies S1 (combining several flight lines) and S2 (using voxelisation to nosenaietrics) to
mitigate the effects of scan angles on ABA modBssed on §, it was observed th#te variation in

ABA predictions was lower when datasets consisted of point clouds combined from multiple flight lines.
Regarding S2 heresampled datasets were used to build ABA models with equivalent metrics derived
from voxelisdion. The benefit of using voxelisation as a strategy to manage the effects of scan angle
was assessed/oxel-based metrics had a positive contributimnthe predictions on account of
improving the average accuracy of predictions and reducing the vigyiabipredictions for datasets

with different acquisition geometries. This chaplters ber submitted to the ISPRS Journal of

Photogrammetry and Remote Sensing. It has beeepted with major revisiomsd was resubmitted.

Chapter 4ocuses on Q5A different perspective was applied to understand the impact of scan angle on
lidar metrics and ABA predictiond-orest vegetation is n@&venlydistributed and the terrain is not
always flaf as was the casfor the study area at Bauges. In such com@enains, the azimuth of
acquisition also plays a role in the acquisitidleural networksvere used to model the interaction
between factors such as thequisition parameters, temmaand vegetation propertie& point cloud for

any given plotresulting fom the interactions dhese factors was consideradinique observatio\

related study investigating the fusion ofdir and optical data using ddeprningbasedpproaches was
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published inLahssini et al(2022) A part of that study using the multilayer perceptron (MLWP3s
adapted to the requirements of this study. This chapter has been written in the form of a publication for
submission to peaeviewed journalsThe findings were also presented at the ForestSAT amde in

Berlin in 2022

The findings are discussed in ChapteF@w recommendations and perspectives are provided to foster

the operational use of lidar data for forest applications
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Scan angle impact on lidaerived metrics used in ABA models for prediction of forest stand

characteristics: a grid based analysis

Abstract: Lidar scan angle can affect estimation of lidarived forest metrics used in area
based approaches (ABAs). As commonly used-firder metrics and various usdeveloped
metrics are computdd the form of a grid or a raster, their response to various scan angles needs
to be investigated similarly. The objective of this study was to highlight the impact of scan angles
on 11 metrics (9 heigHiased and 2 other commonly used metrics) at thé ¢étbe gridcell.

The study area was divided into a grid of cell size 30 m. In evenycglidthe flight lines that
sampled at least 90% area of the grédl were identified. The flight lines and the corresponding
point clouds were then classified bdson their mean scan angle into four classe&@; 10°t+

20°, 20°80° and 30%0°. Metrics were computed for one flight line per class for eackcgiid

This resulted in a maximum of four values for a metric in everyggid Comparing these values
revealed the evolving nature of the metrics with the scan angle. For the comparison we used a
paired ttest and simple linear regression. We observed that most of the metrics were
systematically undeestimated with increasing scan angle. @aption, rumpé index were
affected more than standard deviation of height while the maximum height was relatively stable.
Among the height percentiles, the higher percentiles were relatively more stable compared to the
lower percentiles. Scan angles can indeed havienpact on the estimation of lidar derived
metrics. Although, many of the metrics studied showed statistically significant differences in their
computation for different scan angles, their impact on the accuracies of ABA models needs to be

studied further ¥ accounting for the differences as shown in this study.

Keywords: lidar, scaiangle, aredased approach, forest metrics, forest inventory
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2.1 Introduction

Lidar acquires an explicit thredimensional representation of the det structure. Such
informationis essential to model both ecological and resource manageifoentation, and there

is a broadspectrum of methodsacross variousairborne LiDAR platforms for improved
characterisation of forestosystems and a better understanding of fimeationing.lt is possible

to extract several forest inventosttributeswith improved accuracie$or better resource
managemen{Bohn and Huth, 2017; Breidenbach et al., 2010; C6té et al., 2018; Naesset, 2007;
Wallace et al., 2012} idar data can also be used to asbégshysical variables, such as above
ground biomass (AGB) ancelaf Area IndexXBouvier et al., 2015; Breidenbachdfstrup, 2012;
Lefsky et al., 2002; Vincent et al., 2017)

In Areabased approaches (ABAg set of ALS variables (Xi) +derived from lidar data for a
given areadis linkedto a target variable (Y) measured at the same area on the diwlrayah

and Drake, 2000)This is done for a haiful of different plots to build a predictive model to
predict the target variable for the entire for@dte fundamental unit of a predictive modelas
small subset from the lidar point clgutie area of which equals the area of a reference field plot
(i.e., typically 0.025 to 0.07 ha). A model developed for representalbtsis thenapplied to the
whole forest area divided ingrid cells, the area of which still equals the aresetérence field
plots. Any given target forest attribuie thus prettted at the cell levelNotwithstanding the
tradeoff between area coveragthe density and the resolution of measuremertgtween
different platforms (i.e.exial and urmanned aeail vehicles (UAV)), studies havecommended
further investigation of ariation inacquisitionparametergor forest parameter assessm@pao

et al., 2016; Korhonen et al., 2011; Tompalski et al., 2088jne studieocussed on the effect

of point density on the accuracy of stand attrilpuslictiong Bouvier et al., 2019; Naesset, 2009;
Singh et al., 2016Relevant lidar metrics selected to build predictive models were found to differ
significantly with pulse density iNaesset(2009)but inBouvier et al.(2019)there was nchange

in the fourmetrics usedHowever, in the range of explored pulse densities, i.e. from 0.067%0 12
pulses/mz2, in all the studies considered together, only minor or even no impact on stand attribute

predictions was found.

Another critical acquisition parameter is the maximumnafflir scan anglater et al., 2011)

Liu etal., (2018) demonstrad the effect of scan angle gap fraction estimation which, in turn,

affects the estimationf & Al. Tompalski et al., (2019jecommend the disentangling of various

acquisition parametersndluding scan angle, to developbust trasferable models. Studies

utilising lidar-based metrie generally do not consider tiidluence of scan angleand there may

be unaccounted biasehich may cancel each othie predictive models (Roussel et al., 2018).

There can only be one, orafewgfit SDVVHYVY IRU D JLYHQ DUHD DQG LW LV HY
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FRQILIXUDWLRQY RU WKH VFDRal b sah@iiwil ba\dfeert (FRgreH D FK JU LG
1). Owing to these inconsistencies, metrics computed for an entire forest, in the fornstef a ra

may possess inherent biasésr airborne acquisitiongvans et al.(2009)recommend limiting

themaximum scan angl® 15° to reduce measurement es;atespite a reduction in flight time

and cost that would have enabled higher scan arglésontaghi, (2013), everal metrics were

found to be relatively stablg to an angle of 20 degrees. Howewéth the increasingopularity

of light systems embedded on low altitude platfatsuch as ULM or UAVstit is imperative to

understand the response of variammnmonly used metrics t@awying scan angles as limiting the

scan angle to 1820 degrees is hardfgasible in an operational mode for reasons of time and data

volume optimisation. This would allovior better management of the biases and result in more

informed misgon planningfor efficient data acquisition.

In the present study, with the objective to contribute to tigerstanding of how scan angles
modify metrics that are commonly used in ABA apptues, we analysed the impact of scan
angleson a set of metricthat can be usetb describethe horizontal and vertical veigdion
structure of a ripariaforest located in the Landes areasauthwestFrance.

Figure 1: Acquisition geometry from different flight lines

2.2 Materials

2.2.1 Study area

The studyarea is aiparian zone bordered by pine forests in the Ciron valley in the southeast of
the Gironde and the northwest of the teitGaronne departments, in the Aquitaine region of

southwestern France. As a resoltrelated projects, field plot inforrtian was available for 30
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circular sites (1%n radius) along the river Cirdfflowing in SENW direction)and its tributaries,
covering a total length of approximately W®. The plots are representative of the riparian
ecosystemThe field measurementseaindicative of structurally diverse vegetation in the region,
with as many as 33 different species of trees and a diameter at breast height (DBH) varying from

7.5 cm to 87 cn{Figure 2). The riparian region includes the active floodplains. It is highly

biodiverse because of sparse forest management activities. In contrast, periodic management

practices are carried out in the pine forests located beyond the riparian region.

Figure 2: Example of the riparian environment in the study
area

2.2.2 Lidar data

In early October 2019, INFOGEQ@-rance)acquired lidar dataising a VQ580 laser scanner
(RIEGL, Austria)on an ultralight aircraft platfornThe flying altitude waapproximately 25@n,

which enabled datacquisition at a overallpoint density of around 68 pts/n®verlap of 35%

40% and several passes over any given area (Figure 3) ensured that several locations across the
UHJLRQ ZHUH VDPSOHG ZkokflguratoWFigsre H. Hoeve?, lit vag not
possible to obtain all the configurations for all the areas. Additional sensor specifications are
available in Tablel. Data pprocessingwas carried out by INFOGEO, whicimvolved
classification of ground pots using TerraScan (Terrasolid Ltd., Finland).

Date of acquisition Early October 2019
Sensor RIEGL VQ580
Wavelength Nearinfrared
Field of view 60° (+30°£30°)
Beam divergence 0.2 mrad
Footprint diameter 52 mm @ 250m
Ground speed 25 m/s
Pointdensity 68 pts/m?
Flight altitude AGL 250 m

Tablel: Technical specifications dlfie sensor
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Figure 3: Canopy height model of the Ciron valley area with field plot locations and data acquisitiorifiggt

2.3 Methods

2.3.1 Metrics selection

While new metrics are continually being developed to improve prediction of forest attributes
(Almeida et al., 2019; Bouvier et al., 2015; Véga et al., 20fl®} order derivatives such as
heightbased and densiyased meics are commonly utilised in ABA approach@gitchell et

al., 2012) We thus considered heighased metrics such as mean, maximum, standard deviation,
coefficient of \ariation of heights, and height percentilest(180", 50" 70" and 9¢"). When
computing these metrics, the understory vegetation and ground points were not considered by
filtering out all points below a height threshold of 1m. Besides typically idbasgrdistributions

(Roussel et al., 2018hhese also considered to be descriptors of forest wtaliconditions.

We also included two other widely studied metrics in our study: gap fraction and rumple index.
The distribution of foliage determines the proportion of open areas in forest vegetation, which, in
turn, determines the amount of energy fribia sun and the sky that travels through the canopy
(Nilson, 1971) Gap frequency or gap fraction is a good indicator of the structural characteristics
of the vegetation and can be assessed from did&(Bouvier et al., 2015)Gap fraction was
calculated as described Bypuvier et al.(2015)by dividing the number of first returns below a
specfic reference height (2m) by the total number of first returns. Rumple index is the ratio of
the outer surface area of the canopy to the ground s§Radeer and Russ, 2004)is a measure

of the structural complexity of the stand. It characterises the-catey, which is related to the

development of the forest stand.
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2.3.2 Data preparation to analyse effects of scan angle
As stated in the introduction, the giéell is the unit area used to apply an ABA model. The

dimensions of the gridell are similar to those of field reference plots, which aren30bameter
circular plots in this study. Hence, we attempted to discritesecan angles accordita grid
containing cells of 3nx 30m and analysed the point cloud in every cell to understand the
impact of variatiors in scan angle on prgefined metricsDue to the acquisition geometry
illustrated inFigure 1, not evergrid-cell is sampled with all the possible scan angles. In other
ZRUGV WKH GDWD ZLWK FRQWLQXRXV VFDQ DQJOHV L H f
grid-cell. Five classes of scan angle (absolute value) were thus defined bakedsoa angle

rank of the LAS dataset, namely-@0° as class 1, 1020° as class 2, 2030° as class 3, 30°

40° as class 4 and >40° as class 5. The scan angle is based on 0 degrees for {@#dimadd
+90° to the left and right sides of the aircraft exgfyely (ASPRS, 2013)We hypothesised that,

for each pair of scaangle classes (clad-class 2, class-tlass 3 etc.), the number of common
grid-cells sampled from the five different classes of angle would be sufficiently high and
representative of the diversity of the stand types present across the site.

The steps of the process folled/are: (i) for each gridell, we identified all the flight lines from
which the lidar sensor sampled it either entirely or partially, and divided the point cloud in the
grid-cell into subsets based on the flight lines. We did not consider any fligkt dime, by
extension, point clouds that partially sampled a-gall if they covered less than 90% of its area

to avoid including in the analysis metrics that are not representative of the whole forest plot within
the gridcell; (ii) we then computed theaan scan angle for each of the remaining point clouds.
We assumed that from a particular flight line and at a flight height ofrR58e sensor samples

a given gridcell largely homogeneously and that the mean scan angle could be considered
representativef the acquisition characteristics. This assumption was necessary for the sake of
simplification, as it is not possible to analyse the influence of scan angle continuously. In practical
applications, all regions are not sampled equally with all scansamglethe laser beams are never
parallel. When a gridell was viewed with the same seamngle class from more than one flight

line, we considered the flight line that had mean scan angles closest to the respective class median
values (0° for10° to +10, 15° for 10° to 20° etc.); (iii) the metrics were computed for the point
clouds from each of the remaining flight lines. After considering the area threshold of 90%, there
were instances where some classes had no flight lines/point clouds and in ssctheasetrics

were not calculated.

The result comprised a stack of five rasters in which everyogiichad a vector of five values
for the metrics, one for each class of scan angle (including NA values for empty classes). During
the data acquisition, eertain buffer area was considered on either side of the riparian forests.

These areas contained urban settlements and agricultural fields. We u¥dteamBbpercentile
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raster to conditionally filter out all the pixels in the five layers corresportdiagd®' percentile

value of 7m or less. The number of griklls with points belonging to class 5 (480°) were
significantly lower compared to other classes. We also observed that thesellgridere in

regions where the aircraft was making a tduring data acquisition. Therefore, we did not
consider class 5 and conducted further analysis of the other four classes. After dropping class 5
and retaining only grigells corresponding to forests {9&eight percentile > 7 m) we first
analysed the dersity of viewing configurations that could be found on the area by counting the
number of scan angle classes per-gall. Then, metrics were compared for griells viewed
concurrently from the first four classes of scan angles. 2000 commecefjsdistributed across

the entire study area were available.

2.3.3 Analysis of scan angle effects on the selected metrics

For a statistical understanding of the influence of scan angle on metrics, we compared the
distribution of metrics using mean and standard atewi. We used thpaired sample-testor
dependent sampletést to determine whether the mean difference between two sets of
observations is zero. In a paired samgiest, each subject or entity is measured twice, resulting

in pairs of observation®Ve compared the metric values for class 2, class 3 and class 4 to class 1
values. The null hypothesis () being that the true mean differenc&) between the classes is
equal to zero. The two tailed alternative hypothesig éssumes that the true amedifference

(&) is not zero. The level of significance was 0.05. The dispersions of differences between class
1 and class i (i= {2,3,4}) were also assessed by computing the standard deviations of the cell by

cell differences for each pair of seangk classes considered.

Furthermore, we also compared the metric values for each of classes 2, 3 and 4 to class 1 using
simple linear regression to assess the impact of scan angle as we move away from a predominantly
YHUWLFDO pYLHZLQJ FRIidincdr ir&afionships wedeDtested for statistical
significance in two aspects, namely, slope and intercept. The equatithe flimear regression

model that can be used teptain the relation between (class i, where i = {2,3,4}) and(class

1) is as follows:
i LUEUTE 6 (1)

U, is the coefficient for intercept and} is the coefficient for the slope. Using the
linearHypothesis() function in R, we jointly tested for the significancélof. rand U L s at

a level of significance of 0.03-or Pvalues<0.05, the null hypotheses were rejected, thereby
indicating that there was a bias in the estimation of the metrics for higher scan angles, either due

to the slope or the intercept.
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2.4 Results

2.4.1 Summary of the grid-cells

There were 16758 gridells with a 93" height percentile value of m or more considered as
forest. Among these, 2446 grigtlls did not return any class of scan angles; 906-agiid
containedanyone class; 4549 gridells containe@nytwo classes; 6857 gricells containe@ny

three classes; and 2000 gdellls contained four classes.

2.4.2 Mean differences and standard deviation

The results of the paireetésts for the sample of 2000 giddlls containing the four scaangle

classes are presented in Table 2. As per the mean diféexefor almost every metric there was

an underestimation for the inclined classes, which led to statistically significant differences as
shown in the table. The max (maximum) metric was not significantly affected across class 1, class

2 and class 3; hower, classiclass 4 was statistically significant with a mean difference of 0.183

m. For the mean metric, the mean differences for clatast 2 and classdass 3 are statistically
significant at 0.113 m and 0.130 m respectively. In the case of geeffuf variation of height

and rumple index, the metrics for class 2 seem to have been overestimated compared to the
reference class (class 2>class 1). There was no difference between class 1 and class 3 and a

significant underestimation for class 4 comgghto class 1.

For coefficient of variation, the mean difference for clag$ass 4 was approximately 0.860

The mean differences for the percentiles were mostly positive (ranging from 0.09 to 0.18) for
class iclass 2 and classdass 3. The lowergrcentiles had no significant mean difference for
class iclass 4, with the exception of p30 (3@ercentile), which had a-yalue of around 0.02.
Within the percentiles, for classclass 2 and classdass 3, p10 had the highest mean difference
and thep90 (90" percentile) had the lowest mean difference. For any given metric, the standard
deviations of the differences had an increasing trend from cleles4 2 to class-dlass 4. This

was observed for all metrics with no exception.

2.4.3 Simple linear regression (ch-cll)

A visual analysis of the scatterplots for class i vs class 1 showed that class 1 metrics are linearly
related to the metrics of the other s@amgles. Figure 4 depicts the scatterplots for a subset of six
metrics. Some metrics such as degrtion and rumple index were clearly affected by the scan
angle, while some such as p10{J@rcentile) were affected to a lesser extent. The effect of scan
angle on mean, max (maximum), and p90 is relatively lesser. Testing how different the negressio
lines are from the y=x line can reveal the existence of systematic (intercept) and variable (slope)
biases (Table 2). We observed that for almost every metric, the slopes of the respective regressions

lines were less than one. For the height percenktitgsieen p10 to p90 there was a gradual shift
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of the regression lines towards the y=x. Lower percentiles were more affected by a change in
scanangle than higher percentiles. The null hypothesis, that slope = 1 and intercept = 0, was not
rejected for the mx metric for class 2~class 1. Although the slope values for class 3~class 1 and
class 4~class 1 are close to 1, under the joint hypothesis test, the null hypothesis was not rejected
due to a significant effect of the intercept. This was also the casghfer metrics as shown in

Table 2. Coefficient of variation, gap fraction, and rumple index appear to be considerably
influenced by the scan angle either due to the existence of a significant systematic bias (CV and

rumple index), or due to variable biagp fraction and rumple index).

Table2: Tabulation of the pairedtests, standard deviation of differences (with the increase relative-wXi
% in parenthesis) and joint hypothesis tests for the intercept = 0 and slbmeenario; cll, cl2, cl3, cl4 are
short for classes 1, 2, 3 and 4 respectively.

XQLW OHVV Hop !
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Figure 4: Scatter plots for selected metrics that depict the evolution of the metric under the influence of scan angle
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2.5 Discussion

The mean differencesevealed the variations in metrics for different classes, but it could not
adequately convey some of the beggometimes means are equal but can hide the existence of
biases). On the other hand, simple linear regression was able to add to this information in two
aspects. Firstly, as a visual diagnostic, it presented linear relationships between the cldsses for a
the metrics. It also showed an increasing spread of the data as class 1 was compared with classes
2, 3, and 4. This spread is responsible for the increase in the standard deviations of the differences
as shown in Table 2. The rate of increase of thedsta deviations are very high for the metrics
(except max andumple when comparing classclass 2 to class-dlass 3)with a percentage
increase ranging between +2% and +42% and +50% and +112% when comparingldas®1

to class iclass 3 and to aks iclass 4, respectively. Secondly, the different slope and intercepts
revealed the inherent biases in the estimation of these metrics from different scan angles. Rumple
index and gap fraction were considerably affected which is significant as fdieser et al.,

2015; Véga et al., 2016pnve reported that these metrics were useful to improve models to predict
forest paraeters.Liu et al. (2018) observed that the scan angle affected the gap fraction
differently in different forests (and different structural conditions). H@xethey did conclude

that the estimation is maximum for vertical observation, i.e. nadir, which was also observed in

this study.

The height based metrics were affected to a lesser extent. The max metric showed the least
variation. The higher percentilegppeared to be relatively stable compared to the lower
percentiles.Montaghi (2013) reported that the higher percentiles, in particular, remained

relaively stable compared to density metrics (not explored in this study). They also said that the
8QGHUVWRU\ UDWLR GHILQHG DV 3WKH UDWLR EHWZHHQ DOO
WKH QXPEHU RI WKHVH UHWXUQV &0 ¢ difddtatddytip\écan@igéV LILHG C
The computation of the understory ratio is similar to the calculation of the gap fraction in this

study.

The variation in the estimation of metrics could potentially impact the quality of ABA models
that utilise these sirics. Practical limitations in flight planning cause the getls in an area to
EH VDPSOHG ZLWK GLITHUHQW B3YLHZLQJ FRQGLWLRQV"™ :KHQ VH

changes in the metrics

will also be due to differences in seangle andhot only in stand characteristics. This effect could
perhaps be systematically addressed by taking into account classes of scan angle when building

models. For example, building one model for one class of scan angles which would necessitate
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more field plotmeasurements; or using regression analysis to model the effect of scan angle, with

the possibility to partially correct for these effects before developing the model.

The limitations of the study are related to the generalisation of scan angles witkozaeamgles

in a range of 10° to one class value. Witbiass variations could not be addressed systematically.
Moreover, even the mean scan angle for a flight line is a generalisation of range of scan angles.
It is not possible to overcome these acdgiaisilimitations. Furthermore, the characteristics of the
stands could also have a significant role to play. This was however not addressed in the present
study. It is pertinent that the intermingling of the effects of stand characteristics and scan angle
be decoupled for a systematic appraisal. Radiative transfer based simulation of forest point clouds

could open up potential avenues to address these issues.

2.6 Conclusions

In this study, we analysed metrics that are frequently used in ABA methods to umti¢nsia
response to varying scan angles. Metrics were computed in the form of a grid for each class of
MYLHZLQJ FRQILIJXUDWLRQ ¥ L H VFDQ DQJOH 7KHUH ZDV D QF
fraction, rumple index, and CV of height being affecteghificantly. Higher height percentiles

were affected to a lesser extent than lower height percentiles and the maximum height metric was
relatively stable. The key advantage of ABA methods is the ability to characterise-stihah
variability. This hadeen a proven development over the conventional $¢ésetibased inventory
(Dubayah and Drake, 2000However, practical data acquisition constraints may eventually lead

to biases in metrics as demonstrated in this study. These biases can vary depending on the
locations of the grigtell andhow they are sampled. The capacity to handle these biases could
significantly contribute in improving the accuracy of the ABA models.
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An investigation into lidar scan angle impacts on sttribute predictions in different forest environments

Abstract: As studies have underlined the sensitivity of lidar metrics to scan angles, the objective of
this study was twofold. Firstly, we further investigated the influeridelar scan angle on the ABA
predictions of stand attributes of riparian (29 field plots), broadleaf (42 field plots), coniferous (31
field plots) and mixed (45 field plots) forest types in France. Secondly, we evaluated the potential of
voxelisation apmaches to normalise scan angle effects in lidar metrics and mitigate scan angle
effects in ABA models. To achieve these objectives, we first selected a model based on four lidar
metrics with different sensitivities to lidar scan angle, i.e. mean anchearad canopy height values,
gapfraction, and coefficient of variation of plant area density (PAD) profile. For each plot, we
considered the point cloud scanned from one flight line independently and characterised each
resulting point cloud by the meanascangle MSA and classified them into one of three clasges:

(0° <=MSA< 10°), B (10°<=MSA< 20°) orC (20°<=MSA< 30°). An experimental setup involving

nine scenarios was conceived to study the impact of the number of flight lines (sciébdtiband

flI3) and predominant scan angle (scenaA@® or C) or combination of scan angle directions
(scenarioA andB, or A andC, or B andC), on areebased approach (ABA) models. We built ABA
models for the same forest plots for 5000 resampled datasedsh scenario to predict three forest
attributes, i.e., stem and total volunvg:@ndVi.) and basal are®8f). Three goodnessf-fit criteria

were computed for each model (coefficient of determinatici, (Blative root mean square error
(rRMSE) andmean percentage error (MPE). We compared the distributions of the gooéiiiess
criteria between scenarios to assess the behaviour of the predictive models when: 1) the number of
flight lines (i.e., scan angles) increasts, {2 or fI3); 2) lidar dataets comprise specific scan angle

(A, B or Q or combination of scan anglesR, AC or BG; 3) voxelisation is used to compuReand

CVrap. The results show that models built with point clouds scanned from multiple flight lines were
more robust, with a lwer standard deviation of their goodneddit criteria. On average, across all
forest types, compared fid, the standard deviations of Ristributions were lower fofl2 andfl3

by 42% and 7®6, respectively. We also observed that a dataset withedominantly nadir
configuration (i.e., scenarid) did not always result in better predictions (me&rhigher by 0.08,

0.07, 0.04 for scenariB for broadleaf, coniferous and mixed, respectively). For a sedliifration

plots, the resulting forest athite models depend on the acquisition geometry over the plots, as
observed in this study, which could result in unreliable tealvall predictions. The risk is
particularly high in acquisitions with low overlapping rates, with many areas covered bynenly o
flight line. Using voxelbasedP; and CVeap together with the mean and variance of heights helped

to mitigate the impacts of changes in scan angles by a) increasing the means of the distributions,
thereby improving the accuracy of predictions, or b)ucaty the standard deviations, thereby

increasing prediction precision, or c) both of the above.

Keywords: lidar, scan angle, forest structure, voxelisation, vegetation profile, leaf area index, forest

inventory, ABA models
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3.1 Introduction

Lidar scanningvas initially developed for topographical surveystaking advantage of its ability

to penetrate the forest canopy (Krabill et al., 1984). However, lidar can also probe forest canopies
with high accuracy, thus making it suitable for deriving forest aitei for large areas (Nelson,
2013). Over the years, the data collected by lidar in forest environments, which generally take the
form of 3D point clouds with signaiklated attributes, have been used to directly and accurately
measure forest attributescéuas the treetop height, canopy height, and also model forest attributes
such as abovground biomass (AGB), basal area (BA), wood volume (stem and total volume),
canopy volume and vegetation profiles (Bouvier et al., 2015; Drake et al., 2003; H2 @t 2l loki

et al., 2014; Kankare et al., 2013; Neesset, 2002, 1997a; Tompalski et al., 2019; Vincent et al., 2017).
These attributes are essential from resource managemebiodiversity perspectives

Forest attributes are commonly estimated via -beesel approaches(ABA), which involve
establishing statistical relationships between forest attributes, computed from manual measurements
of trees in sample plots and a set of lidar metrics for the same areas (Neesset, 1997a, 1997b; White et
al., 2016; Wulder eal., 2012). Plotevel classical lidar metrics are computed by measuring the
vertical distribution of the 3D points in terms of the mean, variance, percentiles and many other
standard statistical descriptors of distribution (White et al., 2017). Voxetisi an alternative
method to summarise the point clouds while retaining more detailed structural information. It can be
used to characterise the 3D distribution of leaf or plant area density within a 3D grid of localised
regular volumes, i.e., the vose(Grau et al., 2017; Popescu and Zhao, 2008; Soma et al., 2018).
Studies have also tried to derive new fpéatel metrics by summarising the information in profiles

and voxels (Bouvier et al., 2015; Carrasco et al., 2019; Fischer et al., 2019; Zhang0di7al The
possibilities are endless, and there is a continuous effort to identify robust metrics that could
contribute to accurate predictions of forest attributes. However, the use of classical lidar metrics and
new metrics should take into consid@atthe potential variations that arise due to lidar data

acquisition factors

There are differences in the point clouds inherent to data acquisitioasses, which need further
investigation to comprehend their influences better when assessing traedoclsaracteristics. The

lidar pulse density, for example, can vary from under one pulse per m2 in airborne data to several
pulses per m2 in unmanned aerial vehicle (UAV) data. Some studies have investigated the influence
of pulse density and found thdtet prediction accuracies in ABA approaches relying on classical
lidar metrics were largely unaffected until pulse densities were as low as one pulse per m2 (Bouvier
et al., 2019; Jakubowski et al., 2013; Magnussen et al., 2010; Silva et al., 2017) oDretheand,

studies using voxdbased approaches to estimate -ffaption studies have demonstrated the

potential biases that can arise due to poorly sampled voxels (Pimont et al., 2018; Soma et.al., 2018)
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Lidar scan angle is another parameter that gaifsgiantly affectlidar metrics and the prediction of

forest attributes (J. Liu et al., 2018; Montaghi, 2013; Tompalski et al., 2019). A scan angl2®f 15
degrees is the oftecommended upper threshold in airborne lidar acquisitions for forestry
applications (Wulder et al., 2012). Some early studies, such as Rempel and Parker (1964), observed
that tree heights could be measured with sufficient accuracy if the signal reached some part of the
ground. The chance of detecting ground surface is higher éotically incident beams.
Consequently, a convention of sorts has been followed over the years with regard to inclined lidar
scanning. It is still followed in current recommendations (see, for example, Mitchell et al., 2018).
However, systems have evolvednsiderably with an increased capacity to detect multiple echoes,
including echoes of lower intensity (Li et al., 2020). Conversely, it is also believed that with higher
scan angles, lidar pulses cover a larger area, thus increasing their chance aéangaaps within

the canopy and penetraginleeper into dense forest ogies (Kamoske et al., 2019)

A narrow scan angle range limits the swath width, and increasirgcéimeangle range could help
optimise costs. Some studies have experimented with augles greater than 2(Bolton et al.,

2020; Cartus et al., 2012; J. Liu et al., 2018; van Lier et al., 2021). Therefore, it is of practical interest
to explore the extent to which scan angle can be increased with negligible effects -deriikzal

forest metrics and forest attributes and make the most out of the diversity of existing and future data

sets.

Several studies have analysed the influence of lidar scan antitaometrics (Chen et al., 2014;

Dayal et al., 2020; Disney et al., 2010; J. kiual., 2018; Montaghi, 2013; Soudarissanane et al.,
2009). Differing forest types, sensors, and the metrics studied have certainly influenced the findings
in different studies. However, there were also points of convergence among these studies, such as
the fact that some metrics were not significantly affected by scan angle (e.g., maximum of height
values) and some others, which depend on the returns from lower parts of the forests (understory

ratio metrics), were indeed influenced by scan angle

Regardingmplications for forest attribute prediction, in a studyNagsset (1997), scan angles of up

to 20 were found not significantly to impact the prediction of mean heights. Recently, van Lier et

al. (2021) examined the impact of scan angle on predictivelsiaahd their data was acquired with

scan angles up to 30T heir study indicated that attribute predictions were indeed affected by the use

RI OLGDU PHWULFV LPSDFWHG E\ VFDQ DQJOH EXW QRW YHU\

predictions weg stable up to 30 Interestingly, they also found that predictions of forest attributes
/IRUH\YV PHDQ KHLJKW JURVV PHUFKDQWDEOH YROXPH DQG WI

data comprised scans from a single flight line instead of a combirddtfght lines. However, the

difference was marginal (difference in mean absolute percentage error < 1.3 %)
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To our knowledge, the strategies to manage the likely influenkdanfscan angle on metrics and

ABA predictions have been little explored. Reeiset al. (2018) proposed a correction for the biases
caused by scan angle based on the hypothesis that an increase in lidar pulse inclination increases the
chances of it being intercepted due to the increased distance covered. It is crucial to uhderline
need for further study on the influence of scan angle due to virtually countless lidar metrics, different
modelling methods, various scanner properties, flight planning considerations, different forest types
and varying terrain properties, which woeldable the development of robust lidsed models

In this context, the main objective of this study was twofold. Firsastess the influence of the
inclusion of lidar metrics sensitive to scan angle on ABA models for different kinds of complex
foress, i.e., riparian forests and mountainous forests with coniferous, broadleaf and mixed stands.
Second, to propose means to manage the impact of unavoidable and continuous changes in scanning
conditions of forest environments that characterise lidar atignisi The study is a natural follew

up to our previous study investigating the effect of lidar scan angle on lidar metrics (Dayal et al.,
2020). We worked with two hypotheses. Firstly, we assumed that the established impact of scan
angle on metrics wouldventually affect both the quality and the robustness of predictive models.
Secondly, we assumed that using plant area density (PAD) profiles, rather than point clouds, would
allow us to normalise lidar information for impact of changes in scan angles/cahdl make both

metrics and models more robust to changes in scan angles. We firstly demonstrated the effects of
using metrics sensitive to lidar scan angle in ABA models. We chose four metrics with a proven
capacity to predict forest attributes, eachhwdifferent sensitivities to scan angle. Secondly, we
conceived an experimental setup wherein standard lidar datasets were resampled to create multiple
datasets made up of lidar observations corresponding to different scanning scenarios to build ABA
models The resampling was done at the level of the flight lines by randomly picking flight lines to
make different combinationsThe experimental setup comprises lidar scanning scenarios with
different inclinations (scan angle), with (multiple flight lines),damvithout (single flight line)
overlap. Finally, we used voxbhsed metrics to demonstrate their potential to normalise the effects

of scan angle and improve predictions. We proposed these new metrics based on the underlying
hypothesis that voxddased tacking of the extinction of a laser pulse can improve the accuracy of
forest variables such as LAD/PAD (used in this study) (Vincent et al., 2017).

3.2 Materials and methods

3.2.1 Study sites and field plot measurements

We used two sites representative of compleggbenvironments for this study. The first study site
in southwest France is a riparian zone along the river Ciron, a tributary of the Garonne, and three of

its subtributaries. It is rich in biodiversity and not subject to intense forest managemedid&iial
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were collected at 29 locations along the river Ciron and its tributaries. These sites were chosen to
represent a gradient in width and density of the riparian forest. The species present on this site include
the common oak(uercus robuy, Pyreneanoak Quercus Pyrenaica common alder Alnus
glutinosg, and maritime pineRinus pinastex. Several locations are also characterised by shrub
species such as common hawth&@rnataegus monogynand alder buckthorr-angula alnu3. At

each of the 29 sige plots of radius 15 m were established, and differential GNSS (DGNSS, Trimble,
USA) was used to measure the plot centre coordinates. For all the trees with a diameter at breast
height (DBH) above 7.5 cm, trunk circumferences at breast height were mikastire tape and

tree heights were measured using a hypsometer Vertex (Haglof, Sweden). All the measurements were
carried out between June and August 2019. The basal area (BA) computations were made from the
circumference measurements, and the stem vo{M@end total volume\) were estimated using

robust allometric equations developed for French metropolitan species (Deleuze et al., 2013).

The second study site is located in the French department of-Bawubée in eastern France, in the

French Als. It is a part of the Massif des Bauges Natural Regional Park, covering an area of
approximately 373.5 km2. The terrain is hilly (plot altitudes range from 420 m to 1760 m). The most
common tree species comprise silver Abies albd, Norway spruceRicea abie} and common

beech Fagus sylvatica Field inventory was carried out for 118 15 m radius plots during spring and

fall 2018. Plot centre locations were measured using differential GNSS (DGNSS, Trimble, USA).

Field inventory protocol involved measug tree DBH of trees with DBH greater than 17.5 cm.
6PDOO WUHHYV FP " "%+ FP ZHUH FRXQWHG ZLWKLQ D S

either coniferous or broadleaf.

Since DBH and height measurements were unavailable for all the tredaB¥iklyreater than 7.5

cm, computation of basal area, stem and total volumes at plot level required estimations for the
unmeasured trees. Firstly, the number of small trees was extrapolated from 10 m radius plots.
Secondly, the nationwide tree inventory atsise (NFI) generated by IGN (Institut National de
I'Information Géographique et Forestiére), containing measurements of trees with DBHs in the 7.5
cm to 17.5 cm range, was used to extrapolate DBH and height values foreasared trees. All

NFI plots loated in the ecoregion that includes the study site were selected to have forest plots with
similar climatic and growing conditions to those measured on the study site. For trees with DBH
ranging from 7.5 cm to 17.5 cm, the median DBH value in the NFl ds¢alb around 11.1 cm. This
value was used to compute the basal area of the trees with DBHs lower than 17.5 cm. Using NFI
measurements, allometric relationships were established for each species (or group of species when
the number of trees was not highoagh) to estimate the heights of all the trees when there were no
available height measurements. Volumes were then computed using the allometric equations
available in Deleuze et al. (2013). Plots were classified into three main forest types, i.e.abroadle

coniferous and mixed. Plots with the BA of coniferous trees greater than 75 % and lower than or
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equal to 25 % of the total BA were labelled as coniferous (31 plots) and broadleaf (42 plots),

respectively. The 45 remaining plots were labelled as mitesutls.

Tablel{summarises the main characteristics of the forest types under study, i.e., riparian stands and

coniferous, broadleaf and mixed mountainous stands. The distribution of the plots at bogitestudy

is shown inFigurel.

Ciron Bauges

Riparian (29 plots) Coniferous (31 plots) Broadleaf (42 plots) Mixed (45 plots)

Min Mean | Max Min Mean Max Min | Mean | Max | Min | Mean | Max
Slope |49 | 89 | 210 | 120 | 287 | 406 |114| 208 | 451 | 85 | 248 | 402
(degrees)
Basal
area 172 | 285 | 476 | 10.7 | 36.8 89.7 3.4 28.0 57.0 | 45 29.7 63.3
(m2/ha)
Stem
volume | 118.7 | 272.7 | 475.5| 101.2 | 401.6 | 1148.2 | 23.8 | 269.9 | 617.2 | 40.6 | 298.2 | 759.5
(m3/ha)
Total
volume | 1359 296.2 | 552.9 | 1024 | 410.3 | 11719 | 25.2 | 294.8 | 683.9 | 42.3 | 311.7 | 788.4
(m3/ha)
Tablel: Summary of average slope and field plot measurements for Basal area, Stem volume and Total volume for all

the forest types

3.2.2 Lidar data acquisition and processing

At the Ciron study area, INFOGEO (France) acquiicarr data using a VQ580 laser scanner (Riegl,
Austria) on an ultralight aircraft platform in early October 2019. The flying height was approximately
250 m, which enabled data acquisition at an overall point density of around 68 pts/m2. Overlap of
35 %- 40 % and several passes over any given area ensured that most of the area was sampled using
multiple scanning configurations. Data fpecessing was carried out by INFOGEO, which involved

the classification of ground points using TerraScan (Terrasoljd-itdand).
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Figure 1: Location of study sites and distribution of plots. In the left image, the riparian plots (purple) are distributed in
the riparian region (blue) along the river Ciron and its tributaries. In the right im#igeproadleaf (red), coniferous
(black) and mixed (orange) plots are distributed across the northern part of Massif des Bauges Natural Regional Park

For the Bauges site, the company Opsia (France) carried out airborne lidar data acquisition and
processig in September 2018. The flying height was around 1050 m with several passes of flight
lines to ensure most of the area was scanned using multiple scanning configurations. Due to a higher
flying altitude, the point density of this dataset was lower atcqupiately 13 pts/m2. Trajectory
information, essential for voxelisation (used in this study), was also known for both sites. Additional

specifications are given in Table 2

Ciron Bauges
Date of acquisition October 2019 | September 2018
Sensor Riegl VQ580 Riegl LMSQ780
Wavelength (hm) 1064 1064
Scan angle (deg) 60° (+30°£30°) | 60° (+30°£30°)
Beam divergence (mrad) 0.2 <=0.25
Ground speed (m/s) 25 45
Point density (pts/m?) 68 13
Flight height (AGL) (m) 250 1050

Table2: Technical specifications for the lidar sensor and data that were acquired for the two sites

3.2.3 Data processing and experimental setup

3.2.3.1 Splitting of point clouds based on flight lines

Point clouds corresponding to the field plots were clipped from the lidarusatg coordinates of

the plot centres and plot diameters (30 m). Due to flight line overlaps, the point cloud for a given
plot is typically a composite of point clouds acquired with different scanning configurations. We split
the point clouds for eachqilbased on the constituent flight lines. Each resulting constituent point
cloud was represented by the mean of the scan angig8) (with which it was scanned. We

categorised these point clouds within three classes based on their adSMAvaues: clasA 7
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MSA< 10°), clasB f MSA< 20°), clas< f MSA< 30°). We did not consider those point

clouds acquired witMSAgreater than 30° as they were most likely acquired when the aircraft made
turns, and there were few such instances. The fundamental 'unit' in our experiments is the point cloud
for a plot acquired from only one flight line. We assessed pulse densitesfoof the point clouds.

For the Bauges dataset, 99 % of the constituent point clouds had a pulse density greater than 1 pulse
per m?, and for the Ciron dataset, all the point clouds had a pulse density greater than 14 pulse m2.
These values were hightttan the thresholds below which pulse densities are known to influence
lidar metrics and forest attribute predictior{fBouvier et al., 2019, Jakubowski et al., 2013,
Magnussen et al., 2010, Pearse et al., 2019).

3.2.3.2 Partially sampled point clouds per plot

Figure 2: Flight lines that partially cover a plot .

We computed the area covered by each constituent point cloud by fittingdintensional hull to

the points projected onto a horizontal plane. Then, an area threshold wasdregdany point cloud

that covered<90 % of the total plot ar€&glre2), resulting in a final dataset set of 93, 110, 144 and
149 point clouds for riparian (29 plots), coniferous (31 plots), broadleaf (42 plots) and mixed plots
(45 plots), respectivelyFigure 3 shows the number of flight lines per plot and class for different

forest types.
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Figure 3: Heatmap depicting the number of flight lines (N) belonging to &SAclass (A, B, C) in a plot in different
forest types. Eackub-division along the horizontal axis represents a plot. The blank tiles (white) are cases where no flight
lines belong to that particular class for the given plot

The 'expansion’ of the dataset made it possible to pick any one or a combination cibpdsper

plot. In other words, it was possible to recreate datasets with different scanning configurations. With
multiple possibilities for each plot, there were thousands of unique combinations in which the point
clouds could be picked under differemperimental scenarios (explained in the following sections).
We use the two terms 'point cloud' and ‘flight line' interchangeably, and they essentially refer to the
same data

3.2.3.3 Description of experiments

From the available flight lines per plot, weimulated different scenarios for seamgle
configurations based on (1) the number of flight lines, (2) homogeneity in scanning configurations
and (3) with conventional portioud subsets, i.e., merging all flight lines. The three main kinds of

seenariosare described in detail

3.2.3.3.1 General scenarios based on the number of flight lines per plot
These scenarios were divided into three categbtigi2 andfl3 (Figure 4. In the first scenaridil,

we picked any one flight line and its corresponding pdimtd per plot. This scenario represents the
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Figure 4 : Splitting of the point clouds based on the flight lines to obtain point clouds from single flight lines. The re
datasets for three general scenarios (fl1, fl2 8By are illustrated.

worstcase scenario or the most basic scenario wherein each plot was scanned only once. This
scenario corresponds to an acquisition with no overlap between flight lines. In the second scenario,
fl2, we picked any two flight lines peslot and merged the respective point clouds to build a
composite point cloud. In the third scenafi8, we picked any three flight lines per plot to build the
corresponding composite point cloud. In the second and third scenfiioan@l I3, we

autonatically considered all the available flight lines for the plots that were scanned based on either

less than or equal to two or three flight lines, respectifgbuge4).

When a plot was scanned from three different flight lines, there 9@ite upossibilities of picking
any one flight line,% L upossibilities of picking two flight lines ané§ L spossibility of picking
three flight lines each rtie |q:igure 5. For each forest type, the total number of all possible

combinations in each scenario is given Ay ¢ Where Jjs the total number of flight lines (fdil)

or combinations of flight lines (fdi2 andfl3) in ploti. Each combination represents a unique way

in which all the plots were collectively scanned.
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3.2.3.3.2 Weighting for unequal distribution of flight lines

Due touneven distribution of flight lines across the classes for any givenftptré 3), randomly

sampling a flight line (or flight line combination) coulgsult in overepresentation of some classes
(or class combination). Over several iterations, unequal probabilities may lead to sample induced
biases and, therefore, some of the information may be incorrectly ufiNsdéubrniak et al.2015)
We computed the probability of picking a class (or class combination) as a consequence of randomly
picking a flight line (or flight line combination) for a plot. The probabilities were assigned to the
corresponding flight line (or flight line cdmmation) and inverse probability weights @ were
computed using the following equation:

T

oy 1)

AU )

where Lgjs the assigned probability of kght line (or flight line combination)E Jis the number of

flight lines (or flight line combinations) available for the plot. The weights were scaled betvieen O
The weighting ensured that the flight lines (or flight line combinations) were piclaetina way

that over several iterations, all the available classes (or class combinations) for the plot are picked

almost equally. Scenarftl and the corresponding weighting step is illustratgeigure5|left in the

panel ‘weights'.

3.2.3.3.3 Special cases within general scenarios based on homogeneity in scanning configurations

These scenarios were divided into six categakieB, C, AB, ACandBC. In scenarioA, B andC,

we picked any one flight line per plot, as in scenfiticdbut with a constraint on the fligine MSA

For example, we considered only flight lines WitBA belonging to clas#\ in scenarioA (0°

<=MSA< 10°). Similarly, we consided only those flight lines witMSAs belonging to classéand

Cfor scenario® andC, respectively. Scenarids B andC are special cases of scendlo Scenario

ALV LOOXVWUDWHG LQ WKH SDQHHQurRY WKH ULJKW ODEHOOHG

Furthermore, for scenaridB, for example, we picked any two flight lines per plot such that one of
them belonged to clagsand the other to clag Similar constaints were applied to scenarid€
and BC. ScenariosAB, AC and BC are special cases of scenafid. We did not consider other

scenarios, such @A, BB,etc., as such cases were not numerous.

In[Figure 3| the distribution of flight lines across different classes and across all the plots is clearly

not even. In addition, some plots do not have any flight lines belonging to one or more Elaisses.
example, riparian plots 13 and 14 do not have any flight lines in clasardB, and such plots
cannot be a part of experiments for scenafi@ndB. Therefore, we identified the common plots
with at least one flight line in class@sB andC eachto make the results across different scenarios

comparableThere were 19 plots (out of 29) with at least one flight line in each class among the
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riparian plots. We picked the flight lines (or combinations of flight lines) for scenayiBs C, AB,
ACandBConly in these plots. For those special cases within general scenarios based on homogeneity
in scanning configurations, the weighting step was adapted accordingly. For the remaining plots, i.e.,
plots that were not a part of the common plots, weightmgsired that all available classes (or class
combinations) were picked roughly equally. The same process was followed for the other three forest

types.

All the possible experimental scenarios can be listdld a8, B, C, fl2, AB, AC, B@&ndfl3. Based
on the sampling framework described above, we were able to create 5000 unique lidar datasets for

each scenario.

3.2.3.3.4 Scenario with conventional point cloud subsets

We also built models in the conventional way, which is the standard procedure followed when
building models with ABA approaches. The point clouds from different flight lines were considered
together and metrics were computed for the composite point clouds.

The detailed workflow followed in this study is illustrate¢Figure5|for scenariodll, A, B,andC.

Figure 4lillustrates how flight lines ireach plot were combined fi2, AB, AC, BCandfl3. The

remainder of the process was identical.
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Figure5: lllustration of the experimental setup for scenarios fl1, A, B and C. n=5000 for all experiments. The illustr
for an example set of three plots each scanned with different number of flight lines. In the left panel, scenarictidtex
and in the right panel, scenario A is illustrated.
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3.2.4 Lidar metrics and regression models

3.2.4.1 Selection of metrics

While lidar-derived metrics can be sensitive to lidar seengle, they are not all sensitive to the same
degree (Dayal et al., 2020; Holmgren et al., 2003; Montaghi, 2013). In our preceding study (Dayal
et al., 2020), we observed that the mean of the lidar point heiglstsiot sensitive to scan angle.
Moreover, the lower percentiles appeared to be more sensitive than the higher percentiles. Gap
fraction, computed as the ratio of the number of first returns below a height threshatdtoftBe

total number of points, &s also very sensitive to changes in scan angle. As a result, the computation
of metrics that depend on the sampling of the lower strata is affected. The scan angle could affect

many of the metrics mentioned above (and several others not mentioned here).

We opted to restrict the analysis of the effect of scan angle on ABA models built with four metrics
that proved relevant to predictifgpsal Area (BA), Stem Volum¥és{ and Total Volume Vi) in
various forest types, as demonstrated in Bouvier et @L52 The ABA models proposed in this
study were developed to generalise and simplify the model selection process, thus making it easier
to compare modelg§Véga et al., 2016)The metrics used in the models were selected while
considering the spatial heterogeneity in the §osgructure. These metrics are a) average value of
canopy height valuesiy, 4 b) variance of canopy height value&f 4 c) gapfraction 2; andd)
coefficient of variation of RD profile, % 8., These metrics are generally stable even aplolse
densitiegBouvier et al., 2019)For the Bauges site, we computed these metrics at the level of the
plots forthe Bauges site for classAsB andC. We compared the metrics for clas&andC to
metrics for class A (considering class A as reference Bayal etal., 2020)and found that cla®

and clas€< 2;metrics and only the class &5, gmetrics were most sensitive to scan angig sand

% 8o vere relatively stable. These results aréppendixA

3.2.4.2 Computation of lidar metrics

During the fidd measurements along the river Ciron, we observed that the bushes, considered a part
of the lower vegetation, grew to a height of approximately 5 metres. Therefore, the threshold for
computation of the metrics was set at 5 metresaqptied to all sidy areas.&,, 5 and &5 4 were
computed after normalising point elevations by removing the influence of terrain on above ground
measurements using a digital terrain model (DTRljand % 8., were computed in two ways, i.e.,

by traditional corputation and voxebased computation.

3.2.4.2.1 Traditional computation
The ground returns show that corresponding laser pulses were not fully intercepted in their round trip

path through the canopy, which represent gaps in the céHopkinson and Chasmer, 2009) the

ratio method of computation of gdmction,Ps, when computed as a fraction of the total first returns,
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may be considered equivalent to the transmittance. The transmittance is related to the LAl as per the
BeerLambert law(Nilson, 1971%s show below:

7, &;%?2°

2:4; L ATop 2)
2%y:a;isthegapl UDFWLRQ LQ GLUHFWLRQ /$, WMs Weratio@Hdidg® UHD LQ
DUHD SURMHFWH®R WX & LAV XWIR)E GDOsHEneradlly assumed to be 0.5,
considering the spherical leaf angle distribution. The camefyn ratio assumes that the laser pulses

are incident vertically. This assumption may be considered a reasonable generalisation for lidar data
when the scan afe is not very high (Almeida et al., 2019; MacArthur and Horn, 1969), which is
generally not the case for platforms flown at lower altitudes. PAD profiles were generated by
applying the same principle to 1 m peatoud layers and by computing the perda 2;(Bouvier

et al., 2015) 1t is implied that each layer is assumed to be homogeneous. $him@En tends to
simplify the structural distribution of the vegetation. PAD is the plant area density, which includes
leaves and other woody material, while LAD is the leaf area density, which does not consider the
woody material. However, as originatione in earlier studies, veensideredPAD profiles for the

computation of 2yand % 8o+,

3.2.4.2.2 Voxelbased computation

Metrics were also computed using vokalsed approaches to generate plant area density (PAD)
profiles. These approaches are bettaharacterising uneven forest canopy due to improved space
discretisation (gaps and ngaps)(Pearse et al., 2019; Soma et al., 2021; Wang et al., 202@n
combined with path distribution methods, they provide refined estimates of PAD. It is thus expected
that changes in scan angles will be better managed with-kageld approaches, andtihe PAD

profile will be at least partly normalised from scanning conditions.

This study used the voxbhsed 3D reconstruction method implemented in the software AMAPVox
version 1.6.2(Vincent et al., 2017)The software recreates the acquisition geometry using the
trajectory information (position and orientation) as well as retracing each laser pulse path and its
subsequent interaction with elements of the forest, i.e., point.clbuhen computes the local
transmittance in each voxel which is then converted to the PAD using thé-&abert law. For
voxelisation, we used point clouds before height normalisation, i.e., with the Z coordinates being
elevations instead of height aleothe ground, to avoid distortion of the geometry. The voxel size
was set to In. The DTM for each point cloud was resampled o t align it with the overlaying
voxels, and the columns of voxels were normalised accordingly. We then computed the thean of
local PAD values per layer to obtain the PAD profiles and then summed up the profile values to
calculate the plant area index (PAI) for the glaivell et al., 2003)The PAI can be linked tite Ps

based on the following equation:
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2ULA?DEOA (3)

wherek is 0.5 for spherical leaf angle distributioByis computed in this way a&$ 3¢ The % &5

was computed as the coefficient of variation of the profile. The comparison of vegetation profiles for

all theplots can be found iAppendixC.

To summarise, two sets of metrics were usduk Tirst set is calledeference metricsyhich is
comprised ofay, 5 &% 4 2yand % 8..,The second set is calledxel metricsand it comprisesiy, 4
, 884 25%%nd % 8&5 Metrics were computed for each point clafid) and composite point

clouds fl; or fls).

3.2.4.3 Regression models
We used a multiplicative power mod@&ouvier et al., 2015; Gobakken and Naesset, 2005; Kangas
et al., 2018jo estimate forest attributes. A kg transformation was used to achieve linearity. The

model is as follows:
HK@L > E Afg >Z ‘ ®E B @)

Where >jare model coefficientsUis theforest attribute st Viot Or BA) and Tgare the ' retained

lidar metrics (n = 2 or 4)
This relationship is suitable for estimating forest attributes (Neesset, 2002, 1997).

3.2.4.4 Model validation and performance assessment

Leaveoneout crossvalidation is most suitable for smaller datag@isard and Cook, 1984 hus,

it was employed in this study to analyse the predictivelibiies of the models. A model is built

for all but one of the plots at a given instance. The model is used to predict a value for the disregarded

plot. This process is repeated until predictions are made for each of the plots.

Log-transformation of vidables introduces a systematic bias. The bias was corrected using a
correction factor as pesprugel (1983) The standard error of estimateEE) of regression was
computed, as given by:

Jme?imeg;:

5" L §Z\—-——:|?n; (5)

W, and are the 4, observed and predicted values, respectively, irstade, J is the number of
observations, and p is the number of parameters in the model. The correction factor (CF) was

computed using SEE as per:

A
%(L ATT (6)
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The observed and predicted values in the log scale werettaasformed to the arithmetic scale,

and the backransformed predicted values were mui#ig by the correction factor. The goodness

of-fit of the models was assessed using the determination coefficient (R?), the Root Mean Squared
Error (RMSE), the relative Root Mean Squared Error (rRMSE) and the Mean Percentage Error
(MPE). The formulae forhese measures are as follows:

6 AV:w 2w ;-
Ls Fm (7)
AV 2w
L A ®)
» VQW I~
L—r Usrr 9)
L ﬂ%&g:W?W (10)

3.2.5 Statistical analysis for comparison of scenarios

We expected each experimental scenario to result in a distribution of the geofdfiessteria (R?,
rRMSE, MPE), as illustrated |iigure 3 Distribution spreads (or variances) indicate the prediction

precision, and distribution means indicate accuracies across different experimental scenarios. To
compare distributions of R2, rRNES MPE of different scenarios, different statistical tests were used:

a) Welch's ANOVA to compare the means, b) Gaiewell posthoc tests for pairwise comparisons

(R packagerstatix Kassambara, 2021pnd c) pairwise fests with Bonferroni correction for
multiple comparisongHervé, 2021jo compare the variances. Gantémvell posthoceast maintains

the significance level for multiple comparisons and does not require any adjustments to the

significance leve(Lee and Lee, 2018)
To summarise, all the results and analyses were presented as follows:

Firstly, to demonstrate the effect of inclusion of metrichwitferent sensitivities to scan angle, we
built ABA models with only, &, sand &% 4 and compared the goodnesit criteria to those of
ABA models built withreference metricé&,, 4 &5 4 2yand % 8o1), to predictVs for scenariodll

andfl2. We computed the percentage changes in the means and standard deviations.

Secondly, we analysed the distributions of goodioédi criteria for predictions of the three forest
attributes usingeference metrigsfor all the experimental scemas and all forest types. We
compared the means and variances of the gefigrdl2 andfl3 scenarios. Furthermore, we also
compared the means and variances of homogenous scanning sc&nBries AB, AC, B@ndAC

in pairs. To quantify the intescerario variations, we computed the mean of the absolute pairwise
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differences (or mean absolute differences, MAD) resulting from the posthoc tests. MAD measures

the average magnitude of differences without considering the directions.

Thirdly, we analysed theistributions of goodnessf-fit criteria for the prediction of the three forest
attributes withreference metric &, 4 &% 4 2y and % 8.,), in comparison to the distributions
obtained withvoxel metricy &, 4 &5 4 252%nd % 83§. We reported the percentage changes in
means and standard deviations wkierel metricavere used, per scenario. We also demonstrated
the performance ofoxel metricavhen ABA models were built conventionally, i.e., all available

flight linesper plot are considered together, in terms of the gooaridiriteria.

3.3 Results

In what follows only results concerning stem voluivg) will be presented as the results B and

Vit €Xhibited similar trend3hey are presented in tAgpendixB.

3.3.1 Effect of inclusion of metrics sensitive to scan angle

For the riparian, broadleaf and mixed plots, the inclusio@nd % 8..jmproved the means of

the R? by 6.3%, 10.3% and 9.1% for scendldoand by 7.4%, 7.7% and 8.6% for scendl®
resgectively. For the coniferous plots, there were reductions in the mean R2 values by 11% and 31%
for fl1 and fl2, respectively. The standard deviations of R2 distributions increased by 222.7%,
292.8%, 159.4% and 33.4% féld and 158.86, 171%, 217.2 and 11®% for fI2, for riparian,
broadleaf, coniferous and mixed plots. Similarly, the standard deviations of the error distributions
(rRMSEand MPE) were higher for all the forest typg¢$aple 3). The distributions are shown in

Figure6
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Figure 6: Distributions of the goodness-fit criteria for the models with (black) and without (gregjand % 8. 1, top
panel: R% middle panel: rRMSE; bottom panel: MPE

R2 rRMSE MPE
'Izilr'g;t Riparian Broadleaf Coniferows |M i x e d|Riparian |Broadleaf|Coniferos |[M i x e d |Riparian |Broadleaf|Coniferos M i x e d

h% One 6.3 10.3 | -11.0 9.1 -3.7 -4.3 3.6 -3.7 -0.4 -23.0 | 10.0 -0.9
change

Mea% Two 7.4 7.7 -30.9 8.6 -4.3 3.1 8.9 -3.8 -1.0 -22.0 | 157 -4.3
h% One | 222.7| 2928 | 1594 | 339 | 2375 | 307.3 | 147.1| 39.9 96.2 98.1 74.6 41.7
change

in Slg Two | 158.8| 171.0 | 217.2 | 119.2 | 170.2 | 180.2 | 190.2 | 128.3 | 714 | 110.3 | 126.0 | 26.5

Table3: Percentage changes in the means and standard deviations of the distributions of the golefitna#eria for
models with and withougand % 8o+,
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3.3.2 Comparison of performance measures for different scenarios with
randomly chosen scan angles (fl1, &l fl3) and of homogenous

scanning scenarios

For the scenarivise comparisons, we included the results for stem voMafer the four forest

types (results for BA anlfi: can be found irAppendix B). The distributions of gumdnessof-fit

criteria forpredicting Vs: for each experimental scermdre shown ifrigure?. For scaarios fl1, fl2,

fI3, percentage changes in the means and SD of the distributions are given in Table 4. For the riparian
and mixed plots, the means of the R2 values show an upread with an increase in the number

of flight lines per plot. For the broadleaf and coniferous plots, we observed an opposite trend for R2
distributions. For the coniferous plots, there was a considerable reduction (approximately 30 %) in
the mean R2 vais for scenarios fl2 and fI3 compared to scenario fl1. The reduction was marginal
for broadleaf plots. The spreads, or standard deviations, for all the distributionsféoestitypes

and all goodnessf-fit criteria successively reduced with an incee@s the number of flight lines

(i.e. fl2 and fI3 compared to fl1). The reductions ranged from 23 % to 85.9 %, and all paiteste F

comparisons were statistically significant.

Among the homogenous scenarios, ke.B, C, AB, A®r BC, the distributiormeans were mainly
stable on the riparian plots except for scen@iavhich deviated considerably. We also observed
that scenari@\ (predominantly nadir) was not always better than scenBra<C (Figure7) for all

forest types. The variability among scenakgd andC was the highest for the mixed plots (MAD

of 0.07) and the lowest for the riparian plots (MAD of 0.03). The mean absolute difference (MAD)
of the pairwise differences of mean R? values agrecenario&\B, ACandBC were generally lower

than those among scenarids B and C, for all forest types (Table 5). This indicates an overall
stabilisation in the means due to point clouds acquired from at least two flight lines, each belonging

to differentMSAclasses.

The third part of Table 5 shows that the MAD of comparisons between single (A, B or C) and double
flight line (AB, AC or BC) scenarios are similar to those of comparisons among single and double
flight line scenarios, respectively excdpt the coniferous plots. The MAD of the goodnesdit

criteria for the coniferous plots were highest than those for riparian, broadleaf and mixed plots,
respectively, highlighting a greater difference between single and double flight line scenagios. Th
same pattern was observed for the overall MAD with the lowest values for the riparian plots followed
by broadleaf, mixed and coniferous (0.02, 0.04, 0.05 and 0.08 for R2 and 0.6, 1.3, 2.0 and 2.5
percentage points for rRMSE), except for mixed plots Hzat a higher MPE MAD value (1.5
percentage points) than coniferous plots (1.2 percentage p&igs)g7).
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Regarding the pairwise F tests in (Table 6), comparisons among scenarios A, B and C revealed that
senario A had lower standarddations than sagarios B and C only for the mixed plots. We
observed that scenario B had lower standard deviations for the other forest types than scenario A
(reductions in SD of R2 in the 9 % to 18 % range). Similarly, scenario C had lowearstand
deviations compared tscanario A for broadleaf and coniferous (reductions of 14 % and 6 %,
respectively). However, scenario C systematically resulted in higher standard deviations than
scenario B

The comparisons among AB, AC and BC revealed that the presence of naditiaoguisi scenario

A, in combination with scenarios B or C (AB or AC), is beneficial compared to scenario BC. For
scenario BC, the R2 standard deviations increasée if.8 % to 224 % range foparian, broadleaf

and mixed plots except coniferous, ¥anich there was no significant change. However, comparisons

between scenarios AB and AC revealed different trends according to forest types (Table 6)

The spreads of the distributions for double flight scenarios lines (AB, AC or BC) were significantly
lower than tlese for single flight line scrrios (A, B or C), with reductions in the standard deviations
in the range of 31.2 % to 65.2 % across all forest types and goemfH#ssriteria, with a single
exception of the pair BC (Mixed, R2 and rRMSE)vherein the standard deviation increased by
31.4 % and 46.4 % for R2 and rRMSE respectively (third part of Table 6).
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Figure 7: Distribution of the goodnessf-fit criteria of predictions of stem volum¥s() models (R2, rRMSBPE) for
different scenarios and for the different forest types (Riparian, Coniferous, Broadleaf and Mixed). The single (fl1, A, B
and C), double (fi2, AB, AC and BC) and triple (f3) flight lines scenarios are depicted in blue, orange and yellow,
respectvely
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R2 rRMSE MPE
Riparian | Broadleaf| Coniferols | Mixed | Riparian| Broadled | Coniferos | Mixed | Riparian| Broadled | Coniferos| Mixed
fll-fl2 | 1.4* | -0.6 |-29.8*| 3.0* | -0.9* | 0.6* | 8.8* | -1.4* | -1.8* | -0.6* | 9.8* | -4.9*

% change
in fllfi3 | 2.0% | -2.2* [-30.3*| 4.6* | -1.3* | 1.4* | 9.1* | -2.1% | -3.2* | -0.7* | 10.5*| -5.6*
mean 1 fo63 | 0.6* |-1.7*| -0.6 | 1.6* | -0.4* | 0.8* | 0.2* | -0.8* | -1.4* | -0.1 | 0.6* | -0.7*
= - * | _ *| x| _ *| * [ - *| o *| o *| - *| * [ *| *
% change | M-112 | -52.8°|-58.2+|-23.0%|-33.7| -53.0%|-58.1|-28.3" -33.0"| -54.6"| -39.0"| -35.8"| -58.6

in fl1-fI3 | -78.5%|-73.7*|-72.4*|-81.7*| -78.4*|-74.0*| -74.3*|-81.4*|-77.5*| -65.1*| -74.0*| -85.9*
Sb fl2-fI3 | -54.3*|-37.1*%|-64.2*|-72.5*%| -54.1*| -37.9*| -64.2*|-72.3*| -50.4*| -42.8*| -59.6* | -65.8*

Table4: Pairwise comparisons of means and standdediations of distributions of goodnessfit criteria in terms of
percentage changes for scenarios fl1, fI2 and fI3. Values in bold indicate comparisons that were not statistically
significant (p>0.05) (Gameblowell test for means and pairwise F testsvariances)

R? rRMSE MPE
Group1|Group2|Riparian|Broadled | Coniferoug Mixed | Riparian| Broadled | Coniferais | Mixed | Riparian| Broadled | Coniferos | Mixed
A B | 0.02*| 0.08*| 0.07*| 0.04*| -0.4* | -2.9* | -2.3* | -1.6* | 0.2* | 0.4* | 0.9* | 1.7*
A C |-0.03*| 0.05* | 0.07*| 0.10*| 0.9* | -1.7*| -2.4* | -4.1* | -0.2* | -0.5* | 0.7* | 3.1*
B C |-0.05*|-0.03*| 0.00 | 0.06*| 1.4* | 1.2* | -0.1 | -2.5* | -0.4* | -0.9* | -0.2* | 1.4*
MAD 0.03| 0.05| 005|007 09 | 19 | 16 | 27 | 0.3 | 06 | 06 | 21

AB AC | 0.01*|-0.01*| 0.04*|-0.03*| -0.3* | 0.5* | -1.2* | 1.3* | 0.0* | -1.4* | -0.5* | -0.7*
AB BC | 0.01*| 0.03* | 0.05*| 0.04*| -0.2* | -1.1* | -1.5* | -1.8* | 0.1* | -1.6*| 0.0 | 1.2*
AC BC | 0.00*| 0.04*|0.01*| 0.08*| 0.1* | -1.6* | -0.4* | -3.1* | 0.1* | -0.2* | 0.5* | 1.9*

MAD 0.01 | 0.03 | 0.03| 0.05| 0.2 11 10| 21| 01| 10| 04 | 13
A AB | 0.01* | 0.03*|-0.09*| 0.06* | -0.1* | -0.9* | 2.7* | -2.2* | 0.1* | 0.9* | -1.0* | 2.3*
A AC | 0.02* | 0.02* |-0.05*| 0.02* | -0.4* | -0.4* | 1.5* | -0.9* | 0.1* | -0.5* | -1.6* | 1.6*
A BC | 0.01* | 0.06* |-0.04*| 0.10*| -0.3* | -2.1* | 1.2* | -4.0* | 0.2* | -0.7* | -1.0* | 3.5*
B AB |-0.01*|-0.05*|-0.16*|-0.01*| 0.3* | 2.0* | 5.0* | 0.6* | -0.1* | 0.5* | -1.9* | -0.6*
B AC 0.00 |-0.06*|-0.12*| 0.02*| 0.0 | 2.5* | 3.8* | -0.7*| -0.1* | -0.9* | -2.4* | 0.1*
B BC | 0.00* [-0.02*|-0.11*| 0.06*| 0.1* | 0.8* | 3.5* | -2.4* | 0.0 | -1.1* | -1.9* | 1.8*
C AB | 0.04*|-0.02*|-0.16*| 0.05*| -1.1* | 0.8* | 5.1* | -1.9* | 0.3* | 1.4* | -1.7* | 0.8*
C AC | 0.05* |-0.03*|-0.12*| 0.08*| -1.4* | 1.3* | 3.9* | -3.2*| 0.3* | 0.0 |-2.3*| 1.5*
C BC | 0.05*| 0.01*|-0.11*| 0.00 | -1.2* | -0.3* | 3.6* | -0.1* | 0.4* | -0.2* | -1.7* | -0.4*

MAD 002 | 003 | 0.10| 004| O6 | 1.2 | 34 | 18 | 0.2 | 0.7 | 1.7 1.4

Overall MAD | 0.02 | 0.04 | 0.08 | 005| 06 | 1.3 | 25| 20 | 02| 07 | 12 | 15

Table5: Pairwise differences of comparisons of means between differenérios. The comparisons are grouped into
three types, i.e., among A, B and C, among AB, AC and BC and between A, B, C and AB, AC and BC. Mean absolute
differences per type and overall mean absolute differences are also provided. * p<0.05 aighiftrant differences

are in bold.
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R? rRMSE MPE
Group1|Group2|Riparian|Broadled|ConiferosiM i x e dR iparianBroadled|ConiferoisMix e d|Riparian|Broadled|ConiferoisM i x e d
A B -8.9* | -18.4* |-14.8*| 50.1* | -7.1* | -11.3* | -10.0* | 56.5* | -9.1* -4.1% | -7.3* 7.5*
A C | 329* )| -13.5* | -6.1* | 87.1* | 27.9* | -10.2* | -1.2 |107.9* 38.4 | -8.5* 2.3 12.0*
B C | 46.0r| 6.0~ | 10.3*| 24.7* | 37.7* 1.3 9.8* | 329*| 52.3 | -4.6* | 10.3* | 4.2*

AB | AC 8.2* | -23.3*| -1.1 | 21.9* 9.9* -24.3 1.8 18.1* | 26.0¢ -6.8* | 23.9° | 10.3*
AB | BC | 28.1* | 4.8* 0.0 | 223.9%| 29.3* 7.4* 3.8 |242.4% 29.9F -4.6* -2.1 70.6*
AC | BC | 18.4* | 36.6* 1.0 | 165.6*| 17.6* | 42.0* 1.9 |189.9% 3.1 2.3 -20.9° | 54.7*

AB |-53.9*| -64.0* |-27.0*| -59.4* | -53.7* | -63.2* | -30.2* |-57.3*| -51.9" | -54.2* | -49.7* | -75.6*
AC |-50.1*| -72.4* |-27.7*| -50.5* | -49.1* | -72.2* | -28.9* | -49.5*%| -39.3* | -57.3* | -37.6* | -73.1*
BC |-41.0*| -62.3* | -27.0*| 31.4* | -40.2* | -60.5* | -27.5* | 46.4* | -37.5 | -56.3* | -50.7* | -58.4*
AB | -49.4*| -55.9* | -14.2*| -73.0* | -50.2* | -58.5* | -22.4* | -72.7*| -47.0f | -52.2* | -45.7* | -77.3*
AC |-45.2*| -66.2* | -15.1*| -67.0* | -45.3* | -68.6* | -21.0* | -67.7*| -33.2* | -55.4* | -32.8* | -75.0*
BC |-35.2%| -53.8* | -14.3*| -12.4* | -35.6* | -55.5* | -19.5* | -6.5* | -31.2* | -54.4* | -46.8* | -61.3*
AB |-65.3*| -58.4* | -22.3*| -78.3* | -63.8* | -59.0* | -29.3* | -79.4*| -65.2* | -49.9* | -50.8* | -78.2*
AC |-62.5*| -68.1* | -23.1*| -73.6* | -60.2* | -69.0* | -28.1* | -75.7*| -56.2* | -53.3* | -39.0* | -76.0*

BC |-55.6*| -56.4* |-22.3*| -29.8* | -53.2* | -56.0* | -26.7* |-29.6*| -54.8" | -52.2* | -51.8* | -62.8*

Table6. Pairwise F tests quantified by thercentage changes in standard deviations of different scenarios. The values
are changes in standard deviation of group 2 relative to group 1. * p<0.05 andgignificant comparisons are in bold.

OO0 m|W|W|>|>|>

3.3.3 Inclusion of voxel metrics

3.3.3.1 Analysis of impact of voxel mats considering the scenarios together

The distribution of the goodnesé$it criteria for models built with reference and voxel metrics for

all scenarios considered together is showfkigure 8 for Vs. The overall percentage changes in
means and stadlard deviation of the distributions are given in Table 7, in which deteriorations are
highlighted in red. Voxel metrics had an overall positive impact on the R2 distribution (riparian
(+22.2 %), broadleaf (+8.3 %), coniferous (+0.1 %), mixed (+23.1 %p.Mé&éan rRMSE values

were reduced by 16.6 %, 3.6 % and 12.2 % for riparian, broadleaf and mixed plots. The mean rRMSE
value increased by 0.1 % for coniferous plots. For broadleaf and coniferous plots, the MPE values
did not improve with voxel metrics for @dictions of all three attributes (an increase of 12.6 % and

8.1 %, respectively). In contrast, mean MPE values improved for both riparian and mixed plots (a
decrease of 25.2 % and 18.7 %, respectively). For coniferous, broadleaf plots and mixed plots, the
standard deviations of distributions of R2, rRMSE and MPE improved with voxel metrics with
reductions in the range of 0.8 % to 42.6 %. For riparian plots, the standard deviations increased by
29.6 %, 60.3 % and 42.1 % for R2, rRMSE and MPE, respectiVhly.scenariavise percentage

changes in means and standard deviations are given in Table 8 and Table 9, respectively.
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Figure 8: Comparison of the distribution of goodnesit criteria (R?, rRMSE, MPE) between models for the
prediction ofVst with reference (grepoxplots) and voxel lflue box-plots) metrics, respectively, for different scenarios
combined and for differefiorests types (Riparian, Broadleaf, Coniferous and Mixed)

R2 rRMSE MPE
Riparian| Broadleaf| Coniferols|M i X e d| Riparian | Broadleaf| Coniferois| M i x e d | Riparian Broadleaf | Coniferos|M i x e d

Jochange INMed 5y x| g g% | 01 | 23.4%| -16.6% | -3.6% | 0.1* |-12.2¢|-25.2%| 12.6* | 8.1* |-18.7*

% change in S|

29.6*| -42.6* | -38.5* | -15.0*| 60.3* |-41.1*|-38.1*| -4.7* | 42.1* | -0.8* | -10.1* | -24.3*

Table7: Overall (scenarios A, B, C, AB, AC, BC considered together) percentage change in the means and standard
deviations of distributions using voxel metrics in ABA predictionsiofalues in red indicate deterioratioAll
comparisons were significant (Except for those in bold.

3.3.3.2 Scenariowise impact of voxel metrics

3.3.3.2.1 Effect on the median and mean values of the distributions for the different scenarios

The scenariavise percentage changes in the means are given in Table 8. R2 and rRMSE means
improved in tke range of 2.3 4444 % and 0.9 %24.2 %, respectively, except for some scenarios in
coniferous plots (scenarios fl1, B, C, AC and BC) where voxel metrics did not perform well. There
were contrasting results for MPE, with reductions in the 534% % rang across all the scenarios

for the riparian and mixed plots and increases in the 3 % to 21.8 % range for the coniferous and
broadleaf plots. Comparisons across one, two and three flight lines scenarios revealed no systematic

trend in the magnitude of thé@anges for both impvement and deterioration cases
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Three
Forest One flight line Two flight lines flight
lines

type
fll A B C fl2 AB AC BC fI3
Riparian 27.0* 28.1* 22.6* 36.3* 18.9* | 21.2* | 18.9* | 15.9* 13.7*
~ Broadleaf 4.1* 6.7* 2.3* 3.1* 10.7* | 10.7* | 10.5* | 10.3* 15.1*
™ Coniferous -3.8* 6.0* -2.8* -20.1* 9.3* 35.1* -1.8* | -10.8* 9.7*
Mixed 20.0* 39.9* 29.1* 2.2* 24.0* | 19.2* | 33.8* | 18.2* 24 .1*
w Riparian -20.3* -21.1* | -17.8* | -24.2* | -14.2* | -15.8* | -14.6* | -11.9* -10.2*
g Broadleaf -1.5*% -2.3*% -0.9* -1.2* -4.7* -4.6* -4.3* -5.0* -6.6*
| Coniferous 1.4* -1.4* 1.0* 6.9* -1.6* -5.9* 0.4* 2.4* -1.7*
= Mixed -10.1* -17.3* | -14.8* -1.3* -12.8* | -10.0* | -16.0* | -11.4* -13.3*
Riparian -30.0 -30.3* | -26.7* | -34.6* | -22.1* | -24.3* | -24.8* | -18.6* -15.8*
H_J Broadleaf 11.9* 21.7* 3.1 10.4* 13.5* | 21.8* | 15.6* 3.9* 12.6*
=| Coniferous 9.6* 5.6* 8.7* 16.8* 6.2* 3.0* 5.8* 12.0* 5.5*%
Mixed -17.5* -24.4* | -23.3* -5.7* -18.8* | -16.4* | -23.1* | -16.0* -20.1*

Table8: Scenariewise ercentage changes in the means of distributions of goodridisriteria when using voxel
metricsfor the predictions o¥st. Values in red indicate a deterioratioAll comparisons were significant (*) except for
those in bold, all comparisons were iificant (*) except for those in bold

3.3.3.2.2 Effect on the distribution spread for the different scenarios

Voxel metrics also positively impacted the distributions by reducing the spread, or the standard
deviations, of all three goodnes&fit criteria for allthe scenarios for broadleaf and coniferous forest
types (Table 9). The standard deviations of the distributions for broadleaf and conpkmsus
decreased by 23.3 % to 70 %, 22.5 % to 68.2 % and 2.1 % to 55.8 % for R2, rRMSE and MPE,
respectively. The dp exception was a slight increase of 2.1 % in the standard deviations of MPE

values for scenario C for coniferous plots.

For the riparian and the mixed plots, at least one of the three goarfrféssiteria was negatively

impacted due to voxelisatidexcept scenarios C and BC for mixed plots).

Three

Forest One flight line Two flight lines flight

type lines

fll A B C fl2 AB AC BC fl3

Riparian -29.0* -1.6* 25.7* -4.1* -7.9% 54.9* 31.1* 13.7* -0.3*

o Broadleaf -54.0* | -61.1* | -57.8* | -42.2* | -52.9* | -59.9* | -42.1* | -48.5* | -60.1*
& Coniferous | -44.4* | -45.6* | -23.3* | -41.7* | -52.0* | -70.0* | -63.9* | -59.3* | -31.1*
Mixed 56.9* 94.8* 27.0* -38.7* 16.0* 68.0* 11.1* -30.5* 81.9*

w Riparian -11.8* 24.9* 53.2* 27.1* 8.0* 84.9* 54.2* 29.6* 11.1*
g Broadleaf -52.9* | -59.9* | -57.7* | -40.3* | -50.5* | -58.0* | -39.4* | -45.5* | -57.1*
o Coniferous | -44.0* | -43.8* | -22.5* | -43.9* | -51.2* | -68.2* | -64.2* | -60.3* | -29.9*
- Mixed 75.7* 137.0* | 49.5* -38.0* 33.5* 87.3* 32.9* -22.4* | 109.6*
Riparian 10.6* 24.2* 68.0* 24.8* 33.1* 67.2* 29.3* 28.6* 22.8*

H_J Broadleaf -41.7* | -54.3* | -55.8* | -33.4* -48.7 -55.0* | -21.0* | -20.0* | -35.9*
= Coniferous | -13.9* | -22.7* | -15.9* | 2.1* -11.2* | -35.1* | -40.2* | -14.2* | -1.3*
Mixed 22.1* 0.9* -9.6* -41.2* 34.9* 63.6* 32.0* -3.9* 90.6*

Table9: Scenariewise percentage changes in the standard deviations of distributions of goodiiiessiteria using
voxel metrics for the predictions @é. Values in red indicate a deterioratioAll comparisons were significant (*) except
for those in bold

3.3.3.2.3 Effect of voxetbased metrics on conventional models
We observed a general improvement in the goodokftcriteria for all the three forest attributes

(Table 10) wherusing voxel metrics in convéonal models, i.e., considering all the flight lines
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together. The R2 improved for all forest types (9.1 % for riparian, 3.8 % for coniferous, 8.5 % for
broadleaf and 25.3 % for mixed plots), respectively. The rRMSE values decreased by 9.5 %, 0.5 %,
4 %, and 14 % for riparian, broadleaf, coniferous, and mptets, respectively. There were only
marginal changes in all goodnesisfit criteria for the coniferous plots, with minor improvements in

the R2 and rRMSE values, while the MPE increased by 8.5 %. The MPE for broadleaf plots was also
higher by 13.1 %. Railts for BA andvi.: are presented iAppendixB.

Goodnesof- Forest reference voxel
fit oriteri i . % change
it criteria type metrics metrics
Riparian 0.66 0.72 9.1
R2 Coniferous 0.26 0.27 3.8
Broadleaf 0.47 0.51 8.5
Mixed 0.51 0.64 25.3
Riparian 211 19.1 -9.5
Coniferous 44.2 44 -0.5
rRMSE
Broadleaf 40.2 38.6 -4.0
Mixed 40.2 34.4 -14
Riparian -4.3 -3.6 -16.3
Coniferous -20 -21.7 8.5
MPE
Broadleaf -15.3 -17.3 13.1
Mixed -18.3 -14.7 -20.4

Table10: Goodnes®f-fit criteria for predictions olstfor conventional models built with reference and voxel metrics
3.4 Discussion

The overall objective of this study was to evaluate the imphdifferent scanning configurations
on ABA predictions. Our results showed that including lidar metrics sensitive to scan angle could
result in highly variable ABA model performances. We also proposed alternate methods to compute

lidar metrics based oroxelisation to mitigate scan angle effects

3.4.1 Impact of scan angle on models of different scanning scenarios

The percentage changes in the means and standard deviations of gobdihesseria for models

built using lidar data for the same plots, basedddferent scanning configurations, reflect the
variability of ABA models and the resulting predictions. The standard deviations (spread) of all three
goodnessf-fit criteria (R2, rRMSE and MPE) for all the forests decreased when the dataset was
comprisel of multiple flight lines per plot. However, the distribution means were different according
to forest types, and there was no definite pattern. For example, for the riparian plots at Ciron, the
distribution means appeared to be broadly stable for aibsics except for scenario C (2MSA

< 30C°), which decreased considerably. For the three forest types at Bauges, the gobtihess
criteria means of the models generally improved in conjunction with an inclinaticrass; i.e. A

to C (classA (0° <=MSA< 10), classB (10°<=MSA< 2(°), classC (20°<=MSA< 3(°), except for
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broadleaf plots, where there was a marginal decrease for scEnatative to scenari®. Overall,

the distribution means for scenaBavere relatively stable compared to sceos#iandC. It is worth

noting that the predominantly nadir configuration, i.e., scenario A, was not clearly better than
scenarios fI1B, or C. ScenaricA distributions were marginally lower than those of fl1 broadleaf,
coniferous and mixed plots. Therere significant differences between the distribution means, but
their magnitude varied across the different types of forests. We observed that the variations among
scenariosA, B, andC tended to be higher thahose among scenarids3, AC,andBC. For the
coniferous plots, the means for scenarios fl2 and fI3 were considerably lower than those for scenario
fl1 by almost 30 % in eacbase. We observed the same rgreenon for broadleaf plots, but the
differences were lower (fi4 O i -fll:Gi2.2 %*). Van Lier et al. (2021) also observed
marginally higher errors for models built tvi multiple flight line dataOn the other hand, we

observed an opposite trend for riparian plots.

Let us consider the goodness | LW GLVWULEXWLR/Q P ¥ KHIH KSH.RW HG w DV H
with a particular configuration to build ABA models. The risk of having highly variable predictions

is reduced when at least two flight lines are used to scan each plot. The reduction in the goodness
of-fit criteria spread (or variance), thanks to the inclusion of more flight lines, is thus highly
significant because it indicates an improvement in the precision of the goadiigssriteria.
S$OWKRXJIK WKLV LPSOLHV WKDW WKH FKDQ eddcél) itkiBovhte@n® DQ D S ¢
that the possibility of having a poorly defined model is also diminished. Suppose the model was
extrapolated to provide a map of the targeted forest attributes, then, in that case, the gddiiness

criteria might not be valid forraas scanned with configurations other than those of the plots used to

build the model. These results underline the importance of having a large number of field plots, which
should be representative of the diversity of both forest stands and scanninigoesnBiuture studies

need to assess the prediction \aility when ABA models, based on a specific scanning

configuration dataset, are used to generatetwallall predictions

The metrics commonly used in ABA approaches are certainly affdoyedcan agle, as
demonstrated by several studies (Holmgren et al., 2003; Liu et al., 2018; Montaghi, 2013). To our
knowledge, few studies have explored the effect of the inclusion of metrics sensitive to scan angle in
ABA models (Holmgren et al.,, 2003; van Lier &, 2021). Van Lier et al. (2021) recently
investigated the effect of scan angle on both lidar metrics and ABA models to predict different forest
attributes. In their study, which addresses scan angle effects chaasexh models, they found
relatively $able goodnessf-fit (R2, rRMSE and MPE), with minor differences between models
built with and applied to datasets acquired from smeatir, oftnadir as well as combinations of flight

lines. These findings are similar to those we obtained on the rigddenat Ciron. The mean R2
values ranged between 0.57 and 0.59Mgrwithout considering scenario C, which had lower R2

and higher errors. For the other three forest types, thesoésrario variations were higher.
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Interestingly, Van Lier et al. (202 observed that the accuracy of thedels was marginally lower

when built with point clouds scanned from multiple flight lines (aggregate of flight lines). Their
observations were for balsam fir stands, a coniferous forest type. We observed simiias patte
coniferous plots but with substantial differences (30 % lower mean R2 values) between fl1 and f12,
and fl1 and fI3 scenarios. Although we observed variations between scenarios at the Bauges site,
more flight lines did not necessarily lead to bgttedictions (higher R2 and lower errors) but rather

to more precise predictions, which is essential from a practical point of view. Moreover, it is

interesting to note the better performances with point clouds acquired from single flight lines

For the Bages site, scenarid (20°<=MSA< 30°) does not have the same negative impact it had on
the riparian plots, which could be related to the differences in data acquisition proptsietasses

for both sites are not fully comparable due to the differeircéiging altitudes (250 m over Ciron

sites and 1050 m over Bauges sites). In addition, depending on the slope of the plots, the lidar pulse
canopy interactions may be different for flight lines with similar mean scan angles but with different
azimuths, adllustrated inFigure 9. In a related study, we found that the inclusion of terrain
parameters positively impacted the forest attribute predictions (Lahssini et al., 2022). Nevertheless,
using two flight lines for a predominantly inclined scenario, $&nario BC, seems to have ensured

that the distributions are more stable for both sites and all stand types. Furthermore, if a 50 % overlap
is ensured during data acquisition, single flight line scenarios (fl1, A, B and C) are generally not
observed evermyhere (typically scenarios B and C). Our results will provide a useful reference for
subsequent analyses, and it is always beneficial to be aware of potential risks associated with specific

data properties

An acquisition configuration with a maximum d¥°3scanning angle and ensuring a 2/3 overlapping

between successive flight lines would limit scan angle impacts on ABA prediction quality over a
forest area. However, this high level of overlapping comes at a prohibitive cost for many operational
campaignsin practice, different specifications for forestry applications can be found, such as, those
SURYLGHG E\ WKH 86'$ OLWFKHOO HWardi®Gwath overlazadf Woksibhy-D Q D Q
50 %, by Natural Resources Canada (NRC, 2017), with scan angfeand at least 20 % swath

overlap increased to 30 % in British Columbia (Ministry of Forests, Lands and GeoBC, 2020).
Several countries have undertaken multipurpose acquisitions. The specifications provided for New
Zealand and Australia include a maxim scan angle of 2@&nd a minimum swath overlap of 10 %

(ICSM, 2010). Specifications are not always easy to find. However, we picked a few las tiles in
VHYHUDO (XURSHDQ FRXQWULHVY RSHQ VRXUFH QDWLRQDO OL
reachat least 30for France (IGN, n.d.), Luxembourg (ACT, n.d.) and Switzerland (Swisstopo, n.d.)
andeven36IRU 60ORYHQLD 3$*(1&,-%$ 56 =% 2.2/-(~ Q G
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Figure 9: Two point clouds from the sam#t on a steep slopwith thesame scan angle class (class C) of mean scan
angles, 26° (yellow) and 22° (green)

In addition, localscale forest applications based on light lidar systems are likely to develop in the
near future (Jaakkola et al., 2017; Lei et al., 2019; K. Liu et@l82Torresan et al., 2017). Such
acquisitions are characterised by higher scan angle ranges than traditional airborne acquisitions. In
these cases, the impact of the scanning condition differences over the forest must be effectively
managed to ensure ABRAodel quality and robustness for operational applications. Normalising lidar

metrics concerning scan angle changes could help achieve this goal

3.4.2 The potential of normalised metrics

Inclusion of carefully considered metrics such as Pf certaonjributeto more accurate predictions,

but the returrratio-based computation is highly variable due to its dependence on the ground returns.
However, metrics such asyyand vegetation profiles based metrics sucl/@g.,are helpful for

better charactergion of structural characteristics and prediction of wood volume (Bouvier et al.,
2015; Naesset, 2002). The spreads of the distributions &jth &5 svere higher for Bauges plots
compared to CironRigure 6) which could be due to clas & avhich was bund to be more

sensitive (sedppendixA). However, the effects due to inclusion ofyand % 8..,were much

higher(Figure6) with average increase in standard deviations of 143% across all forest types and

goodnes®f-fit criteria (Table3).

Voxel-based methods were applied toide normalised vegetation profiles, which were in turn used

to compute2S 2%nd % 8¢ Substituting these metrics positively impacted mezavaRies with an
average increase of 38 %, barring some mainly concerning coniferous plotsrigithiearRMSE

values were reduced by an average of 10 %. This method of estimating gap fraction did not depend
on ground returns but rather on estimating PAD values as a function of the interaction between the

laser pulses/canopy interactions. In som#hefattributescenario combinations (riparian and mixed
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type), distribution variation of the goodnesfsfit criteria was higher for voxel metrics. However,

distribution mean increases underline the benefit of ugfigfand % 8¢ and otler profilebased

metrics in general that can more accurately characterise canopy structural properties. Indeed, when
comparing with reference PAD profiles, which are based on the number of points per layer, for most
plots, we observed a normalisation o€ tprofiles rgarding scan angle effects. AppendixC,
vegetation profiles obtained using layers of points (Bouvier et al.,, 2015) and voxelisation, as
described in this study, are shown for two cases: (a) where appears to reduce the variation, and (b)
where it seems to add some noise to profiles. The profiles obtained from both methods show similar
patterns, but the areas under the curves are different. However, we have no reference data to conclude
that one type of profiles is better than the otherse@as the results of this study, we can conclude

that voxetbased profiles and metrics have the potential to better characterise the distribution of the

vegetation

Voxel-based PAD estimations are, however, sensitive to the number of beams passingahrough
voxel and voxel size (Pimont et al., 2018; Soma et al., 2021). These factors were beyond the scope
of the present study. However, biases arising from poorly sampled voxels, which is generally the
case in the lower strata when airborne lidar is useddagdtimately affect the ABA models. On the

one hand, studies have reported that low pulse densities do not affect ABA predictions; on the other
hand, the low sampling density has been shown to affect-baseld estimation of PAD

Additionally, voxel sizevas also influential in generating the profitesthe voxels were normalised
using a resampled DTM of length 1 m (same as the size of the voxel). In each voxel column, the
lowest voxel containing points (ground and lower vegetation) was identified gotired or the Oth

voxel, followed by successive labelling of voxels in each column. The profiles were computed as the
mean of all the voxels with the same label. This ensured we generated the PAD profiles by following
the terrain by considering layerswafxels at a uniform distance from the ground. The way in which
columns of voxels were aggregated to compute the profile added some noise because ground position
accuracy based on the voxel resolution. For very steep slopes, if the ground is locatedhia both
bottom of a voxel and the top of the neighbouring voxel, the PAD in the resulting profile will combine
information from nearlstwo metres of vegetation instead of one. In addition, any error in identifying
the correct ground voxel could incorrectlyifshn entire column of voxels by a metre. Finally, there

is also scope for refining the method of vegetation profile conversions to Pvoxf or any other metric

that could contribute to ABA models

Nonetheless, voxel metrics had a generally positive impaetther improving the means of the
distributions, or by reducing the standard deviations, or détrics derived from PAD profiles
obtained using voxelisation approaches are an opgionainage the effect of scangées on ABA

models if point densitieare high enough to ensure a good sampling of lower layers. However,
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voxelisation approaches need to be improved, and tools for easy computation of such PAD profiles
need to be developed. This will facilitate the computation of PAD profiles at varioustiessland
in hilly environments at the level of the field plots (model development) and the whole area (model

implementation).

3.4.3 Characterisation of plots and interactions between topography and

scanning conditions in complex stands

Riparian models seemed perform better than the three other plgies located at Massif des
Bauges. The goodness$Hit criteria for predictions of all forest attributes on the riparian plots had

R2 values 0.61.74 and rRMSE values in the range of 1806, which were withithe range of

values reported in several studies (Coops et al., 2021). However, the model quality deteriorated for
the broadleaf, mixed and coniferous plots (Table 1&fand Table 15 for BA and.;). Measuring

DBHs of small trees contributing to thidar signal would have enabled an improved classification
and an improved estimation of the reference BA and wood volumes, limiting additional sources of

noise in the model. Nonetheless, the improvements with voxel metrics were notable

In the Bauges plst the high slopes of many plots could have affected the interaction of the lidar
with the canopy. Due to limited datasets, the azimuth of the lidar acquisition was not considered. In
some plots, the tree sizes heterogeneity was very high, with manycestrarge trees found near

the periphery of the plots. Many such trees were found beyond the plot while a significant part of the
canopy was still present in the plot subsets, thereby occluding acquisition from flight lines with

certain azimuths. The olusion was especially prominent for inclined scanning.

3.4.4 Perspectives for improved models

The distributions of the goodnes6 ILW LQGLFDWH WKDW WKHUH PD\ LQGHHG E
is acquired. Each data acquisition for any given area maiffbeedt and the associated higher risk

may cause discrepancies in forest attribute modelling and in forest environment monitoring. Our
findings showed that greater the number of flight lines (high overlap), the lower the risk. However,
increasing the ovéap is not a coseffective solution. Another solution may be to strike a better

balance between acquisition characteristics and the identification or development of metrics that
capture thestructure of the forest efféeely (vegetation profiles, for example). Therefore, lidar

metrics need to be studied or developed from the perspective of different lidar scanning
characteristics. Furthermore, in case of coniferous forests, the distribution means were better with

only two metrics. Upon investigation, we found that some of the metrics were correlatez)and

% 8. avere not useful for the coniferous plots resulting in lower (adjusted) R2 and higher errors.
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These metrics ought to be tested further to better understand their behaviours when dealing with
different canopiesarious other modelling methods could also be considered. The plots were in very
steep terrain and variables related to the terrain prepestiuld be a useful input for ABA models
(Lahssini et al., 2022). Integration of terrain properties along with scan angle information could be
approached from a deep learning perspective, as these factors are complex to model. However,
evaluating thepotential of such aproaches would require more than the 118 plots studied on the
Bauges site

3.5 Conclusion

In this study, we studied the influence of lidar scan angle on forest attribute prediction for four
different forest types: riparian, broadleaf, conitespand mixed. We opted for a predefined model
using four metrics based on different behaviours under changing lidar scan angles. These metrics
were a) average value of canopy height valigg b) variance of canopy height valué§ 4c) gap

fraction Z; and d) coefficient of variation of PAD profiléb 8.1, Although 2;and % 8..,helped
improving accuracies of ABA models, their sensitivity to lidar scan angle transferred to ABA model
accuracies and resulted in highly variable predistiddiowever, the presence of multiple flight lines
tended to reduce the variability, thus increasing the probability of developing models that are more
robust. Furthermore, we proposed alternative computatioBsaofd % 8. .,from vegetation profile
generated using voxelisation. These metrics either improved overall prediction accuracy, or reduced
the variation in predictions or both, thereby highlighting two key points: a) lidar metrics sensitivity
to scan angle must be assessed, especially whelogang general ABA models, and b) vosesed

metrics have the potential to better cluéease forest structural clateristics, which in turn
contribute to more accurate predictions. Developing models that are unaffected by changing scan
angle would esult in accurate and reliable wadlwall predictions. Many countries and regions plan
multipurpose lidar acquisitions based on different specifications. Concurrently, local surveys based
on with light lidar systems are likely to develop in the nearréufor forest applications. In both
cases, homogenous scanning configuration over a whole forest area is not achievable in practice and
different parts of the forest will be observed using different scan angles or combinations of scan
angles. Our study erhpsises the necessity to develop new approaches that are better at mitigating
scan angle impacts on ABA models to enable the further development of operational forest

applications
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Improving ABA models for forest attribute prediction using nenrtlvorks by considering terrain
and scan angle effects on 3D point clouds

Abstract

Lidar metricsaredifferently sensitive to lidar scan angle, which can eventually affect the robustness
of areabased approach (ABA) modetnd modelling thenterplay of scan angle, azimuth of
acquisition, anderrain properties can be compl&he study hypothesgs thaneural networks can
manage thanterplayof lidar acquisition parameters, terrain properties, and vegetation characteristics
to improve ABA models. The study areaiiisMassif des BaugeNatural Regional Park, eastern
France comprising 291 field plots mountainousenvironment with broadleaf, cifarous, and
mixed forest typed.idar data was acquired wittigh overlap to scafield plots from multiple flight

lines. Thepoint cloud data for each field plot was expanded based on the flight lines resulting
1095 independent observations. Standard ldetrics terrainmetrics and scan metriggere also
defined.A multilayer perceptron (MLPyas used tanodel basal aredBA) and total volume\{w),

while consideringhe interactions betweehe 3D lidar pint cloud metricsterrainmetricsand scan
metricsof the expanded dataset. With expanded datasets, the MLP R2 for the median predictions per
plot were higher (R? of 0.83 and 0.85 #®A and V) than predictions with standard datag@31
observations (R2 of 0.77 for bottBBA and Vi). It also outperformed an MLP model that neither
accounted for the terrain properties nor the scanning geometry (R2 of 0.66 and BARMaV,
respectively). The MLP also outperformed RF regression, which was umablexploit additional

terrain and scan information effectively.

Keywords: ABA, ANN, forest attribute, lidar, RF, terrain
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4.1 Introduction

The ability of lidar technology to create dense tkdaeensional representations of vegetation has
been widely usetb extractuseful information characteing forest properties (Dubayah and Drake,
2000). With airborne lidar systems (ALS), it is possiloleeover large areas to generate accurately
measured thredimensional point clouds. An essential requirement in lidar remote sensing of forests
is detecting the ground surface beneath the canopy, enabling accurate measurement of vegetation
heights. As aesult, the lidar scan angle, or the (half) field of view, has been limited to 20° to ensure
most lidar pulses reach the groyhlson, 2013)So far, most studies involving lidar remote sensing
for forestry applications have followed this convent{pekety et al., 2018; Gobakken and Neesset,
2008, 2005; Leiterer et al., 2015; Mitchell et al., 204&sset, 199 Jrka et al., 2018)Recently,

some studie@~edrigoet al., 2018; Lopatin et al., 2016; van Lier et al., 20®2\e tried to assess the
impact of scan angles greater than 20°, and many studies involvingbd#éd lidar data routinely
used much higher scan ang(€orte et al., 2020; Ma et al., 2022)

It may be difficultfor highly inclined lidar pulses to reathe ground surface owing to the increased
occlusions. Nonetheless, it is also true that probing lidar canopies with inclined pulses may also lend
newer insights or different perspecti&moske et al., 2019 related study (Dayal et al., 2022)
observed that datasets comprising nadir point clouds did not always result in better ABA models.
Forest canopies are not a homogenous medium, and theldidaed information (lidar metrics)
dependon how the lidapulses sample the canopy. In addition, two lidar acquisitions may not have
identical properties. The lidar metrics could be affected by the overall acquisition geometry as
charactesed by the acquisition properties (sensor properties, scan angle, soarthafiying

height), terrain properties, and vegetation structural characteristics.

In areabased approaches (ABA), there are numerous lidar metrics to choose from, and new metrics
are constantly being developedstimmarise the vegetation structurdbrmation comprehensively
Standard metrics used over the years include statistical descriptors such as the mean, standard
deviation, variance, entropy, percentiles of the height or intensity values or cover rate metrics, density
metrics and gagfraction. A stepwise selection procedure is often employed to idemtificsuseful

in predicting forest attributes using multiple linear regres@litmsset, 2002However, the final set

of metrics may vary depending on the forest type or lidar acquisition parameters. Another approach
is to use expert knowledge to define and select a short list of metrics that could explain most, if not
all, of the variance of the dependent varialfRsuvier et al., 2015)Still, assessing the influence of

scan angle on selected metrics aubsequentlyon the forest attribute predictions may not always

be practical. Furthermore, the influence of lidar metrics may besséeific, and it is advisable to
assess the effects of scan angle before further analysis onlayazese basis (Coops et al., 2021;
Roussel et al., 2018).
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Traditionally,themoddling of forest attributes idoneusing parametric and ngrarametric models.

Due to their simplicity, parametric methods such as ordinary least squares (OLS) regression have
been widely used by studies t@del forest attribute@Naesset, 2002; Tompalski et al., 2019; White

et al., 2017)Non-parametric methods such as KNN or random forest (RF) do not depend on any
assumptions regarding the tdaThey can accommodate nonlinear relationships between the
dependent and independent varialfléssenza et al., 2028 0oth KNN and RF are among the most
commonly used neparametric approaches in ABRassnacht et al., 2014jowever, RF was found

to have a higher level of transferability to new areas than KNdi¥hpalski et al., 2019Artif icial

neural networks (ANN) have also become a popularpasametric method to address inherent-non
linearity in datasetfAtkinson and Tatnall, 1997; Gopal and Woodcock, 1986ural networks are

also known for their capacity to genesal{Ozcelik et al., 2013)The feedforward backpropagation
multi-layered perceptron (MLP) is often used with remote sensing data. It consigtetafork of
several interconnected layers of neurons designed to mimic the capabilities of the humandirain

as generalisatiorand uinderstanding complex patterns. In parametric methods such as OL$, only
few metrics can be used to avoid the problem of overfitting and the use of correlated variables. In
nonparametric methodshere are no such limitations. Therefore, they are suiteshderstanadg
complex interactions between several lidar variables, acquisition geonagtdy vegetation
properties. Among the various nparametric methods, the MLP has been demonstrated to have
better generadation capabilitiegLiu et al., 2021; Ozcelik et al., 2013)

However, MLP methods depend on the volume athdwhich generally comprises large datasets

with several thousand samples. In ABA approaches, which involve collecting-abensive field
measurements in oftasomplex terrains, it is impossible to measoany field plots (samples) as

field measurements make up a significant part of the costs. The field plots in ABA models typically
range from a few tens to a few hundred. In addition, only ditdd/plots describgarticularstand

types. Generally, lidar acquisitions for forests amnpkd with multiple overlaps such that each
forest area (or field plot) is thoroughly sampled from multiple locations. Point clouds acquired from
each location may be considered independent observations. In addition, owing to the heterogeneous
nature of tle vegetation, the point clouds for any field plot may, in most cases, certainly retain
differences and, therefore, may be used as they are for data erpahsi@fore, ach point cloud

results from the reakorld interaction of the physical lidar signaith the natural vegetation.

A point cloud obtained from a flight line results from the interaction of acquisition parameters, terrain
properties, and vegetation characteristics. Thus, it can be considered a unique and independent
observation in ABA modelsThe objective of this study was to use individual point clouds obtained
from multiple flight lines independently to improve ABA predictions by increasing the number of

observations in lidar datasets. We demonstrated: i) the capacity of multilayer perdepnhodel
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complex interactions between lidar signal and both acquisition and terrain properties and ii) the

benefits of expanding lidar datasets based on flight lines to ABi#dmodels.

4.2 Materials and methods

4.2.1 Study areaand field measurements

The stug site is the Massif des Bauges Natural Regional Park in the French Alps. It is located
between the two administrative departments of Savoie and {3awtde and covers an area of
approximately 850 kmz2. The terrain is hilly (plot altitudes range from 420 1760 m). The most
common tree species comprise silver Aibies albd, Norway spruceRicea abigs and common
beech Fagus sylvatica Field inventory was carried out for 291 15 m radius circular plots during
spring and fall 2018. Plot cariocations were measured using differential GNSS (DGNSS, Trimble,
USA). Field inventory protocol involved measuring t@@@meter at Breast HeighDBH, measure

P DERYH JURXQG RI WUHHV ZLWK "%+ JUHDWHU WKDQ FP
were couted within a plot radius of 10 m and classified as either coniferous or broadleaf.

Since DBH and height measurements were unavailable for all the trees with DBH greater than 7.5
cm, computation of basal area, stem, and total volumes at plot level regstiethtions for
unmeasured trees. Firstly, the number of small trees was extrapolated from the number of trees in 10
m radius plots to 15 radius plots. Secondly, the nationwide tree inventory database (NFI) generated
by IGN (Institut National de I'Infanation Géographique et Forestiécentainingmeasurements of

trees with DBHs in the 7.5 cm to 17.5 cm range was used to extrapolate DBH and height values for
nonmeasured trees. All NFI plots in the ecoregion that includes the study site were selbated to
forest plots with similar climatic and growing conditions to those measured on the study site. For
trees with DBH ranging from 7.&m to 17.5cm, the median DBH value in the NFI database is around
11.1 cm. This value was used to compute the basabhtka trees with DBHs lower than 17.5 cm.

Using NFI measurements, allometric relationships were established for each species (or group of
species when the number of trees was not high enough) to estimate the heights of all the trees when
there were no ailable height measurements. Volumes were then computed using the allometric
eqguations available in Deleuze et(@013).The same protocol was followed in Lahssini et al. 2022

and Dayal et al. 2022.

Basal aredm?/ha) Total volume(m®/ha)
Min Mean Max Min Mean Max
0.36 30.2 89.7 2.52 312.1 1172

Tablel: Summary for Basal area (BA) and Total volume:)Yor the 291 inventory plots
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4.2.2 Lidar data

Figure 1: Location of the study site, distribution of figltbts and coverage of lidar missions. The small dots in black

depict the approximate (average) location of the aircraft when it scanned a field plot.

Lidar data acquisition was carried out in two missions. The first mission (summer 2016) covering

areas oflepartment 73 resulted in a dataset-6fgbints/m2 point density on average and the second

mission (summer 2018) covering areas in department 74 resulted in a dataset of approximately 14

points/m?2 point density on averagdgdar acquisitions were cardeout with multiple overlaps such

that each field plot was scanned from several locations with different azimuths and scan angles.

while scanning respective field plots.

73 74
Date of acquisition September 2016 | September 2018
Sensor Leica ALS7GHP Riegl LMSQ780
Wavelength (nm) 1064 1064

Scan angle (deg)

46° (+23°/23°)

60° (+30°/30°)

Figure Ishows the locations of the field plots in the study area along with (average) aircraft locations
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Beam divergence (mrad) 0.15 <=0.25
Ground speed (m/s) 85 45
Point density (pts/m?) 4 14

Flight height (AGL) (m) 1500* 1050

Table2: Acquisition parameters for the tvilights ("calculated from data)

4.2.3 Splitting of point clouds based on flight lines

Point clouds corresponding to the field plots were clipped from the lidar data using coordinates of
the plot cernes and plot radius (15 m). Due to flight line overlaps, thetpdoud for a given plot is
typically a composite of point clouds acquired with different scanning configurations. We split the
point clouds for each plot based on the constituent flight lines. Each resulting constituent point cloud
was represented bydahmean of the scan anglddSA with which it was scanned. We did not
consider those point clouds acquired with MSA greater than 30° as they were most likely acquired
when the aircraft made turns, and there were few such instances. The fundamental dumit' i
experiments is the point cloud for a plot acquired from only one flight line. We assessed pulse
densities for each point cloud, and 90% of the constituent point clouds had aeng#tg greater

than one pulse pean2. We computed the area covered by each constituent point cloud by fitting a

two-dimensional hull to the pointsrojected onto a horizontal plane. Then, an area threshold was

used to drop any point cloud that covered less than 90% of the total pl{Eigea 3.

Figure 2: Flight lines that partially cover a plot

The flight trajectory data was used to extract the locatiotiseohircraft while scanning respective

field plots and the average location of the aircraft was computed. The azimuth of the scan was
calculated as the angle with respect to geographic north between the average location of the aircraft
and the respectivéeld plot cente. Each point cloud results from unique scan geomgay is

characterisetdy the mean scan angle, scanning azigrarn scanning distance.

Two kinds of datasets were considered. In the first kind of dataset, point clouds were notdseparate
based on the flight lines. This dataset was calledtidnedarddataset and contained as many point
clouds as field plots in the study (29Boint clouds were separated based on the flight line

information for the second datasealled theexpandediataset. In thexpandediataset, there were
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from one to eight point clouds per field plot resulting in 1095 point clouds and corresponding to a
mean number of 3.8 point clouds per plot.

4.2.4 Lidar metrics

Lidar metrics were computddr each point cloud in both datasets after norsmglithe point clouds

in height, i.e, transforming the point elevation into height above the ground using thelbdaed

DTM. All points below a height threshold of five meet were considered loweregetation and
filtered out.Fifty-five metrics related to heights, intensities, canopy and terrain properties and scan
geometry were computetihe heightbased metrics are the statistical distributions computed for the

Z values of the point cloud. The intgty metrics comprise statistical descriptors of the intensity
values. Canopy metrics consist of gap fracfidopkinson et al., 2004nd rumple indexJenness,

2004) The gap fraéon was computed as the ratio of the number of returns kb®Bm threshold

to the total number of returns. Rumple index is the ratio of the 3D surface area of the canopy to the

surface area of the ground. Glaaction and rumple index were found to leFwsensitive to the scan

angle(Dayal et al., 2020)The summary of these metrics is give[Table 3

Type of metric Metrics

max, mean, standard deviationhgfights
percentiles of heights,
skewness of heights (first and last returns),
Height based kurtosis of heights (first and last),
entropy,
percentage of echoes above mean,

layer wise cumulative percentage of echoes

total, mean, max, standard deviation, skewneg
kurtosis,
Intensitybased layerwise cumulative percentage of echoes,
percentage of total intensity below percentiles (
30, 50, 70, 90)

Echoes Percentage ofthechoes

] gap fraction,
Canopy properties .
rumple index

Terrain properties slope, aspect, elevation

mean scan angle, scan azimuth and distance fi
Scan geometry
the plane

Table3: Summary of the metrics obtained from lidar data, tergroperties and scan geometry

Point clouds can @nge according to the local topography and viewing configuration for a given

forest plot Depending on the slope, orientation, elevation, scan angle, and aircraft position, there

could be several casds|Figure 3 the illustrations depict two possibilities of lidar scanning a plot

on a slope with similar scan angles, a) scanainggthe slope and b) scanniagainstthe slope.
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An example of a pointloud scanned from different directions is shown in 3c, wherein two point
clouds with similar mean scan angles can have different properties due to the interaction between

terrain properties and scanning parameters. Information on terrain propertiesragd@oetry were

thus added as additional variabj@aljle 3. Terrain information was computed by generating digital

terrain models (DTM) o&resolutionof 1m. The DTM of each plot was used to generate slope and
aspect maps. The average slope, aspect elevation values were computed from the slope and
aspect maps and DTM®spectively.

The values of the dependent variables, B& and Vi,: and terrain properties (slope, azimuiind
elevation), were replicated for each plot depending on the corresponding number of flight lines or
point clouds. All the values were scaled between 0 and 1. All lidar metrics were computed using the
lidR packagen R (Roussel et al., 2020)

Figure 3: lllustration of lidar scanning along the slope and against the slope. (a) top view; (b) side viewa(ple
point cloud with similar mean scan ang6° (yellow) and 22° (green)(d) example scan geometmjth relevant
parameters
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4.2.5 Experiments and crossvalidation scheme

Figure 4: lllustration of the cossvalidation scheme for standard and augmented datasbtsprocess wagpeated 30
times(30 splits)

We used the same splits of data as those used forvalidation of the models ihahssini et al.
(2022)to enable a direct comparison to results from our stiiblg field plot measuremengnd
corresponding lidar metrics were split in the standard datasdraining and test sets. The training

set was further subdivided into training (191 field plots or samples) and validation set (50 field plots
or samples)with roughly an80: 20 ratio The test set (50 field plots or samples) was completely
blind to the training and validation sets. The dataset generated in this way is referred to as the
standarddataset. When the point clouds were considered per flight line, there were 1095 samples
total, while the number of field plots wasill the same (291). This dataset is referred to as the
expandediataset on account of the higher numifgroint clouds based on flight lined/e used the

field plot ids from the test set of tlandarddatasetd create the corresponding test (and training)
set(s) of theexpandediatasets. This ensured that point clouds for the sample field were not present
in both the test and training sets (data leakage). However, the training set was randomly divided into
an 80: 20 ratig whichensured that there were chances of some point clouds for the same plots being

present in both traing and validation set® aid the model fitting process. The crasdidation

scheme is illustrated jRigure 4 Thirty splits containing training, validation, and test data were

generated for all the datasets
The benefit of the data expansion strategy was tested via three experiments

1. Thestandarddatase(std)comprising only the lidar metrics was used to build a model and
then compared with a model built with teepandediatasetéxp)comprising only the lidar

metrics.
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2. Thestandarddataset was appended with terrain variables (slope, aziandhelevation)
(Stderrain) to build a model and compared to a model built withekpandeddataset also
appended with terrain variablesxQerrain)-

3. The expandeddataset was appended with tboterrain and scan geometry variables
(EXRerrain+scan).-

Indeed, san geometry features are not available along with standard lidar metrics as, in this case, the
point cloud results from a mixture of scanning configuratidie workflow used in the styds

illustrated iTFigure 5

Figure 5: lllustration of the workflow employed in the studsing a multilayer perceptron

4.2.6 Regressionmodels

We used the TensorFlow (2.6.0) library in Python (3.9.7) for the fully connected multilayer
perceptron (MLP)YMartin Abadi et al., 2015)The MLP network consisted of two hidden layers.
Each neuron in a layer is fully connected (FC) to all the neurons in the following layer. The
components of theéesigned MLP include the input layer, two hidden layamd an output layer. The
rectified linear units (ReLU) function was used as the activation function. It defines how the input
valuesit receivesare output to the next neuron. A dropout rate of 0a8 wsed to regularise the
network to prevent overfitting. The adaptive moment estimation (ADAM) optimiser was used for the
optimisation of the network. The network is iIIustrateI@ The KerasTungiO'Malley et al.,
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2019)was used for the hyperparameter opsiaion to obtain three hyperparametershenumber

of neurons in the first hidden layer, thie number of neurons in the second hidden layer, and c) the
learning rate of the Adam optimiser. The tuned hyperparameters are given in the results section
Table 3.
performances with the MLP network. The number of trees beitevB00 and mtry value was set to

Random forests (RF) models were also built for all the datasets to compare the

default, i.e. number of independent variables divided by 3. The model was implemented using the

randomForest package in(Riaw and Wiener, 2002)

4.2.7Model accuracyassessment

The goodnessf-fit of the MLP and RF models was assessed using the determination coefficient

(R?), the Root Mean Squared Error (RMSE), the relative Root Mean Squared RMSHE]}, and

the Mean Percentage Error (MPE). The formulae for these measures are as follows:
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Depending on the number of flight lines that scanned a given plot, there could be multiple predictions

(1)

(2)

3)

(4)

per plot for models built with the three kindsexpanded datasetsxy €Xperrain, aNd €XQerrain+scan) -

The median value was considered for computing the goodrfidis<riteria.

4.3 Results

4.3.1 Hyperparameter tuning

Dataset

Basal area

Total volume

Standard (metrics) atd

(256, 32, 0.01)

(256, 64,0.01)

Standard (metrics + terrain) siderrain

(256, 64, 0.01)

(256, 32, 0.01)

Expanded (metrics) @xp

(1024, 32, 0.001)

(1024, 64, 0.001)

Expanded (metrics + terrain) eXperrain

(1024, 128, 0.001)

(1024, 128, 0.001]

Expanded (metrics + terrain + scan geometrgxrrain+scan

(1024, 128, 0.001)

(1024, 128, 0.001]

Table4: Summary of the tuned hyperparametersdifferent experiments (neurons in the first hidden layer, neurons in
the second hidden layer, learning rate)

Tuning for each dataset resulted in different hyperparameters. The tuned hyperparameters are given

in Table 4 [Table 4 near herdJuning forthe standard and expanded datasets resulted in two options
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for the number of neurons in the first hidden layer. For the standard datasets, there were 256 neurons
while for the expanded datasets, the tuning resulted in 1024 neurons. For the secondyedden |

the number of neurons varied between 32,a8W 128.The learning rate was either 0.Gstdj or
0.001€xp.

4.3.2 Model performances

Forest R MPE RMSE rRMSE%
attribute Dataset

MLP| RF | MLP | RF | MLP | RF |MLP| RF

std 066 | 053 | 6.7 | 7.9 | 89 | 104 | 305| 358

Stderan | 0.77 | 058 | 54 | 74 | 73 | 98 | 25 | 336

Basal exp 076 | 054 | 657 | 78 | 75 | 104 | 26 | 357

area

€X[errain 0.81 0.61 5 7.2 6.7 9.5 21.3 32.6

eXPeran+scan | 0.83 | 0.60 | 4.7 | 7.2 | 6.2 | 95 | 199 326

std 071 | 057 | 782 | 950 | 103 | 1262 | 344 | 42.2

Stderan | 0.77 | 062 | 71.7 | 89.2 | 96.2 | 1175 | 32.2 | 39.3

Total exp 078 | 055 | 682 | 968 | 91.3 | 129.7 | 305 | 432

volume
eXperan | 0.83 | 0.64 | 576 | 865 | 770 | 1151 | 26 | 383
eXPeran+scan | 0.85 | 0.64 | 54.6 | 86.2 | 71.8 | 114.6 | 24 | 38.1

Table5: Compilation ofthe goodnessf-fit criteria for all the experimentBest resut for each models, i.e. for MLP and
RF, respectivelyare underlined in boldResults of thbéest modehre framed in red.

The R2, MAE, RMSEand rRMSE are presentedTiable 5[Table 5 near hergbpr both MLP and

RF modes. The observed and predicted valuesBérand Vi are shown irFigure 6andFigure 1

comparing the results of the MLP ABA models built witlse)andexpdatasets, Btderain, and both
€XRerrain ANAdEXPerrain+scan, respectively. We rebuilt the models wittd andstderrainand observed that
the goodnessf-fit criteria were higher for models with bo#td and stderrain (BA: R2 of 0.66 and
0.71;Vier: 0.71 and 0.77) copared td_ahssini et al., (2022BA: R? of 0.61 and 0.6%+: 0.67 and
0.74).

The regression lines Figure 6revea a bias in the predictions for MLP. The plots with higher values
of BA and Vi have underestimated predictiopnsnd those with lower values have slight

overestimations, especially for BA.

MLP systematically outperformed RFhe RFR2 was lowerby 19% (BA and M, std. The
differences in R? between MLP and RF increased across the datasets highest differences for the
€XRerrain+scandatasets foBA and V. The rRMSE values witBXperrain+scan datasets were higher for

RF by approximately 60% for boBA and V.

Regarding the data sets used, the trevetesimilar for MLP and RF. The lowest model accuracies
were observed for the model built with thtel datasetsBA: R2=0.66 and 63, rRMSE=30.5% and
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35.8%; Vier. R?=0.71 and 0.57, rRMSE=34.4% and 35,8or MLP and RF, respectively). Tlesp
datases demonstrated relative improvementor the MLP (BA: R2=0.76 rRMSE=26%; Viot.

R2=0.78, rRMSES30.5%) with 15% and 10% increase in R? and%%snd 11%percentage poiat
reduction in the rRMSE foBA and Vi, respectively.Incorporating terrain propertieStflerrain)

resulted in better modedgith both MLP and RF.

However, h contrast to the MLARF models did not benefit from tldata expansion (datasets.
BA predictions improved marginally (R%:0.54 fexp vs 0.53 forstd) while Vit predictions
deteriorated (R%0.55 faxpvs 0.57 forstd). RF models wittexperain Were better than those with
Stderrain fOr bothBA (R2:0.58 forstderrain VS 0.61 foreXperain) andVie: (R2%:0.62 forstderain Vs 0.64 for
eXperrain) With increases of 5% and 3% in R2 values, respectiVidigre errors reduced in the range
of 3%-5%. [Figure 6 near her@figure 7 near here]

Figure 6: Scatterplotof predicted and observed values for models built withstidaugdatasets
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Figure 7: Scatterplots of predicted and observed values for models built wighagtdugerain andaugerrain+scandatasets.

The MLP models built withstderain resulted in better goodnes§fit values BA R2=0.77,
rRMSE=25%; Vior.: R2=0.77, rRMSE=32.2%) than those built wihd datasets A R2=0.66,
rRMSE=30.5%;Viot: R2=0.71, rRMSE=42.2%). The goodneddit of models buit with eXperrain
datasets were better for b@W andVi,: (BA: R2=0.81, rRMSE=25%0: R2=0.83, rRMSE=32.2%)
with increases of 5% and 8% respectively. The three error goedfiéissriteria (MAE, RMSE
and rRMSE) reduced in the 7% to 15% range and around 19%A@nd Vie, respectively.
Incorporatingadditional information about the scan geometptrain+scan) resulted in slightly better
MLP models with 3% higher R2 values and lower errors inrb#e8% range for botBA and Vit
The RF models witteXperrain+scan datasets did not result in any improvements (less ¢habo

reduction in errors).
In addition, inFigure 6 the saturation problem of underestimating large values is evident. It appears
to be welthandled by the MLPs when combined with terrain information and scan information.

4.4 Discussion

Hyparameter tuning was@ucial step in this gidy. The models built witlstd andstderain datasets
for bothBA andVi: were better than those observed.@hssini et al(2022) This could be due to

variations in hyperparameter tuning resulting in better maelsunderlining the importance of the
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tuning process to obtain better models. The random is#tains of the algorithms used in the
models may yield varying hyperparameters. In our experiments, we observed the learrisgnate
essential parameter éoften tuned to 0.001 for the expanded datasets.

A prevalent problem regarding saturation was also observed in this studstadéitasets for both

basal areaBA) and total volume\(t). The saturation issue was handled well by a deaming

based fgion strategy using lidar and optical (SentiRetlataset_ahssini et al., 2022)n this study,
however, the saturation effects appear less apparent for models built with expanded datasets
consisting of terrain propertieXPerrain aNdeXRerrain+scan datasets)The changes in lidar point cloud
geometry mg convey information on species compositiothatplot level, as done bihe Sentinel

2 time series study by Lahssini et al. (2022).

The models with expanded datasets consistently outperformed those witlpaadieg standard
datasets. However, betweeXQerrain @Nd€XQerrain+scan the R2 values improved for MLP models from

0.81 to 0.83 and 0.83 to 0.85 BBA and Vi, respectively. It appears that the improvement was not

of a large magnitudélhe goodnessfdit criteria for RFwasstable when comparing the two data
sets. This could be attributable to the fact that there may be some redundancy in the information
offered by the point clouds that were consideirdependent observationBigures 3a and 3b
illustrate the differences in point clouds due to sj@yen if the scan parameters are nearly similar

due to the steep slope. Irrespective of the variations due to differences in scan angle, diresllype

affectsthe point cloud and the resultinigldr metrics (sg¢&igure ). The MLP is perhaps able to

learn this relationship in this instance. There is, however, scope to better model tbestlati
between the scan properties and terrain properties analogous to the concept of topographic
normalsation of optical imagefGu and Gillespie, 1998)
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Figure 8: Graphical illustration of the goodness-fit criteria. The bars represent the standard deviations of the results obtained for 30 splits of data

85



Nonetheless, the addition of scan geometry demonstrated improvements with the dlizHtadive

assessment of the scatterplotg-igure {reveals that a model built withXQerrain+scan dataset was

indeed capable of dealing with tlesue of saturation that is commonly observed with large values.
The scatterplots are comparable to those obtaingdfuissini et al. (2022after implementing a

fusion of lidar and optical information, and this creates istarg possibilities for future studies.
Furthermore, while the MLP outperformed the RF models, some of the relative improvements across
the datasets, though marginal, were apparent even in the RF models.

Modelling strategies certainly influence the resulisfew studies have explored different deep
learning methods to predict forest attributes from lidar désatins-neto et al., (2021)sed an MLP
architecture with the principal components of a set of metrics similar to our study. They observed an
rRMSE of 22.5% for the prediction$ BA in heterogeneous tropical forests. In our study, the best
performing model was theXperain+scandataset with an rRMSE of 19.9%. However, they did not
consider metrics such as the gegction with proven explanatory power for forest structure

charactegation.

Additionally, gapfraction and the rumple index (used in this study) are metricaihaensitive to

lidar scan anglgDayal et al., 2020; Montaghi, 2013Jhe data expansion strategy may have
benefied from additional information from these two metrics, among other sensitive metrics. On the
other handLiu et al. (2021) obseved lower rRMSE values of 14% in volume predictions in
predominantly Eucalyptyand Chinesdir-dominated stand# comparison, an rRMSE of 24% was
observed in this study. Even if they used a more advancedlmgdeameworkthat combiesa

fully -connected neural network and an opsidi radial basis neural network, tresult differences
alsolikely to be linked to relatively simpler forest stands under study. In addition, studies using other
modedling methods, such as OLS or RF, repd rRMSE values of basal ard and volume Yior)
predictions were in the range of 23% to 29% and 22% to 34%, respe¢@ealps et al., 2021)n

this study, we observed an rRMSE f8A and Vit of 19.9% and 24% for a model built with

experrain+scandatasets.

We used the intensitynformation provided by the data provider without implementing a
normalsation step to enhance it, as demonstrated in different st{@#ziolis, 2011; Hopkinson,
2007; Martinsneto et al., 2021)Shi et al. (2018emonstrated that intensity information is more
effective than other heigtased metrics in discriminating tree species. The forests in PNR Bauges
comprise forest plots of broadleavedniferousand mixed types of forests with different species of
vegetation. Calibrated intensity information could further help in improving the accuracies of the
models. In addition, the intensity information is also known to be affected by the scafvarths

neto et al., 2021)

86



Chapter 4

The distribution oBA andV;across differentest sets reveals that the dataset was not balanced as
there are very few plot measurements with very high values. Many of thevatmigionsplits used

in this study (and ihahssini et al., (2022glso suffered from kck of balanced training and testing
samples. We believe that field plot measurement representing diverse forest stands will further help
build robust models. The sampling strategy used to collect field measurdéotiemted a systematic
sampling schemedtestablistsites for periodic monitoring. A stratified sampling scheme would be
more suitablefor building models. Moreover, some differences may abseausesmall trees
(DBH<7.5cm) were not measured as per the field measurements protocol. The contribsiicim of
trees inestimatingthe signal could be higher.

Dayal et al. (2022)demonstrated the benefits of using velraked metrics. Voxddased metrics
cortributed by reducing rRMSE values for ordinary least squares regression (OLS) ABA models
based on forest type (riparian, broadleaf, coniferaud mixed). For OLS ABA models, using voxel
based metrics improved the predictions by reducing the rRMSE by40%6nd 14% for riparian,
broadleafand mixed types, respectively. The rRMSE values for different forest types and with only
four lidar metrics (including voxdbased metrics) ranged between 30986, comparable to those
observed with MLP models built iistd stderrain, andexpdatasets in this study. However, including
normalsed intensity information along with stand type characteristics and-baseld metrics could

be beneficial for building better models using désgrning approaches and a possifbiture area of

exploration.

In this studywe opted to describe our datasets based on the flight linespanded dataset¥he

common practice combines all these observations in lidar ABA mddajenerate th'standard

datasets. Essentially, eaghservation in the dataset represents an independent physical observation
(or lidar scanning) of a given field plot. As the vegetation in the field plots is rarely identical when
viewed from multiple directions, it may be argued that the resulting diffesefrom different scans

are comparable to the data augmentation procedure that is commonly used to increase the number of
samples when dealing with imag@éikolajczyk and GrochowskR018; Shorten and Khoshgoftaar,

2019; Taylor and Nitschke, 2019; Wang et al., 20&Y)rder to avoid confusion with commonly
practsed data augmentation strategies, werreteto our modified datasets 'agpandetidatasets.

Nonetheless, we woulike to emphasise the similarities.

4.5 Conclusion

This studydemonstrated that considering point clouds from different flight lines as independent
observations in neparametric models can improve ABA predictions for forest attributes. By
considering the potrclouds as independent observations, we retained the heterogeneity in the lidar

metrics due to variations in the acquisition geometry in the form of an expanded dataset with a
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significantly higher number of observations than a standard dataset. A neulpkrgeptron (MLP)

could harness the expanded information to predict forest attributes with higher accuracies than a
Random Forest model, commonly used in ABA approaches. The present MLP model also
demonstrated the potential to result in predictions coafgba to methods involving the gion of

optical and lidar datéLahssini et al., 2022PDptical data may be incorpoeat toimprove furthethe

results observed in this study.

Considering point clouds from different flight lines could be used to revisit existinglledasets to
improve the ABA predictions by harnessing both the homogeneity and heterogeneity alike of lidar
metrics (Dayal et gl.2020) when field plots are scanned from multiple locations. The different
perspectives ahe same field plots could help defep robust models.

Furthermore, the point clouds from different flight lines were considered independent observations
for simplicity. In reality, they are observations of the same field plot and can be grouped based on
field plots, resulting in a longitlinal dataset. A longitudinal dataset contains repeated observations
of the same entity over different periods, which, in this case, happens to be the scan geometry.
Longitudinal datasets are dealt with differently with methods such as pooled OLS ceffizetd

model, among others, or deep learning methods such as recurrent neural networks and their
variations. Such methods could be possible alternatives that may be employed to extract the

maximum amount of information from such lidar data
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5.1 Synthesis of the thesis

The ability to exercise the accurate measurement capabilities of lidar over vast areas of vegetation
makes it the most suitable remote sensing technique for forest managpuanposesThe increasing

use of lidar globally is evidence of its potentids use has beencredilly beneficial for forest
inventories by making it possible to obtain information &gy highlevel of detail. Linking field

plot measurements with accurately measured lidar data for the same, also knownrbas@&rea
approaches (ABA), is the most common way to arrive at predictions of forest attributes at a fine
scale.However,thelidar scanning mechanism and its scan parameters make it challenging to have
uniformly dense point clouds everywhere. One of the parameters, the lidar scan angle, has been
insufficiently studied and in recent years understarglits influence onlidar metricsand ABA
modelshas assumed importandss a convention, scan angle has bietted to less than 180

degrees for most studies using lidar for scanning for&dtay scan angle poses challenges to many
nationallevel lidar acgisitions seeking operatiahefficiency. Even localevel lidar acquisitions

benefit from a wider scan angle, reducoqmgration costd-urthermore, data acquisition using UAV

lidar often employ high scan angldherefore, it is imperative to understand and study further the

effed of using such

Lidar scan angle imtegral tothe acquisition geometry defined by the scanning parametarajn,
andvegetation pperties This PhD thesis studied the effect of different acquisition geometries on
lidar-based ABA models in differesbmplex forest environmentshe study was conducted in two

broad partsovered in three main chapters of the thdsighe first part of the study, the effect of

lidar scan angle on lidar metrics and ABA models was assessed. In the second partudfythe st
different strategies to manage the impacts of scan angle were explored. The study had five specific
guestionsthe main findings per question are summarised bdtavally, the limitation of the study

and future perspectivensill be discussed at thend.

5.1.1 Assesmg the impact of lidar scan angle on ABA modelsn diverse

complex forest environments
Q1) What is the impact of lidar scan angle on commonly used lidar metrics?

This study objectivelemonstrated that different lidar metrics are differently sensitive to the scan
angle.11 lidar metrics (9 height metrics atwdo canopy metrics) were analysed to understand their
behaviour under changing scan anglee scan anglenpactedsome metricssuchasgap fraction

and rumple index, whilempactingothers, like p10 (10th percentildép a lesser extenMean, max
(maximum), and p90 are substantially less affected by scan &ngiér findingswereobserved in
Montaghi(2013) who studied boreal forests. Contrastingfgng et al(2011)found that the higher

percentiles (100 percentile) were more sensitive to scan angle for simulated deciduous forest
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environments with full waeform datalrrespective of the differences in the study areas, it is clear
that it isimpossible to have universal assumptions regarding the effect of scan angle on lidar metrics.
Althoughconceptual ideas may guide hypotlgseis recommended to bemdiful of the sensitivity

of lidar metrics to scan angle while planning lidar acquisitions. For example, it is a reasonable
hypothesis that a metric such as-igetion, which has proven capabilities to characterise vegetation
structure, willundoubtety be biasedvhen assessed from the patiduddistributionsincethe path

length increases with increasing scan angle. This behaviour may be emphasised further when the
acquisition geometry changes wittgherslopes in mountainous tain. Based on the obsations

in this chapter, a predefined model was selected consisting of metrics with different sensitivities to
scan angle to study the inclusion of these metrics in the same.

Q2)What is the impact dhcludinglidar metrics sensitive to scan angle on ABA models?

An attempt was made to answer tlqisestion by simulating different acquisition geometigs
resamplingexisting lidar dataset3 he simulatedets of dathroadlywereof two kinds a) composed
only of point clouds scanned from only one flight liggngle flight line setfl1l) and b) composed
only of point clouds scanned from any two flight lifdsuble flight line setfl2). The idea was to
evaluate and compare the behaviour of ABA modtalk with the same lidar metrics fdhe single

flight line setfor the same areand when using two sets of metrics more or less sensitive to scan
angle Modelsto predict wood volume (stem and total volumes) and basamhamesevaluated for
three different and coplex stands (riparian area and broadleaved, mixed and coniferous stands in a
mountainous area) through a leare-out crossvalidation approachin an ideal scenario where
lidar metrics are not affected by the acquisition geometry (scan angle), thesrabdeld result in
similar predictions. In other words, there will be no variations in the gooebfd#scriteria.
However, as demonstrated in Chapter 2, different lidar metrics are affdiffexently. Firsty,
models were built usingvo highly explamatory metrics (mean and variance of heights) that were
foundto berelatively lesssensitive to scan angl8econdy, models were built using two additional
explanatorymetrics gap fraction Py) and coefficient of variation of LAD profileGQVLap) (Bouvier

et al., 2015)which weremore sensitive to scan angWith modelsbuilt with the mean and variaa

of heights as referenseusingthe simulated datasette inclusion of Pr and CViap increased the
variations in the accuradyr?) of the predictionscross experimental scenarios (see Chaptby 3)
anaverage of 171%. However, it does not mean #dre not beneficial. Inclusion of the metrics,
while increasing thetandard deviation (SIf the predictionsalso increased the average accuracy
by 8% (except forconiferous forestsResults weraelatively more stable when models were built
with the secad data seffl2), i.e. two flight lines scanningach forest plotDifferent acquisition
geometries may not be well represented wieenfield plots exist Building a model for such lidar
acquisitions will undermine the accuracy of predictions of attributes in datasets (or areas) scanned

with different geometries. If lidar data is acquired from single flight lines, the risk of a poorly
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specified model wilincreaseresulting in unreliable forest attribute maps. It may be the case that
even a few plots that are netanned well may impact ABA models. Therefore, iessentiato
develop approaches to manage scan angle effects when developing ABA models

5.1.2 Methods to manage the impacts of lidar scan angle on ABA models
Q3) How does overlap in lidar data acquisition influence the quality of ABA models?

Overlapping of flight line swaths is mainjone to ensure areas on the ground are sampled from
multiple locatbns to create a dense point cloud representation of the vegetation. The data acquisition
in both the study areas waarried outwith sufficient overlap to ensure that many, if not all, field
plots were scanned from multiple locations. Some field plothénBauges dataset were scanned
from as many aeightflight lines enablingeight different point clouds from individual flight lines

and 28 differenpoint clouds from any two flight lines. The average numifeftight lines from
which scanned a plot &s approximately four (3.8). There was sufficient variability in the
combinations of point clowdin both study sites timvestigateto what extehthe combination of
different points of viewflcould help manage the impact of scan anglee first set of simated
datasets corresposdo absolutely zero overlap(single flight line set) and the second set
corresponds to 50% overlggouble flight line set)Datasets resampled in terms of any three flight
lines were also includedor comparison despite the kaof variability of point clouds due tan
insufficient number of flight linegriple flight line set) The standard deviations of the goodrefs

fit criteria distributionwerereduced by an average of 42% for double flight line sets compared to the
singe flight line sets.

Constraintavere also applietb the single and double flight line sets to simulate speaifigiisition
geometries. There were six acquisition geometries obtained by filtering flight lines belonging to: only
nadir @), slightly off-nadir (B) and offnadir (C) from single flight line sets, and their combinations

(AB, ACandBC) from double flight line setd.here was a reduction in the SDs of the R2 distribution

by an average of 45% for all comparisonaA&, ACandBC with A, BandC. At the level of the

forest types, these reductions were 51%, 62%, 21% and 46% for riparian, broadleaf, coniferous and
mixed forest types. Therefore, ensuring at least a 50% overlap to scan any ga/démoraréwvo

different locations couldurtail the varidility in predictions due to varying acquisition properties.

On the other hand, the means of the goodoé§s criteria distributionsrevealed an interesting
phenomenonThe means represent the average accuracies of the models in efithAeB( Cfl2,

AB, ACandBQC). It would seem intuitived ensure overlaps will result in dense point clouds and
more accurate models. Based on the results observed stuittysit may only be partially truélhe
mean R2 values predictions fitit datasets were Weer than those fdi2 datasets only for the riparian

and mixed plots. For the broadleaf and coniferous pluéspppositei.e. the predictions were better
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with individual flight line datasetsfl{) than with double flight line datase{82). There wasa
considerable differencir coniferous plots. The fl@ataset mean R2 was almost 30% lower than
that forthefl1 dataset. The trend was more apparent in comparison with the resiél@s Teve trend
was reinforced when compared to the single point gessbf-fit values for models built wittall

the point clouds from different flight liseonsidered togethgire. the traditional ABA models.he
trend of better models with single flight line point clouds was also obserwahlyier et al(2021)

for balsam firdominated stand#.crossfl1, fl2 andfl3 datasets, there was a tendency to converge at
the goodnessf-fit criteria of the traditional modelshe results underline thatven with lower
values for thegoodness of fit criteria, modefmiilt with datasetsicquired from multiple flight lines

in every forest locatiowill be more robust and reliablelowever,our results alsopen up questions
regarding such contrasting trendwith mean trends better with mngle flight line than with two or

three for some of the stands

Furthermore, despitihe changes in the acquisition geometry between the two studyiare@gon

and Bauges, the goodnesfsfit distributions for different acquisition geometrids, (A, B, C fl2, AB,

AC, BCandfl3) indicate that some inclinatio) is desirableln addition, as acquiring data with
high overlap between flighinesis costly and could hinder the use of lidar for forestry application

it is worthwhileto developstrategies to better deal with the influence of scan angles on metrics and
models Some approaches in that regard hasen addressed through the two last goest

Q4) How to normalise lidar metrics sensitive to lidar scan angle?

With datasets corresponding to different acquisition geomettiea,(B, Cfl2, AB, AC, BGndfl3),
ABA models werebuilt for each set by including metrics computed franoxelbased estimation
of plant area densit§PAD) profiles. It was assumed that voxelisation conlatmalie information
due to its capacity testimatePAD valuesfrom the point cloudsat the voxel level(better
discretisation of spac&yhile mitigatingocclusion effecand taking into account the path length of
the laser pulse in the vegetatidineresulting pot level PAD profilesereused in place of ground
returnsfor gap fractionand CViap estimation Besides a few exceptions thatodly involved
coniferous plotsusing voxelbased metrics positively impactetean R¥alues, increasing them on
average by 38%. The rRMSE values were also decreased by an average ©hd @dvantagef
voxelbased metrigsas well as other profilbbased metricgenerally is that they more accurately
characterise canopy structural properties, highlighted by increased accMamover, the
goodnes®f-fit of the traditional ABA models improved when voxélased metrics were used for
riparian, broadleaf and mixqdots.Voxel-based metrics also reduced the SD of the distributions of
the goodnessf-fit criteria for all resampled datas€ts, A, B, C fl2, AB, AC, Bandfl3) of broadleaf

and coniferous plots.
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There are two aspects to the PAD profiles obtained froxelisation and layelbased method. The

firstis the shape of the profjland the second is the similarity between the prdidedifferent point

cloudson the same plotsThe improvement irR? values when voxddased metrics were used

indicates thatthe profiles (and subsequent metricd)ased onvoxelisation were better at
characterising the vegetatioMoreover, the similarity of the voxélased profiles was considered

indicative of thenormalisatiortendencywith voxelisation Therefore, with voxediation, it is possible

WR LQFUHDVH WKH DFFXUDWH FKDUDFWHULVDWLRQ RI WKH YH.
it did not work perfectly in all the cas€®r all field plots) There were some instances wherein
voxekbasedprofiles were moreidsimilar than the layelbased profiles. Nonetheless, the shape of

the profiles was also differergnd it may be assumed that voxelisation generally performed better

Moreover, voxelisation wadone withoutheight normalisationas the geometry needs to remain
intact for the ray tracing. The height normalisation is done at the level of the voxels, which is coarser
and could lead to some artefadiéso, implementation of voxebased methods at the level of the

entire forest is ot easily possible right now, and it requires greater computation efforts.
Q5) How to model acquisition geometry in ABA models?

So far, only the lidar scan angle was studiédyivenlidar scan is part of the acquisition geometry,
which also includes theerrain and vegetatioproperties especially in areas withteepslopes.
Therefore, he lidar acquisition geometnig not only defined by the scan angle but also by the
azimuth.In terrain witha slope,theimpact of @imuth can bgrominent when interding with the
topography: a point cloud over a foreseésewith the same scan angle can be highly different when
the sensor is scanning along or against the sldpece, he relatioship between thkdar scanner
andthelocal topographyecomes an imptant consideratioriYang et al(2011)observed that ful
waveform shapes are affected by vegetation structure and terrain paraPetemis workalso
demonstratethatconsiderindocal topography when developing ABA models based on point clouds
is beneficiaLahssini et al., 2022 herefore, it was attempted to incorporatedherallacquisition
geometry in ABA models using neural networks. A multilayer perceptron (MLP) was used in an
attempt to disentangle tttwmplex noHdinear interactions between various lidar variables, terrain

and scan properties

In this chapterthe slope was characterisley the degree of slopeha azimuth of the slope and the
elevation, and the acquisition parameters were characterised by the meangdeaazamuth of
scanning and the distance of the scanner from theFRioteach plotacquisition from each flight
line results ina unique point cloudcaind a unique set of corresponding metdescribing the local
stand, impacted by the interplay of teain andacquisition parameterbesides the vegetation

properties
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Comparing MLP models with and without geometric information highlighted the importance of
adding information on geometry in the model to improve the prediction of forest attribhéeR?
valuesincreased to 0.83 from 0.7@r basal area predictiorad to 0.85 from 0.7fbr total volume
predictions. Furthermore, the augmentation of datasets also demonstrated an overall improvement in

the predictions.

The multiHlinear regressiofMLR) for different stand types demonstrated the limitations of some of
the metrics. © a great extent, this limitation wagercome by using voxdlased metrics. However,
MLR regressions are generally built by stratifying for the forest types to obtain good .ré@dt

MLP does not have this limitation. The results for MLP models with terrain and scan informations
were nearly similar to those obtained with the deep leattnd@isgd fusion of lidar and optical data by
Lahssini et al(2022) Optical data is known for discriminating between well between different
species. It may be hypothesisibit when the MLP was trained with different views of the same
forest plots, it could learn to discriminate between the three forest types well and result in

improvements similar to those obtained by the fusion strategy.

Finally, explicitconsideration ofactors that explain the interaction of acquisition parameters, terrain
and vegetation properties can improve ABA modatsthese factors may be challenging to mpdel
methods such aartificial Neural networkgand more advanced deep learrbaged methds) can

be harnessed for their capabilittedearn complex relationships.

5.2 Limitations and Perspectives

Most lidar acquisitions are carried out withdar scan angle rarely greater than 20°. In that context,
it wasprettychallenging to identify datass that could be adapted to thegerimentation schenie

this study.The two datasets that were useereconsiderably different in terms of the acquisition
parameters. The Baugdataset was acquired in tatandard airborne lidar acquisitisthat resited

in dalsets with point densities @# points/m2 and 4 points/mk contrastthe Ciron dataset was

acquired from a light aircrafesulting in a dataset with a point density of 69 points/m?

Some limitations with the datasets influenced the expmarisnfor the two first parts of the studwy

the first part involving the assessment of lidar scan angle on metrics, the various flight lines had to

be grouped based on their mean scan arfiyl&s\) in 10° intervals. A neacontinuous change of

scan anglés not practical in real dataseHight lines with MSAs closest to respective class medians

were chosen from each class, thereby losing information from some of the other flight lines in the

same classe#n the second part of the study, the datasets vesampled such that the point clouds

for each plot correspondedparticular acquisition geometrigdowever, it was not possible to have

the same acquisition conditions fdirtae plots (e.g. nadirX) and moderate (class B) scan angle for

all the plds). The comparison wassteadRl1 PRGHOV EXLOW ZLWK 3SUddsRPLQDQ\
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datasets as opposed to a pure nadir enadiir. Nearly 50% of the plots in some forest tgpid not
correspond to the main sgang scenarion considerationlt maybe the case that there may be noise
from such situations, bubn the contraryif mayalsobe argued that this leant some sense of realistic
data acquisition characteristimsthe datasets

In thefourth chaptera data augmentation procedoomtribued positively to the ABA predictions.

In that case, the unbalanced number of flight lines among the plots was less detrimental.

The experimental setup was devised to cover many possible scanning configuidoas.
possibilities existhat couldrefine he experiments to reflect many réig¢ acquisition scenarios.
Furthermore, the increasing use of drones and multipurpose lidar acquisiliobsng scan angle

into focus over the next few years and bringing down costs has always been an important
congderation. Optimisation of lidar data acquisition in light of new technologies, platforms and
practical considerations such as cost and,tthrereforesustain the need to study the effects of lidar
scan angle in more detalAVs are lowcost alternative that can be used to acquire experimental
datasets with very high scan arsggénd degregof overlap. They also provide higtensity point

clouds that can be used to resolve various vegetation elements.

Using simulated lidar datasets cowtso bea valuable solution to extend this work. Radiative
transfer modelsuchas DART could be used simulate lidar dain forest environmeist(Gastellu
Etchegorry et al., 20155mulations could be used tanswerseveralguestions raised in this thesis
as they could provide lidar data séis acquired from a continuously changing scan angle, (ii)
acquired withspecific acquisition geometnand (iii) to generate additional samples to augment
datasets for dedarning based models. In recent years, kied datasets have become
increasingly realisticThey have the potential to fill in the gaps in real datasets.

Although the number of field measuremeistgritical to building ABA models, their quality also
matters.The protocol followed during the field plot measuremémthe Bauges sitdid not allow

for measuringrees with diameterbelow 17.5 cm. Some plots had tree measurements for only a
handful of treesvith diametes greater than 17.5 cm. The other vegeta{small trees and lower
vegetation) however, vassensed by the lidar sensor. Although the diameters of the smaller trees
were estimatedor this work more accurate information about them will relate bati¢he lidar
signal. Furthermore, the stratifiton of measurement® have plots with diverse field plot
measurements will result in bettealibrated models. This wamsainy a problem with the Bauges

dataset because there were only a handful of plots with very high basal area and total volume values

In the riparian field plotspne pla had the largest treemong those measured in tfield plot
measurements. However, while clipping the datassitey the plot centre coordinatdise tree trunk
was not a part of the clipped subdrit a significanpart of its canopy was a part of the subSeth

problems are known ahe border or edge effectend they have been known to affect ABA
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predictions(Knapp et al., 2021)These effects can be more pronounced with higher scansangle
especially when dealing with single flight line datasets. For the example mentioned above, edge
effects could have a role to play when dealing with very heterogeneous forest enviroimréigs.

study, however tiwas not addressednd plots with severe edge effects were not considered

The most straightforward strategy to mitigiieimpact of scamngleson ABA modelswvould be to
ensure that each part of the forestigen from a diversity of scan angles and azimuths. This is not
possible in practiceVoxel-based metrics were demonstrated to have great potanti@rmalse

lidar metrics befordouilding ABA models thus improving model robustneskhey are extremely
useful for convertingan unordered set of vegetation points irdn ordered threg@imensional
representation of the vegetatidteverthelesshie voxellevel PAD estimatiofis known to be biased

at low point densitiefPimont et al., 2018; Soma et al., 201R)rthermorethe voxelsize was set at

1m in this study. Voxel sizis also an important parameter to consider as smaller voxels can better
discretise the distribution of the vegetatidnbalancemustbe achievedbetween the point densities
and the voxel sizeél'he biascorrected estimators proposed ®yma et al(2018)andPimont et al.
(2018)and the LAD kriging method bgoma et al(2020)have the potentidb increase the accuracy

of PAD (or LAD) estimation. In this studyhe vegetation profiles were derivedm the voxelised
scene to computgoxd-based gaffraction to have comparable metrics to the original model
containing gagraction as one of the metrics. Alternate metrics from the voxels and vegetation
profiles are also a possibility. 3D convolutional neural networks called Vo{Waturana and
Scherer, 2015)or object detection offer interesting possibilities usingthe explicit 3D spatil

structure of the information.

Accuracy of forest attribute prediction needs to be accompanied by precision in prediction accuracy.
The precision is possible when forests are scanned uniformly from all directions. As that is not
possible in real life, strategies have to be developedaitage the potential variations that could
arise. The simplest way to manage the variations due to lidar scan angle is tolidasutata
acquisition is made so that areas are scanned from at least two ofligfimeknes to ensure a
comprehensiveegdation samplingFrom a practical perspectivedopting more efficient and cest
effective practices is desirable such cases, metrics will have to be carefully chosde stable

under changing scan angl&oxelisationusing raytracingcan beanoption to normake the metrics

at the field plots and the whole forest levelgenerataeliable waltto-wall maps. Voxebased
methods alstiavethe potential tocharacterise vegetation bett&€hese methodsiustbe developed
further to incorporate them mioperational lidabased enhanced forest inventories (EFIs). Finally,
acquisition geometries should be given due consideration while modelling forest attributes. Research
in this regard, with various acquisition geometries, will enrich our understaniding mechanism

with which lidar pulses sample canopies from different viewpgimwifferent terrains and different

types of forests.
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Appendix A: Effect of scan angle on metrics at plot level

for Bagues site

Figure10: Comparison of metrics computed for classes B and C with class A, for all the three forest types at Bauges
considered together. The methodology used was similar the one {Bayhkiret al., (2020put only at the level of the field
plots available. The metrics were affected differently by changing scan angle: éing the most sensitive.
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Figurell: Distribution of the performance measures of basal area (BA) models (R2, rRMSE, MPE) for different scenarios and
for the different forest types (Riparian, Broadleaf, Conifsrand Mixed). The single (fl1, A, B, C), double (fi2, AB, AC, BC)
and triple (fI3) flight lines scenarios are depicted in blue, orange and yellow respefgiolelyr)
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Figure12: Distribution of the performance measures of tatdlime (Vtot) models (R2, rRMSE, MPE) for different scenarios
and for the different forest types (Riparian, Broadleaf, Coniferous and Mixed). The single (fl1, A, B, C), double (fi&,AB, A
BC) and triple (fI3) flight lines scenarios are depicted in biuange and yellow respectivelgolour)
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B.1 Scenario wise comparison of distributions for reference and voxel metrics

Three
Forest One flight line Two flight lines flight
lines

type
fll A B C fl2 AB AC BC f3
Riparian 40.2* 33.5* 26.6* 88.3* 27.0% | 29.3* | 27.0* | 21.7* 19.9*
~ Broadleaf 5.1* 11.2* 8.9* -4 5% 20.1* | 25.0* | 16.3* | 17.6* 31.3*
™" Coniferous 10.1* 18.8* 2.1* -8.3* 22.9% | 37.0* | 14.5* 0.3 24.8*
Mixed 24.1* 42.3* 28.4* 10.5* 29.4* | 21.3* | 41.7* | 24.9* 28.3*
w Riparian -15.3* | -14.5* | -11.6* | -22.3* | -11.6* | -13.0* | -12.2* | -9.2* -8.9*
Cé) Broadleaf -1.3* -2.4* -2.7* 1.6* -5.4* -6.0* -4.2* -5.4* -8.0*
| Coniferous -2.7* -4.7* -1.0* 2.1* -4.7* -8.6* -2.9% 0.0 -5.0*
- Mixed -10.3* | -15.4* | -12.3* -5.3* -12.6* | -9.0* | -16.1* | -12.2* -12.6*
Riparian -23.6* | -25.9* | -17.1* | -30.5* | -17.9* | -21.2* | -21.2* | -11.5* -12.3*
lr-Jl_J Broadleaf 19.8* 25.7* 17.7* 18.0* 19.8* | 32.0* | 20.6* | 13.4* 18.0*
=| Coniferous 4.7* 2.2* 7.3* 8.8* 3.7* 1.4* 3.3* 9.3* 2.7*
Mixed -14.6* | -19.0* | -21.5* -4.6* -14.9*% | -12.5* | -17.4* | -14.4* -15.0*

Tablel11l: Scenariewise percentage changes in the means of distributions of goeafrfdssriteria using voxel metrics for
the predictions oBA. Values in red indicate a deterioratiéh comparisons were significant (*) except for those in bold All
comparisons were significant (*) except for those in ifotdour)

Three
Forest One flight line Two flight lines flight
lines

type
fll A B C fl2 AB AC BC fI3
Riparian 31.2* 34.5* 25.1* 39.6* | 23.9* | 25.6* | 25.1* | 20.2* 18.1*
~ Broadleaf 5.0* 7.7* 2.3* 4.7* 11.9% | 11.1* | 12.2* | 11.6* 16.2*
™ Coniferous -3.2* 6.4* -2.7* -19.1* | 10.8* | 36.3* 0.0 -9.0* 11.8*
Mixed 19.1* 38.7* 27.6* 2.1* 23.1* | 18.2* | 33.0* | 17.5* 23.4*
w Riparian -17.6* | -19.3* | -15.0* | -19.8* | -13.5* | -14.5* | -14.3* | -11.4* -10.2*
2} Broadleaf -1.7* -2.4* -0.8* -1.8* -4.9* -4.5* -4.6* -5.3* -6.6*
E Coniferous 1.2* -1.5% 1.0* 6.5* -1.8* -6.0* 0.1 1.9* -2.0*
= Mixed -9.7* -17.0* | -14.3* -1.3* | -12.5*% | -9.6* | -15.7* | -11.1* -13.0*
Riparian 24.7% | -27.4* | -22.2* | -26.3* | -19.5* | -21.3* | -22.1* | -16.6* | -13.9*
IEILJ Broadleaf 10.1* 20.3* 0.6* 8.7* 11.3* | 19.0* | 13.6* 1.6* 10.5*
=| Coniferous 9.5* 5.5* 8.6* 16.5* 6.1* 3.0* 5.7* 11.7* 5.4*
Mixed -17.6* | -24.5* | -23.6* -5.7% | -18.8* | -16.4* | -23.0* | -15.9* -20.0*

Table12: Scenariewise percentage changes in the means of distributions of goeafridssriteria using voxel metrics for
the predictions o¥iot. Values in red indicate a deterioratidlh comparisons were significant (*) except for those in bold All
comparisons were significant (¥) except for those in ifotdour)

Three
Forest One flight line Two flight lines flight
lines

type
fl1 A B C fl2 AB AC BC f3
Riparian -30.5* -2.5* 58.3* 14.0* | -20.1* | 35.0* | -12.1* | -4.1* -17.0*
o Broadleaf -52.4* | -59.4* | -61.7* | -35.0* | -60.7* | -72.5* | -54.6* | -48.3* -62.9*
™ Coniferous -35.9* -19.8* | -16.2* | -16.7* | -35.8* | -60.2* | -58.0* | -57.6* -32.2*
Mixed 21.2* 69.9* 30.9* -40.3* | -6.2* | 60.2* | -1.8* | -26.8* 39.9*
W Riparian -17.7* 15.3* 80.1* 48.5* -9.5* | 55.9* 0.8* 5.9* -8.9*
g Broadleaf -51.8* -58.5* | -61.3* | -35.3* | -58.6* | -70.6* | -52.7* | -45.4* -59.6*
| Coniferous -33.5* -15.6* | -13.9* | -17.4* | -32.1* | -56.4* | -56.8* | -57.5* -28.7*
- Mixed 35.7* 102.6* 50.7* -36.9* 7.3* 76.4* | 17.3* | -17.6* 59.8*
s Riparian 3.6* 6.3* 101.8* | 63.9* 11.4* | 33.3* | -1.7* 26.2* -3.4*
Broadleaf -37.3* -58.6* | -62.2* | -27.8* | -39.8* | -60.6* | -11.0* | -15.0* -16.1*
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Coniferous -17.4* -7.9* -12.2* -6.5* -7.4* | -21.9* | -28.5* | -27.5* -5.1*

Mixed 23.3* -16.4* -8.8* -33.9* | 17.0* | 60.4* | 39.1* | 4.1* 90.9*
Tablel3: Scenariewise percentage changes in the standard deviations of distributions of geofdfitessteria using voxel
metrics for the predictions &A. Valuesin red indicate a deterioratioAll comparisons were significant (*) except for those
in bold All comparisons were significant (*) except for those in Ifotdour)

Three
Forest One flight line Two flight lines flight
lines

type
fll A B C fl2 AB AC BC fI3
Riparian -4.5*% 49.7* 63.6* 35.7* 5.4* 82.3* 45.1* | 35.9* -1.7*
o Broadleaf -56.3* -63.3* -58.9* | -46.9* | -51.0* | -58.0* | -39.7* | -46.7* -59.0*
™" Coniferous -44.1* -45.7* -22.4* | -41.5* | -525* | -70.1* | -63.9* | -59.3* -32.3*
Mixed 56.9* 96.2* 28.1* | -38.5* | 15.0* 70.5* 14.2* | -30.8* 83.0*
w Riparian 14.9* 85.0* 92.6* 69.6* | 22.3* | 114.0* | 70.0* | 53.9* 9.6*
g Broadleaf -55.0* -62.1* -58.8* | -44.8* | -48.4* | -56.0* | -36.7* | -43.6* -55.9*
| Coniferous -43.6* -43.9* -21.7* | -43.5* | -51.5* | -68.2* | -64.0* | -60.2* -30.9*
= Mixed 75.0* 137.8* 49.8* | -37.9* | 31.8* 89.1*% 36.2* | -23.2* 110.1*
Riparian 42.9% 64.5* 122.1* | 64.9* | 41.5* | 70.5* | 32.0* | 36.5* 17.5*
‘EILJ Broadleaf -42.4* -54.6* -54.4* | -36.6* | -49.3* | -545* | -22.9* | -18.8* -38.2*
=| Coniferous -13.3* -23.0* -16.2* 4.0 | -11.0* | -34.9* | -40.0* | -13.1* -1.3*
Mixed 22.7* -0.3* -8.8* -42.5% | 34.7* 62.0* 28.1* | -11.1* 96.3*

Tablel4: Scenariewise percentage changes in the standard deviations of distributigmodfesf-fit criteria using voxel
metrics for the predictions &fot. Values in red indicate a deterioratiél comparisons were significant (*) except for those
in bold All comparisons were significant (*) except for those in otdour)

B.2 BA andVtot predictions for conventional using voxel metrics

Basal area Total volume
Goodnes®f- Forest type
fit W/ reference| W/ voxel | W/ reference| W/ voxel
metrics metrics metrics metrics
Riparian 0.51 0.6 0.58 0.66
R2 Broadleaf 0.35 0.43 0.49 0.53
Coniferous 0.29 0.34 0.27 0.27
Mixed 0.44 0.6 0.51 0.64
Riparian 20 18.04 22.72 20.50
'RMSE Brogdleaf 35.46 33.18 38.85 37.17
Coniferous 36.33 35.24 43.95 43.90
Mixed 37 32 40.3 34.5
Riparian -4.24 -3.64 -4.91 -4.14
MPE Brogdleaf -13.38 -16.43 -14.33 -16.47
Coniferous -14.89 -15.85 -19.66 -21.40
Mixed -16 -13.5 -18.6 -14.7
Table15: Goodnesf-fit criteria for predictions oBA and \6tfor conventional models built with reference and voxel
metrics
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Appendix C: Vegetation profiles
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