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Introduction

The interaction between a well-de�ned quantum system that has optical transitions

and its environment has been widely explored [1]. It is driven by the local density

of states (LDOS), which informs about the number of modes in the environment in-

teracting with the system. Two main interaction regimes can be considered: weak

and strong coupling. In the weak coupling regime, emitter/environment interaction

is characterized by a modi�cation of the spontaneous emission rate of the emitter

with respect to vacuum. In contrast, the strong coupling regime involves a coherent

energy exchange between the emitter and the environment that modi�es the eigen-

frequencies at the resonant energies. Light-matter interaction in the strong coupling

regime is a subject that has been explored for a wide variety of emitters in different

electromagnetic environments. In this thesis, we study a particular phenomenon in-

volving two different emitters and an electromagnetic mode that propagates at the

interface formed between a metal and a dielectric material. This mode is called a

surface plasmon polariton (SPP).

This thesis has been done in the frame of the Plashybrid ANR project led by J.

Bellessa from Institut Lumière Matière (ILM) and including three other partners: In-

stitut Langevin (IL) (scienti�c coordinator Valentina Krachmalnicoff), Institut de Sci-

ence et d'Ingénierie Supramoléculaires (ISIS) (scienti�c coordinator Thomas Ebbe-

sen), and Institut des Sciences Analytiques (ISA) (scienti�c coordinator François

Bessueille). We have also bene�ted from the collaboration with the team of Jean-

Jaques Greffet from Laboratoire Charles Fabry de l'Institut d'Optique (LCFIO), and

Thomas Pons and Sandrine Ithurria from Laboratoire de Physique et d'Étude des

Matériaux (LPEM). Following the pioneering experiments performed at ILM on strong

coupling with plasmons and J-aggregates [2–4], the objective of the ANR project con-

cerning my thesis was to combine the skills available at ILM to synthesize samples
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I NTRODUCTION

and probe the global optical response of a strongly coupled system with those of IL

to perform local optical measurements on plasmonic nanostructures with �uores-

cent emitters [5; 6], to study the behavior of a system involving surface plasmons and

J-aggregates in the presence of other emitters than J-aggregates, according to their

nature and spatial distribution. We decided to push our investigations following two

directions: the coupling of weakly coupled quantum emitters to a strongly coupled

system and the coupling between already strongly coupled systems. For these pur-

poses, samples containing silver �lms and a patterned layer of J-aggregates were fab-

ricated and then combined with semiconductor quantum dots provided by LPEM.

During my PhD, I performed several journeys to ILM dedicated to the production

and characterization of such samples. Similarly, we bene�ted from the visit of An-

toine Bard, a PhD candidate from ILM, to our group at IL to perform local optical

measurements. To deepen our understanding of our system, we had the chance to

collaborate with the LCFIO team led by Jean-Jacques Greffet who proposed a theoret-

ical model based on a local form of Kirchhoff's law [7] to describe our experimental

results. Important efforts were then invested by his PhD student Elise Bailly to de-

velop the numerical code adapted to our system and using our input parameters,

which led to a very good agreement with our experimental observations [8; 9]. In the

experiments presented in this thesis, as in the development of the respective setups,

I worked together with Kevin Chevrier, who previously did his PhD in Joel Bellessa's

group and is currently a postdoctoral researcher at IL.

This thesis is organized as follows. Chapter 1 gives a brief historical context of

preceding studies that establish the foundation of �uorescent emitters and surface

plasmons. We then focus on recent previous works regarding the spatial coherence

of J-aggregates coupled to SPPs and plasmon-assisted energy transfer, on which we

based the objectives of this thesis. We describe in Chapter 2 the theoretical funda-

mentals of the coupling between �uorescent emitters and SPPs. Through a coupled

oscillators model, we distinguish the differences between the weak and strong cou-

pling regimes for light-matter interaction. We also describe the speci�cities of this

interaction for �uorescent molecules and SPPs. Chapter 3 presents the experimen-

tal setup used for characterizing the spectral and temporal properties of the samples

studied in this thesis. We detail the optical path for performing real and reciprocal-

space spectroscopy and decay rate measurements. Chapter 4 presents the leading

2



I NTRODUCTION

work of this PhD project. We start by describing the elements that compose our sys-

tem, including the photophysical properties of J-aggregates and quantum dots, and

the sample's fabrication process. We then show a series of measurements dedicated

to the understanding of the coupling between the quantum dots and the strongly

coupled system composed by the J-aggregates and the SPP. We also present a model

based on local Kirchhoff's law for photoluminescence and the corresponding simu-

lations performed at LFCIO. Chapter 5 presents a second study aimed to observe en-

ergy transfer between two strongly coupled dyes to an SPP. First, we describe the peri-

odic structuration of the sample in which the two dyes are spatially separated. These

samples were developed by the ILM team based on an original patterning method

using the Moiré effect. We demonstrate the hybridization of the silver SPP with the

emitters through re�ectometry measurements. Then, we report on the polariton-

assisted energy transfer observed through photoluminescent measurements [10]. Fi-

nally, we end this manuscript presenting the general conclusions of this research and

an outlook for future experiments.
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CHAPTER 1. Strong coupling between J-aggregates and SPPs

In this chapter, we introduce the context of the research presented in this thesis.

In section 1.1, we review the historical development of studies of strongly coupled

emitters that achieved breakthroughs in the �eld. Then, we review some seminal pa-

pers about the observation of strong coupling between an organic dye and an SPP.

In section 1.2, we focus on previous research regarding the spatial coherence of the

strongly coupled systems and the long-range energy transfer observable between �u-

orescent emitters coupled to SPPs. These works constitute the cornerstones on which

our experiments are based. The speci�c objectives that we pursuit along this work are

presented in section 1.3.

1.1 Historical survey

The simplest light-matter system consists of a two-level emitter interacting with a

single electromagnetic mode supported by the environment. In practice, this is per-

formed by placing a system with a radiative transition, such as an atom or molecule,

inside an electromagnetic resonator that supports a few modes, such as a cavity. In

such a system, Purcell et al. [1] made a major discovery in the 1940s regarding the

interaction between hydrogen nuclei and electromagnetic �elds oscillating at radio

frequencies. They noted that the spontaneous emission of a spin could be modi-

�ed by changing the boundary conditions imposed to the vacuum �eld. In 1970,

Drexhage's experiment demonstrated that the spontaneous emission decay rate of a

�uorescent emitter depends on its local environment [2]. To do so, he observed the

decay rate of a layer of europium ions as a function of the distance to a silver mirror.

In the mid-1980s, pioneering experiments reached the strong interaction regime us-

ing transitions between Rydberg levels coupled to microwave superconducting cav-

ities [3–5]. The extension of strong coupling to optical wavelengths was performed

with an atomic transition coupled to optical Fabry–Perot cavities, �rst with ensem-

bles of atoms [6–8] and later with a single atom [9] inside a high-�nesse cavity. The

contribution of Weisbuch et al. in 1992 marked the integration of solid-state systems

in the �eld. The occurrence of strong exciton–photon coupling in re�ectivity spec-

tra was demonstrated for quantum wells as an active medium in GaAs–GaAlAs based

quantum microcavities [10].

The strong coupling behavior of a system is characterized by an energy splitting
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1.1. Historical survey

of the system's states at the resonance between the uncoupled radiative transition

and the electromagnetic mode. This energy splitting is the signature of the strong

coupling regime of interaction in the spectral domain and it is referred to as the Rabi

splitting . In the late 1990s, inorganic semiconductors integrated into microcavities at

cryogenic temperatures showed Rabi splittings of the order of » 10meV [11], which

at optical energies represents less than 1% of the transition energy. In 1998 Lidzey et

al. published the �rst report concerning organic dyes for realizing strong coupling: a

large Rabi splitting (more than 100meV) at room temperature was reported [12; 13].

This experiment consisted of placing a dye-doped polymer layer inside a cavity con-

stituted by Bragg mirrors, as shown in the scheme of Figure 1.1(a). The microcavity

was designed so that the angular-dependent energy spectrum matches the dye's ab-

sorption peak at a given angle. Figure 1.1(b) shows the dispersion relation of the cou-

pled system showing a large Rabi splitting ~ Æ110meV. By raising the concentra-

tion of the dye inside the cavity a splitting of 160meV was achieved. The robustness

of this strong coupling effect suggested that there were advantages in using organic

dyes in the search for room-temperature strong coupling phenomena.

The history of coupling between organic dyes and surface plasmon polaritons

goes back to the 1980s [14] when Pockrand et al. [15] reported a dispersion rela-

tion with multiple branches in 1982 in a surface plasmon attenuated total re�ection

experiment for a Langmir-Blogett dye �lm on a silver surface. This work was fol-

lowed up more than twenty years later in 2004, when Bellessa et al. [16] reported

strong coupling in a system consisting of a planar thin �lm of a dye, spin-coated

on top of a silver layer, as represented in Figure 1.2(a). A Rabi splitting of 180meV

was observed in the dispersion relation obtained from re�ectivity measurements, as

shown in �gure 1.2(b). In these studies, instead of resonant modes in optical cavi-

ties, the emitters couple to the propagating modes at the metal-dielectric interface,

i.e., the SPPs. Moreover, the dye �lms that were used in both works were cyanine

molecules aggregated in a head-tail arrangement (J-aggregates) with a large dipole

moment that strongly interacts with light. An additional characteristic of J-aggregates

strongly coupled to SPPs is that the hybridization of the electronic excitations and

plasmonic modes entails extended coherent states in the medium [17], in which the

�uorescence of distant molecules interfere. Experiments exploring this property are

introduced in the following section.
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