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Abstract
Experiments on growing cells can be carried out either in bulk or in confined geometries
that constrain the growth of the colony. How should the population trees be sampled in
each setup? Are there statistical biases between them? How to quantify natural selection
in these trees? These are the main questions we address in this thesis.

In a first part, we study the statistical bias between the single-lineage and population
levels, which has similarities with fluctuation theorems in stochastic thermodynamics. To
do so, we develop a theoretical framework based on lineage histories within population
trees, and obtain universal constraints that are exploited in two directions.

First, this bias informs on the strength of selection, that quantifies the correlations
between the value of a cell trait and the reproductive success of the lineage. This selection
results from the variability of lineages in the population, which we analyze using linear
response theory. We also extend our framework to allow situations where lineages end
before the end of the experiment, due to cell death or dilution. We show how dead lineages
should be taken into account in the statistics, and how death impacts the phenotypic
variability and therefore the strength of selection.

Second, we show how single-lineage data can be used to infer population-level quan-
tities like the population growth rate, also called Malthus parameter. Focusing on size-
regulated populations, we derive steady-state cell size distributions for single-lineage ex-
periments, that can also be used to infer cell cycle parameters such as the single cell
elongation rate and the asymmetry of division. In addition, we explore how the lineage-
population bias for size statistics is affected by different sources of stochasticity.

In a second independent part, we propose a thermodynamic description of cell growth
and division using simple coarse-grained models of cell size control. This question is
important to understand how cell colonies are constrained by thermodynamics. Using a
decomposition of cell division in two sub-processes: branching (creation of an identical
new cell), and resetting (restart of the properties of the two cells), we derive the first
and second laws of thermodynamics for a colony of cells, and identify the contribution
of each process to the change in average energy and Shannon entropy. This allows us
to understand how the distributions of age and size are affected by cell division from an
information-theoretic point of view.

Keywords: Cell populations, cell lineages, natural selection, cell size distribution, stochas-
tic thermodynamics, fluctuation theorems.
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Résumé
Au cours des dix dernières années, de nouveaux dispositifs microfluidiques ont été conçus
pour suivre des lignées de cellules uniques, et des lignées de cellules au sein de populations
constantes en géométrie confinée. Ces dispositifs expérimentaux ont permis de surmonter
certaines difficultés rencontrées dans les expériences classiques où les populations crois-
sent librement, notamment en rendant possible l’observation de lignées sur de nombreuses
générations. Notre travail trouve son origine dans ces expériences : comment utiliser les
données de lignées de cellules, maintenant disponibles en grande quantité ? En géométrie
confinée, une difficulté supplémentaire intervient, car il faut comprendre comment pren-
dre en compte dans les statistiques les cellules qui sont continuellement expulsées pour
maintenir la population constante.

Historiquement, ce nouveau type de données a mené à des avancées importantes dans
les domaines du contrôle de la taille des cellules, et dans l’exploration du lien entre l’échelle
la cellule unique et celle de la population. En parallèle, de nouvelles technologies ont
été développées pour suivre les lignées au sein de populations en croissance, permettant
ainsi de reconstruire la généalogie des populations. Ces avancées ont inspiré de nouvelles
définitions de la sélection naturelle basées sur les données temporelles des lignées, et en
particulier sur le biais entre le niveau de la lignée unique et celui de la population.

Au cours de cette thèse, nous abordons les questions suivantes. Comment relier les
niveaux de la cellule unique et de la population ? Comment échantillonner les populations
dans chaque configuration expérimentale ? Comment définir et quantifier la sélection
naturelle ? Comment utiliser les données de lignées uniques en pratique pour inférer des
quantités au niveau de la population ?

Dans les deux premiers chapitres, nous cherchons des résultats universels valables
pour n’importe quel arbre branchant représentant une population, indépendamment de
sa dynamique. De cette façon, les éléments de réponse que nous apportons sont pertinents
à la fois dans le contexte du contrôle de la taille des cellules et dans celui de l’évolution.
Nous analysons ces réponses d’un point de vue conceptuel, en montrant par exemple le
lien fondamental entre fluctuations et sélection, mais aussi d’un point de vue pratique, en
proposant des méthodes d’inférence.

Dans les deux derniers chapitres, nous adoptons un autre point de vue, basé sur des
modèles particuliers de contrôle de la taille, et nous posons les questions suivantes. Com-
ment utiliser les données en lignée unique pour inférer les lois de la croissance et de la
division cellulaire ? Quelles sont les limites thermodynamiques imposées à la croissance
et à la division cellulaire ? La recherche de principes universels et l’approche de mod-
élisation sont complémentaires, car les modèles fournissent des prédictions testables qui
peuvent valider ou invalider des hypothèses et fournissent des descriptions quantitatives
de systèmes spécifiques.
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Chapitre 1: Le biais lignée-population
Dans ce chapitre, nous étudions les biais statistiques entre l’échelle de la cellule unique
et celle de la population. Pour cela, nous utilisons et développons le formalisme pro-
posé dans [Nozoe et al., 2017] T. Nozoe et al. (2017). Inferring fitness landscapes and
selection on phenotypic states from single-cell genealogical data. PLoS Genetics 13.(3),
e1006653, qui repose sur deux différents échantillonnages des lignées d’une population.
L’échantillonnage rétrospectif (backward) consiste à attribuer un poids égal à chaque
lignée, ce qui conduit à une sur-représentation des lignées qui se sont beaucoup divisées et
qui ont donc généré beaucoup de descendants. Pour compenser cet effet, le poids de chaque
lignée peut être adapté pour tenir compte du nombre de divisions le long de cette lignée,
c’est l’échantillonnage chronologique (forward). Dans ce dernier, les deux cellules filles
issues d’une même division se voient attribuer le même poids statistique, indépendam-
ment de leur succès reproductif futur. Cette pondération est en fait la même que celle qui
émerge naturellement dans les expériences en lignée unique, telle que la mother-machine,
où une seule cellule est suivie au moment de la division. Par conséquent, la statistique
obtenue en échantillonnant de façon chronologique une population reproduit la statistique
de lignée unique, et repésente donc un moyen d’"annuler" la sélection naturelle.

Nous montrons que le biais entre les probabilités chronologique et rétrospective de
choisir aléatoirement une lignée avec K divisions a la même forme que les théorèmes de
fluctuation en thermodynamique stochastique, qui comparent habituellement les prob-
abilités de courant entre une expérience de référence et une expérience où le protocole
expérimental est inversé dans le temps. En nous appuyant sur nos connaissances en
thermodynamique stochastique, nous obtenons deux conséquences de ce "théorème de
fluctuation" en dynamique des populations. Premièrement, nous dérivons deux inégal-
ités entre le taux de croissance de la population et le nombre moyen de divisions dans
chaque échantillonnage. Dans la limite des temps longs, les inégalités se transforment en
inégalités entre les temps moyens inter-divisions et le temps de doublement de la popu-
lation. Ce dernier résultat généralise deux inégalités bien connues pour les modèles en
âge, c’est-à-dire les modèles où la division cellulaire est contrôlée par l’âge des cellules,
mais dans notre seule l’hypothèse d’un régime stationnaire de croissance exponentielle
aux temps longs a été nécessaire, et notre résultat est donc valable pour tous les modèles
de contrôle de la taille. Deuxièmement, ce biais peut aussi être utilisé à notre avantage.
Nous construisons un estimateur du taux de croissance de la population à partir de don-
nées en lignée unique. Cet estimateur repose uniquement sur la statistique du nombre de
divisions, et nous testons sa convergence avec des données en mother-machine. Finale-
ment, nous montrons que le théorème de fluctuation, indépendant du modèle dynamique,
implique les équations de Powell et Euler-Lotka lorsque l’on considère un modèle en âge.

Ce même biais est au cœur de la définition de la force de sélection proposée dans
Nozoe et al., 2017, qui mesure une distance entre les distributions issues des échantillon-
nages chronologique et rétrospectif. Quantifier la sélection est une étape importante pour
comprendre l’évolution d’une population, et depuis les résultats de Fisher dans les années
1930, de nombreuses mesures se sont succédées. Dans les différentes approches dont nous
donnons un bref aperçu dans le texte, les mesures de sélection sont reliées à la variabil-
ité de fitness au sein de la population, où fitness prend des sens différents pour chaque

http://dx.doi.org/10.1371/journal.pgen.1006653
http://dx.doi.org/10.1371/journal.pgen.1006653
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approche. Ces résultats ont une forme similaire aux théorèmes de fluctuation-dissipation
où la réponse d’un système a une perturbation est proportionnelle aux fluctuations du
système au repos. La force de sélection considérée ici a l’avantage d’être très générale
puisqu’applicable à tout arbre de population, et pour cette raison nous cherchons des con-
traintes universelles sous la forme de relation de fluctuation-dissipation. Nous obtenons
des bornes supérieures et inférieures pour la force de sélection, qui impliquent la variance
de fitness.

Chapitre 2: Statistiques des populations avec mort
Dans le chapitre précédent, les échantillonnages chronologique et rétrospectif reposent
sur la survie de toutes les lignées jusqu’à la fin de l’expérience. Cependant, dans
de nombreuses situations ce n’est pas vérifié. Par exemple, les cellules peuvent
mourir lors d’expériences en population croissante, pour diverses raisons : fluctuations
d’environnement, réaction à des antibiotiques, accumulation de protéines délétères, ...
Egalement dans les expériences en population constante, les cellules évacuées par dilution
donnent lieu à des lignées qui prennent fin en cours d’expérience. Dans ces cas-là, et
plus généralement pour tout arbre branchant impliquant des lignées tronquées (que l’on
appelle mortes au sens large quelle que soit la cause), les deux échantillonnages doivent
être adaptés.

Dans ce chapitre, nous modifions les échantillonnages chronologique et rétrospectif
pour tenir compte des lignées mortes. En prenant une photo de la population à un instant
t, seules les cellules survivantes apparaissent, alors dans l’échantillonnage rétrospectif nous
attribuons un poids égal à ces cellules, et un poids nul aux lignées mortes avant l’instant
t. A l’inverse, en suivant les lignées à partir de l’instant initial et en choisissant une des
deux cellules filles avec une probabilité égale à chaque division, toutes les lignées, mortes et
vivantes, sont échantillonnées. Par conséquent, les lignées mortes ne sont échantillonnées
que dans une des deux procédures et le théorème de fluctuation se généralise aux lignées
vivantes. Ce théorème fait apparaître un nouveau terme : la probabilité de survie dans
l’échantillonnage chronologique, qui agit comme un facteur de renormalisation. Lorsqu’un
certain modèle est considéré pour décrire la dynamique des cellules, nous montrons que
cette probabilité de survie est simplement reliée au taux de mort. Les résultats du premier
chapitre sont généralisés, en particulier les inégalités entre taux de croissance et nombre
de divisions moyen sont vérifiées avec des données en population constante. De même, les
équations de Powell et Euler-Lotka pour les modèles en âge sont étendues aux modèles
en âge avec corrélations mère-fille et avec mort.

Lorsque la mort affecte les cellules d’un phénotype plutôt qu’un autre, un nouveau bi-
ais statistique apparaît : le biais du survivant. Nous obtenons des formules explicites pour
exprimer ce biais comme le rapport des probabilités d’observer une trajectoire phénotyp-
ique dans des expériences avec et sans mort. La force de sélection résulte donc maintenant
à la fois de la sélection présente en absence de mort, en raison de l’avantage reproductif de
certains phénotypes, et du biais du survivant. Nous proposons donc une mesure de l’effet
de la mort sur la sélection, dont le signe indique si la mort augmente ou diminue la dis-
tance entre les distributions chronologique et rétrospective, ou ne la change pas. Avec un
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modèle simple à deux états, nous illustrons les différents signes possibles, qui dépendent
uniquement des taux de reproduction et les taux de mort de chaque phénotype.

Chapitre 3: Distribution de taille des cellules
La sur-représentation dans la statistique en population (rétrospectif) comparée à la statis-
tique en lignée unique (chronologique) des lignées avec plus de divisions que la moyenne
a été étudiée dans les deux premiers chapitres. Si un trait cellulaire, compris au sens
large comme une propriété des cellules, est corrélé avec le nombre de divisions le long
d’une lignée, alors les valeurs de ce trait associées aux lignées avec beaucoup de divisons
seront selectionnées. Par exemple, si la taille des cellules croit de façon déterministe et
exponentielle entre les divisions, et que le deux cellules filles héritent chacune exactement
de la moitié du volume de la cellule mère à la division, alors la taille à un instant t est
une fonction déterministe de la taille initiale et du nombre de divisions avant l’instant
t. Les cellules de petites tailles sont donc sur-représentées en population comparée à la
statistique lignée unique.

Dans ce chapitre, nous étudions les distributions de taille à l’équilibre pour des cellules
régulées en taille, c’est-à-dire où seule la taille contrôle la division. L’objectif est double
: (i) obtenir des distributions analytiques pour la statistique de lignées uniques, qui
sont comparées à des données expérimentales pour valider ou invalider le modèle et les
hypothèses, ainsi que pout inférer les lois de la croissance et la division. (ii) Comparer
ces distributions de taille pour les expériences en lignées uniques à celle connues dans
la littérature mathématique pour les expériences de population en croissance, et ainsi
dériver le biais lignée-population pour la statistique de taille. Nous nous intéressons en
particulier à l’influence des différentes sources de bruit sur ce biais.

Lorsque la répartition de volume à la division et la croissance de la cellule unique
sont déterministes, nous obtenons des distributions analytiques sous forme de séries. Ces
distributions sont en bon accord avec les distributions expérimentales de taille pour E.
coli en mother-machine. De cet accord, nous déduisons des estimations de paramètres
tels que l’asymétrie de la division, le taux de croissance de la cellule unique ou la force du
contrôle de la taille. Quand la répartition de volume est stochastique, nous dérivons le
comportement de la distribution dans les limites des grandes et petites tailles. Aux grandes
tailles, la distribution ne dépend plus de noyau de division, alors qu’aux petites tailles
la distribution ne dépend plus de la force du contrôle sur la taille. Ces comportements
asymptotiques sont comparés à ceux connus en population, et l’influence des différents
paramètres sur le biais lignée-population est rendu explicite. Ces résultats asymptotiques
sont aussi valides pour le mécanisme de adder, où la division est contrôlée par l’incrément
de taille depuis la naissance, et non par la valeur absolue de la taille comme pour le sizer.
En effet, aux grandes tailles l’incrément de taille et la taille deviennent équivalents, et
aux petites tailles la distribution est indépendante du mécanisme de contrôle de la taille.
Finalement, lorsque l’on introduit du bruit diffusif sur la croissance de la cellule unique
autour de la tendance exponentielle, le comportement aux grandes tailles est obtenu pour
la lignée unique et pour la population, et la comparaison entre les deux révèle que ce type
de bruit annule le biais lignée-population.
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Chapitre 4: Thermodynamique stochastique de la croissance et
de la division cellulaires
Comme tout système biologique, les populations de cellules sont régies par les lois de
la thermodynamique. La théorie thermodynamique renseigne sur les transformations qui
sont interdites, et impose des compromis entre différentes propriétés des processus, comme
l’efficacité, la puissance, la dissipation ou la précision. Dans ce chapitre, nous cherchons
à identifier les limites d’origine thermodynamique pour la croissance et la division cellu-
laires. Cette question est délicate car la division cellulaire est un processus absolument
irréversible, au sens où le processus inversé dans le temps, la fusion de deux cellules, n’est
jamais observé. Or la comparaison entre la probabilité d’un processus et celle du proces-
sus inverse est à la base de la définition de la création d’entropie en thermodynamique
stochastique. De fait, le formalisme habituel doit être adapté pour traiter le cas des
colonies de cellules.

Pour progresser, nous proposons donc une description thermodynamique de la crois-
sance et de la division cellulaires basée sur la décomposition de la division en deux sous-
processus simultanés : le branchement (création d’une nouvelle cellule identique), et la
réinitialisation (resetting) (modification des propriétés des deux cellules). Notre descrip-
tion repose sur des modèles simples de contrôle de la taille, tels que le sizer et le timer,
où la division est contrôlée par la taille et l’âge respectivement; mais aussi le adder où la
division est contrôlée par l’incrément de volume depuis la naissance. Pour le sizer par ex-
emple, le branchement correspond à la création d’une nouvelle cellule de taille x identique
à la cellule qui se divise, et les deux cellules voient leur tailles instantanément réduites à
x/2 (pour une division symétrique), c’est le resetting.

Nous dérivons les deux lois de la thermodynamique pour une colonie de cellules, et nous
identifions la contribution de chaque sous-processus au changement d’énergie moyenne
et d’entropie de Shannon. La seconde loi est un purement un résultat de théorie de
l’information, qui permet de quantifier l’impact de la division sur les distributions de
taille ou d’âge. En utilisant des hypothèses raisonnables sur le comportement du taux
de division, qui sont justifiées par les expériences, les signes de ces contributions sont
obtenus ce qui permet une analogie avec les machines thermiques. Pour le sizer comme
pour le timer, le resetting apparaît alors comme le processus d’entrée (input/driving) et
le branchement comme processus de sortie (output). Cela peut paraître intuitif si on
pense que la prolifération des cellules est l’"objectif" d’une population, mais que cela ne
peut se faire qu’au prix d’une réduction de la taille des cellules (resetting). A partir de
cette analogie, nous définissons l’efficacité de la division cellulaire comme le rapport du
taux de production d’entropie dû au branchement avec celui dû au resetting. L’influence
des différents paramètres des modèles sur cette efficacité est étudiée. Finalement, nous
étendons ce formalisme à des modèles à n variables, ce qui permet de décrire des modèles
plus complexes que les mécanismes de contrôle de la taille à une ou deux variables étudiés
avant.
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Nomenclature
Cells

x Size
xb Birth size
∆ Added volume since birth
a Age
S General cell trait
s Value of trait S
τ Generation time
K Number of divisions

Populations
m Number of daughter cells produced at division
N0 Initial number of cells
N(t) Number of cells at time t
n(y, t) Number of cells with property y at time t
Λp(t) Instantaneous population growth rate
Λt Population growth rate
Λ Steady-state population growth rate, or Malthus parameter
ht Fitness landscape
ΠS Strength of selection acting on trait S

Probability distributions
pfor / φ Forward probability
pback / ψ / p Backward probability
f Distribution of generation times
ρnb Distribution at birth
ρd Distribution at division
〈·〉p Average with respect to distribution p

Rates and coefficients
r Division rate per unit time
ζ Division rate per unit size
ν Single cell growth/elongation rate
Σ Partitioning kernel
b Homogeneous partitioning kernel
α Strength of the control
β Growth law exponent

Death-related quantities
Γp(t) Instantaneous decrease rate of the forward survival probability
Γt Decrease rate of the forward survival probability
Γ Steady-state decrease rate of the forward survival probability
γ Death/dilution rate
X◦ X in the absence of death
p?for Forward distribution conditioned on survival
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1 Motivation and outline of the thesis

In the past decade, new microfluidic devices have been designed to follow either single
lineages of cells, like the mother machine (Wang et al., 2010), or lineages of cells within
finite populations grown in confined geometries (Hashimoto et al., 2016). These exper-
imental setups helped overcoming some difficulties encountered in classical experiments
where populations are freely growing in bulk, namely they allowed to follow lineages of
cells for many generations, which is difficult in bulk because of the exploding size of the
population. At the origin of our work is a question deeply rooted in experiments: how to
use the very large amount of lineage data that is now available?

Historically, these new lineage data led to important advances in the field of cell size
control (Robert et al., 2014; Amir, 2014). For example, taking advantage of the large and
reliable statistics on age and volume obtained in mother-machines, the adder mechanism,
that postulates that cells add a certain volume to their birth volume before dividing, has
been tested and largely accepted to describe E. coli and other species (Taheri-Araghi et al.,
2015). Mother machine data have also been used to probe with unprecedented precision
the stochasticity of the cell growth and division processes. Given that the growth of
a population of cells is a deterministic process in the long-time limit, with a smooth
exponential growth, a new field of research emerged to link the two levels of description
(Lin et al., 2017; Jafarpour et al., 2018).

In parallel, information on lineages within growing populations have become available
in bulk thanks to time-lapse video microscopy (Stewart et al., 2005). These temporal
information allow to reconstruct the population tree with the genealogy of each cell,
which led to new perspectives to define natural selection in a population (Leibler et al.,
2010; Nozoe et al., 2017). In Nozoe et al., 2017, a strength of selection based on the
comparison between two different samplings of the lineages within a population tree is
proposed. The backward sampling leads to the classical population statistics with equal
weight on the lineages, where natural selection results from the variability between the
cell lineages and leads to the over-representation of the fittest phenotypes. On the other
hand, the forward sampling cancels selection by weighting daughter cells born from the
same division with uniform weight regardless of their future reproductive success, that is
the number of offspring they generate at later times.

At the beginning of my PhD we were interested in the questions of cell size control
and the biases between the single cell and population levels. It was only later that we
discovered the literature on selection and evolution, and understood that the same bias was
at the core of the measure of selection proposed in Nozoe et al., 2017. Indeed, the forward
sampling is built to reproduce the single lineage statistics obtained in mother-machine,
where no selection occurs. We then tried to provide new answers to the question of the
use of lineage data, relevant for both the questions of cell size control and evolution. We
aimed to make these answers useful at the conceptual level by showing the fundamental
interplay between fluctuations and selection, but also at a practical level with examples
of inference methods.

In the first half of this thesis, we seek universal results characterizing any population
tree, independently of a particular dynamical model. This is a step in the direction of
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disentangling signatures of particular size control models and properties of the popula-
tion tree itself, and toward a universal definition of selection in biological systems. This
approach is in line with recent works unveiling universality in biology when analyzed with
tools from theoretical physics (Goldenfeld et al., 2011). In particular, statistical physics
has been extensively used to understand evolution (Neher et al., 2011; Kussell et al.,
2014), and here we study cell colonies through the lens of stochastic thermodynamics
(Mustonen et al., 2010; Sughiyama et al., 2015).

Next, we are interested in the fundamental thermodynamic limits on the growth of
a cell colony, which, like any bio-physical system, must follow the first and second laws
of thermodynamics. This question is challenging since cell division is an absolutely ir-
reversible process, in the sense that the time-reversed counterpart of division, which is
merging, is never observed, making the usual formalism of stochastic thermodynamics in-
adequate here. Even though our work is only a first step in this direction, the motivation
behind this project is to provide some elements of comparison between the models of cell
size control, based on their relative efficiency and robustness. This question may seem
unrelated to those above, however it is not, since the fluctuations at the level of the cell
cycle discussed before are also at the heart of the thermodynamic theory.

To sum up, we address the following questions:

• How can we relate the single cell and population levels?

• How should the population trees be sampled for each experimental setup?

• How should dead cells and cells that are evacuated from the setup because of dilution
be taken into account in the statistics?

• How to define and quantify selection?

• How can we use single lineage data in practice to infer population-level quantities
or the laws of cell growth and division?

• What are the thermodynamic limits imposed on cell growth and division?

This thesis is organized in four chapters, briefly presented below.
In chapter 2, we study the lineage-population bias for general population trees, without

any assumption on the dynamics. The lineage-population bias is put in parallel with
fluctuation theorems in stochastic thermodynamics, and, inspired by this comparison,
we derive two main consequences: (i) universal bounds on the population growth rate
(and the population doubling time in steady-state) involving the average values of the
number of divisions along lineages, that generalize known results for age models, and (ii)
an estimator of the population growth rate based only on single-lineage statistics that
can be obtained in mother-machine experiments. The lineage-population bias lies at the
heart of the definition of selection, and we seek universal constraints on the strength
of selection, involving the variability among the lineages in the fashion of fluctuation-
dissipation theorems.

In chapter 3, we extend all the results from chapter 2 to the case where some lineages
disappear before the end of the experiment, for example because of cell death and dilution.
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In this situation, the way to sample the lineages should be adapted to take into account
lineages that disappeared. In particular, the remaining cells are subject to the survivor
bias, which affects the phenotypic variability of the population. We try to quantify this
new bias and its consequences on the strength of selection, which now results from more
complex interactions between reproductive success and survival.

In chapter 4, we focus on size-regulated populations and we seek analytical steady-
state size distributions for lineage statistics, that are used in two directions. First, these
distributions can be compared to experimental data to test the validity of the model
and to infer the parameters of the cell cycle, which is an example of a practical use of
single-lineage data. Second, they are compared to population distributions to study the
influence of different sources of variability, for example in cell growth or in partitioning of
volume, on the lineage-population bias presented in the chapter 2.

Chapter 5 is independent of the other chapters and can be read alone. In this chapter,
we explore the thermodynamic constraints on the growth of a colony of cells using simple
coarse-grained models of cell size control. Based on a decomposition of cell division
into two sub-processes: branching and resetting, we derive the first and second laws of
thermodynamics for a colony of cells. We propose a definition for the efficiency of cell
division, which relies on the way division modifies the distributions of age and size from
an information theoretic point of view.

In the rest of the introductory chapter, we give the main conceptual and technical tools
necessary to understand our contributions. Notions from stochastic thermodynamics are
introduced in section 2. In section 3, we present in details the different experimental
setups mentioned above, and the probability distributions corresponding to the possible
samplings of the population trees. The three most popular models of cell size control: the
sizer, the timer and the adder, are exposed in section 4, along with and their formulations
in terms of partial differential equations. Finally, in section 5, we give a description of
the data-sets that we use through the thesis to illustrate our theoretical results.

2 Short introduction to stochastic thermodynamics
In this section we give a short introduction to the fundamental concepts of stochastic
thermodynamics that are used in chapters 2 and 5. This introduction is largely based on
the book Peliti et al., 2021, Gatien Verley’s PhD thesis (Verley, 2012, in french) and the
review article Seifert, 2012. In Peliti et al., 2021, stochastic thermodynamics is defined
as ‘a thermodynamic theory for mesoscopic, non-equilibrium physical systems interacting
with equilibrium heat reservoirs’.

The ‘mesoscopic’ scale is intermediate between microscopic and macroscopic. The mi-
croscopic world is ruled by the laws of mechanics, and macroscopic systems are described
by the thermodynamic theory, which relies on a few state variables only: temperature,
pressure, volume, ... Because of the large number of particles in a macroscopic system, of
the order of Avogadro’s number NA ∼ 1023, and the central limit theorem, state variables
have Gaussian distributions which are very peaked around their mean values. In the ther-
modynamic limit where the size of the system tends to infinity, state variables are thus
taken equal to their average value. In-between, systems can be characterized by a small
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ensemble of mesoscopic variables provided equilibrium microscopic degrees of freedom are
coarse-grained. Contrary to classical thermodynamics, these variables follow stochastic
dynamics because of the random interactions between the system and the equilibrium
heat bath. For that reason, a given experimental protocol leads to statistics of random
trajectories. Stochastic thermodynamics aims to bridge the gap between the mesoscopic
and macroscopic scales by connecting the statistics of trajectories to thermodynamic ob-
servables.

In the following, we first explain how quantities such as work, heat and entropy pro-
duction are defined at the level of single trajectories and of ensembles of trajectories. In
a second step, we present fluctuation theorems, which clarify the link between entropy
production and the breaking of time-reversal symmetry. Because population balance
equations describing the evolution of a colony of cells, given in section 4.1, are continu-
ous partial differential equations, we present the framework of stochastic thermodynamics
for continuous-state systems. The stochastic dynamics of such systems are described by
two classes of equations: Fokker-Planck and Langevin equations, that we recall in the
following.

2.1 Stochastic dynamics
2.1.1 Fokker-Planck equation

Let us consider a system characterized by a single degree of freedom x, like a 1D Brownian
particle. The probability density p(x, t) to find the system in state x at time t obeys the
following Fokker-Planck equation:

∂tp(x, t) = −∂xj(x, t) , (1.1)

where we introduced the current

j(x, t) = µF (x)p(x, t)−D∂x [p(x, t)] . (1.2)

The first term in the current is convective, with µ the particle mobility and F (x) = −∂xV
a conservative force deriving from a potential V (x). The second term is diffusive, and
accounts for the random interactions with the heat reservoir. To keep this introduction
simple, we consider that the diffusion coefficient D does not depend on position x and
that there is no non-conservative force.

An important distinction is made between stationarity and equilibrium. A stationary
state is reached when p(x, t) becomes time-independent, that is when ∂xj(x, t) = 0, while
an equilibrium state requires in addition the absence of currents in the system: j(x, t) = 0.
The solution to this last condition reads

peq(x) ∝ e
−V (x)
kBT , (1.3)

which is Boltzmann’s distribution, as expected. To derive this solution, we used Einstein’s
relation

D = µkBT , (1.4)
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which links the diffusive coefficientD, the temperature T of the heat bath and the mobility
µ of the particle. Although this is an equilibrium relation, it is assumed to be true in
stochastic thermodynamics even for non-equilibrium systems, because the heat bath is
supposed to always be in equilibrium.

2.1.2 Langevin equation

Alternatively, the same one-dimensional diffusing particle can be described by the follow-
ing Langevin equation:

dx
dt = µF (x) +

√
2Dξ(t) , (1.5)

which is a stochastic differential equation because of the presence of the stochastic noise
ξ(t). The statistical properties of the noise are prescribed: it is isotropic 〈ξ(t)〉 = 0, and
memory-less 〈ξ(t)ξ(t′)〉 = δ(t− t′).

The Brownian velocity dx/dt is a ill-defined object since Wiener proved that it is
defined only on a set of points of vanishing measure. For that reason, mathematicians
prefer the following writing of Langevin equation:

dx = µF (x)dt+
√

2DdW , (1.6)

whereW is the Wiener process, whose increments dW = ξ(t)dt over a time dt are Gaussian
with zero mean and variance dt. Physicists’ noise ξ(t) is then the non-rigorous derivative
of Wiener process.

2.2 Information theory
The equivalence between the thermodynamic entropy Ssys of a system at equilibrium and
the Shannon entropy

H[p] = −
∫

dx p(x) ln p(x) (1.7)

of the equilibrium distribution is a hallmark of classical thermodynamics:

Ssys = kBH[peq] . (1.8)

This result indicates that the thermodynamic entropy can be interpreted as the degree of
disorder of the system, and is simply obtained by evaluating H[peq] with the equilibrium
distribution given by eq. (1.3), where the proportionality constant is exp [F/kBT ] with
F = 〈V 〉 − TSsys the free energy.

By consistency with equilibrium thermodynamics, the non-equilibrium entropy is de-
fined as

Ssys(t) = kBH[p(x, t)] , (1.9)
where p(x, t) is in general different from the equilibrium distribution. This non-equilibrium
entropy is a measure of the information contained in the distribution p(x, t), and suggests
the definition of a stochastic entropy

ssys(t) = −kB ln p(x(t), t) (1.10)
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associated with a single trajectory. The lowercase is used to indicate the dependence on
a single trajectory, and the non-equilibrium entropy of the system is then the average of
the stochastic entropy over trajectories: Ssys(t) = 〈ssys(t)〉.

2.3 Stochastic thermodynamics
We now manipulate our system via an experimental protocol λ that changes the energy
V (x, λ), so that an infinitesimal change in energy reads

dV = ∂xV (x, λ)dx+ ∂λV (x, λ)dλ . (1.11)
We define the infinitesimal work and heat as (Sekimoto, 1998):

δw = −∂λV (x, λ)dλ (1.12)
δq = −∂xV (x, λ)dx (1.13)

= F (x)dx , (1.14)
which represent the change in energy due to an external manipulation of the potential,
and due to the random motion of the particle in a fixed potential, respectively. The
stochastic first law of thermodynamics then reads:

dV = −δw − δq , (1.15)
where the exchanges are counted positively if they go out of the system. Using these
definitions, one can evaluate the work performed and the heat dissipated along a stochastic
trajectory x by w(x) =

∫ t
0 δw and q(x) =

∫ t
0 δq, but also the rates ẇ = δw/dt and

q̇ = δq/dt at which these energies are exchanged.
These production rates are associated with single realizations of the random process,

and can also be defined as the level of ensembles of trajectories. To do so, one can just
integrate the above definitions over trajectories, or equivalently start from the Fokker-
Planck equation. Indeed, we multiply eq. (1.1) by V (x, λ(t)) and integrate over x, which
leads to:

〈V̇ 〉 = −
∫

dx j(x, t)F (x) + λ̇∂λ〈V 〉 (1.16)

= −〈q̇〉 − 〈ẇ〉 , (1.17)
for vanishing currents at the boundaries: lim

x→−∞
V (x, λ(t))j(x, t) = lim

x→∞
V (x, λ(t))j(x, t) =

0. Similarly, if we now multiply the Fokker-Planck equation by kB ln p(x, t) and integrate
over x we obtain:

〈ṡsys〉 = −kB
∫

dx µj(x, t)F (x)
D

+ kB

∫
dx j2(x, t)

Dp(x, t) . (1.18)

The first term is identified as the entropy exchange rate with the reservoir:

〈ṡm〉 = kB

∫
dx µj(x, t)F (x)

D
(1.19)

=
∫

dx j(x, t)F (x)
T

(1.20)

= 〈q̇〉
T

(1.21)
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where we used Einstein’s relation (eq. (1.4)) to go from the first to second line. The
second term is the total entropy production rate:

〈ṡtot〉 = kB

∫
dx j2(x, t)

Dp(x, t) ≥ 0 , (1.22)

which is null when the system is at equilibrium, that is when there are no currents, and
positive otherwise.

2.4 Fluctuation theorems
In classical thermodynamics, the irreversibility of a transformation is related to the value
of the total entropy production: the more ‘irreversible’ the transformation, the larger
the production of entropy. The second law states ∆Stot ≥ 0, which becomes an equality
only for reversible transformations (when the system stays at equilibrium with the envi-
ronment at all times). This connection is clarified by fluctuation theorems in stochastic
thermodynamics, that put constraints on the distributions of fluctuating quantities, such
as entropy production. These theorems rely on the notion of time-reversed, or backward,
trajectories and protocols:

t† = tf − t (1.23)
x†(t) = x(t†) (1.24)
λ†(t) = λ(t†) , (1.25)

where tf is the time at the end of the experiment. It can be shown that the total entropy
production stot(x) = ∆ssys + sm(x) = ∆ssys + q(x)/T along a single trajectory x is linked
to the ratio of the forward to backward path probabilities (Seifert, 2005):

stot(x) = kB ln
[
P(x)
P†(x†)

]
, (1.26)

where P†(x†) is the probability to observe the time-reversed trajectory x† when starting
from the initial condition x†(0) = x(tf ) and with the backward protocol λ†. Thus, stot(x)
reflects the degree of dissimilarity between the two path probabilities. Similarly, the
entropy sm(x) exchanged with the heat bath along the trajectory x is given by a similar
formula for the path probabilities conditioned on their initial values x0 and x†0:

sm(x) = kB ln
[
P(x|x0)
P†(x†|x†0)

]
. (1.27)

These are examples of detailed fluctuation theorem, i.e. involving a comparison be-
tween two probability distributions, and from eq. (1.26) two important consequences are
derived. First, the backward probability distribution can be integrated out to obtain an
integral fluctuation theorem:

〈e−stot(x)/kB〉P = 1 , (1.28)
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where we explicitly indicate the probability P used to compute the average value 〈·〉P since
two distributions are involved in eq. (1.26). This was not necessary in the previous section
where the averages were non-ambiguously computed with the solution of the Fokker-
Planck equation. Second, the convexity inequality 〈ex〉 ≥ e〈x〉 implies that

〈stot(x)〉P ≥ 0 , (1.29)

which is the classical second law of thermodynamics. Fluctuation theorems such as
eq. (1.26) may be viewed as generalizations of the second law, and eq. (1.28) indicates
that, even though the average entropy production is positive or null, the entropy produc-
tion along certain trajectories must be negative. In the next section, we give two examples
of well-known fluctuation theorems and their main use.

2.4.1 The Jarzynski and Crooks relations

Since the ratio of the path probabilities in eq. (1.26) depends only on the functional stot(x)
of the path, then the fluctuation theorem can be recast for the marginal probabilities for
the value stot of this functional:

p(stot) = 〈δ(stot(x)− stot)〉P (1.30)
p†(−stot) = 〈δ(stot(x†) + stot)〉P† . (1.31)

Indeed, when this functional is odd under time-reversal symmetry: stot(x†) = −stot(x), we
multiply eq. (1.26) by the function δ(stot(x)−stot) and then integrate over all trajectories:

〈δ(stot(x)− stot)e−stot(x)/kB〉P = 〈δ(stot(x†) + stot)〉P† , (1.32)

which is written in terms of the marginal distributions:

p(stot)
p†(−stot)

= estot/kB . (1.33)

Now, we recall the thermodynamic identity for isothermal processes between two equi-
librium states: stot = (w − ∆F)/T = wdiss/T , which expresses that the total entropy
production is proportional to the dissipated work, that is the part of the free energy dif-
ference that is not converted in useful available work. When replacing stot in the above
relation, we obtain Crooks relation (Crooks, 1999):

p(w)
p†(−w) = e(w−∆F)/kBT , (1.34)

and the corresponding integral fluctuation theorem, Jarzynski equality (Jarzynski, 1997):

∆F = −kBT ln〈e−w/kBT 〉P . (1.35)

In both relations, even though the initial point must be at equilibrium and ∆F is
the difference in equilibrium free energy, the system needs not be at equilibrium at final
time tf . Indeed, let us consider the original time interval [0, tf ] during which a work w
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Growth medium

Old-pole 'mother' cells

Figure 1.1: Cartoons of the two main experimental setups to study bacterial colonies. Left:
mother machine setup with several microchannels. Right: freely-growing population in
bulk. In both cases, colors are used to indicate the phenotypic variability among cells.

is performed, and the auxiliary time interval [0, T ] with T > tf , for which the system
relaxes to equilibrium between tf and T with a fixed value λ(tf ) of the protocol. The
distributions of work for the auxiliary process obey Crooks relation (and Jarzynski’s), and
are equal to the same distributions for the original process since no work is performed in
[tf , T ]. Therefore, these relations hold irrespective of the speed of the process.

Consequently, these two relations surprisingly allow the inference of equilibrium free
energies from non-equilibrium work measurements, either by computing an exponential
average over forward trajectories with Jarzynski equality (Liphardt et al., 2002), or by
looking at the intersection of the forward and backward work distributions with Crooks
relation (Collin et al., 2005), which are both difficult in practice since one needs to sample
rare events (Jarzynski, 2006).

3 The different probability distributions in cell ex-
periments

Cell data can be acquired in different experimental configurations:

1. Snapshot: picture of the population at a time t, the past history of the population
is not available with this method.

2. Time-lapse: the whole colony is followed in time via video-microscopy, which pro-
vides us the population tree.

3. Mother-machine: single lineages confined in microfluidic channels are monitored in
time.

The majority of the available cellular data is snapshot data. Indeed, this is the only
method accessible for in vivo experiments at the moment, with ongoing progress for in
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vivo time-lapse methods. Moreover, mostly snapshot data are available in the field of
evolution as well. In evolution, data are represented with a phylogenetic tree, similar to
the population tree for bacterial colonies, where the branches represent species or genes,
and the splitting of the branches speciations or mutations (Schuh et al., 2009). On the
other hand, time-lapse and mother-machine data are accessible in vitro. To compensate
for the lack of time-lapse and mother-machine data in vivo and in evolution, it is necessary
to link the three types of data, and to develop inference methods from snapshot data only.
Here, we only focus on time-lapse and mother-machines data, that is when the entire
history of the population/lineage is known, to understand the statistical biases induced
by the differences between the two experimental setups. In the next sections, we present
these two configurations and the corresponding statistics.

3.1 Lineage distribution
Single lineage experiments are designed to monitor a single cell lineage in time over many
generations. The mother machine developed in Wang et al., 2010 and represented on
fig. 1.1 is a prototypical example of such experiments. In this setup, cells are confined in
microfluidic channels with one closed end and one open end. The cell that remains at the
closed end division after division is called the ‘mother cell’, and measurements are usually
made on this cell only. Be careful that throughout the thesis, we use the term ‘mother
cell’ differently, to refer to any dividing cell that gives birth to daughter cells. All the
other cells are pushed towards the open end and eventually carried away by the flow of
growth medium, which also fills the channels with the necessary nutrients. This setup is
mainly used to study rod-shaped bacteria, such as E. coli, growing only in length while
keeping their width approximately constant, and the width and height of the channels are
engineered to be equal to the cell width so that the lineage grows in one dimension only.
Since the cell width depends on the growth medium, the width of the channels should be
adapted for each experimental conditions (Taheri-Araghi et al., 2015).

A large number L of channels are observed simultaneously, and we define the lineage
distribution plin of any property y, which can be anything at this stage, at time t as:

plin(y, t) = 1
L

L∑
i=1

δ(y − yi) = n(y, t)
L

, (1.36)

where yi is the value of property y associated with cell i, and n(y, t) is the number of cells
with property y at time t.

3.2 How to sample a population tree?
Now we consider a growing population of cells, like the one on fig. 1.1 right. The history
of such a colony is represented by a branched tree, starting with N0 cells at time t = 0
and ending with N(t) cells at time t. At each division, m daughter cells are produced,
including the mother cell, where m is a non-stochastic quantity. We assume that all
lineages survive up to time t, and therefore the final number N(t) of cells corresponds
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Nodes

Leaves

Forward Backward

Figure 1.2: Example of a tree with N0 = 1 and N(t) = 10 lineages at time t. On the
left, divisions that occurred before time t are called nodes, while the future divisions of
cells present in the population at time t are called leaves. On the right, two lineages are
highlighted, in blue with 2 divisions and in orange with 5 divisions. The forward sampling
is represented with the green right arrows: it starts at time t = 0 and goes forward in
time by choosing one of the two daughters lineages at each division with probability 1/2.
The backward sampling is pictured by the left purple arrows: starting from time t with
uniform weight on the 10 lineages it goes backward in time down to time t = 0.

to the number of lineages in the tree. An example of such a tree starting with a unique
ancestor cell: N0 = 1, and where cells follow binary fission: m = 2, is shown on fig. 1.2.

What is the correct way to sample cells in such a population tree?
A division-based approach consists in putting a uniform weight on all divisions in the

tree, resulting in the tree distribution. There are subtleties on either to count only the
N(t) − N0 divisions that happened before final time t, represented by the green squares
on fig. 1.2 left and called nodes, or to include the divisions of the cells present at final
time t that have not divided yet (Powell, 1956; Lin et al., 2017). These cells, depicted by
the red circles, are called leaves. This distribution is limited to variables that are defined
at the level of each division: the age at the moment of the division, or the size at birth
for example, but cannot be used to sample variables defined at the level of cell lineages:
like the number K of divisions along a lineage from initial to final time, a phenotypic
trajectory, or even the cells properties that are only defined in a time snapshot, such
as age and size. For this reason, we shift the focus from individual division events to
individual cell lineages, and recall the definitions of the forward and backward samplings
of the lineages proposed in Nozoe et al., 2017.

The most simple way to sample the lineages is to put uniform weight on all of them.
Note that this is also the only sampling available for evolutionary data and frequently
for in-vivo data, where the history of the lineages is unknown. This sampling is called
backward, (or retrospective) because at the end of the experiment one randomly chooses
one lineage among the N(t) with a uniform probability and then traces the history of the
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lineage backward in time from time t to 0, until reaching the ancestor population. The
backward weight associated with a lineage l is defined as

ωback(l) = N(t)−1 . (1.37)

In a tree, some lineages divide more often than others, which results in an over-
representation in the final population of lineages that have divided more than average.
Therefore by choosing a lineage with uniform distribution, we are more likely to end up
with a lineage with high reproductive success. To balance this effect, the forward (or
chronological) sampling puts a weight

ωfor(l) = N−1
0 m−K(l) . (1.38)

on a lineage l with K(l) divisions. This choice of weights is called forward because one
starts at time 0 by uniformly choosing one cell among the N0 initial cells, and goes
forward in time up to time t, by choosing one of the m offspring with equal weight 1/m at
each division. A population with examples of forward and backward weights for different
lineages in shown on fig. 1.2 right.

Let us comment on two important properties of the forward sampling. First, it is
built to give the same weight to all initial cells (and to all daughter cells born from the
same division), regardless of the size of the subpopulations of offspring they generate at
later times, which is a measure of their reproductive successes. Therefore, the forward
sampling is said to ‘cancel selection’, understood in the sense of the over-representation
of certain lineages because of their reproductive advantage. The second comment is
highly connected to the first one: the forward sampling is defined in such a way as to
reproduce the lineage statistics introduced in section 3.1. Indeed, no selection occurs
in single lineage experiments, where at each division only one of the m daughter cells is
followed with probability 1/m while the other ones are disregarded. This can be seen more
quantitatively at the level of the equations, as later shown in section 4.3. This sampling
thus links the scale of tree-structured population and single lineages, and for that reason
we will use the terms forward and lineage statistics interchangeably. Similarly, we will
use the term population statistics and backward statistics equivalently.

We now define the probability to pick a lineage with property y and K divisions as
the number n(y,K, t) of lineages with this property times the weight ω(K) of a lineage
with K divisions, in both the forward and backward samplings:

pback(y,K, t) = ωback(K)n(y,K, t) (1.39)
= N(t)−1n(y,K, t) (1.40)

pfor(y,K, t) = ωfor(K)n(y,K, t) (1.41)
= N−1

0 m−Kn(y,K, t) . (1.42)

By going from the weights ω to the probability distributions p, we shift the domain
of definition from the ensemble of lineages, with the normalizations ∑N(t)

i=1 ωback(li) =∑N(t)
i=1 ωfor(li) = 1, to that of the tracked variables: ∑∞

K=0
∫

dy pback(y,K, t) =∑∞
K=0

∫
dy pback(y,K, t) = 1.
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For variables that make sense both in division-based and lineage-based approaches,
like the inter-division time, the convergence of the tree distribution to either the forward
or backward distributions has been studied in Nakashima et al., 2020.

4 Introduction to cell size control

4.1 Models of cell size control

Although certain results of the first two chapters of this thesis are independent of the
underlying dynamics producing the population tree, other features explicitly depend on
it, and we illustrate them in the context of cell size control. Moreover, in the last two
chapters the cell dynamics is at the center of our attention. For these reasons, we introduce
here the different models of cell size control that we use.

The question of how a cell controls its size is a very old one, which despite decades
of research is still under intense focus because the old experiments have only provided
incomplete answers while a new generation of experiments based on the observation and
manipulation of single cells in microfluidic devices is becoming more and more mature.
Many models of cell size control have been proposed, and we do not aim to provide an ex-
tensive view of their diversity in this introduction, that can be found in the comprehensive
reviews Willis et al., 2017; Ho et al., 2018; Jun et al., 2018. In this thesis, we focus on the
three most popular models of cell size control: the timer, the sizer and the adder, where
division is controlled by age, size and increment of volume respectively. One common
aspect of these models is to rely on few macroscopic parameters, thus coarse-graining all
the biomolecular machinery. All three models have proven useful, and classifications of
species according to their mechanisms of cell size control can be found in Willis et al.,
2017; Jun et al., 2018, where some species follow mixed strategies.

Finally, we describe these models using continuous rate models (Robert et al., 2014),
based on partial differential equations that describe cell cycles continuously in time, as
opposed to discrete stochastic maps (Amir, 2014; Ho et al., 2018) formulated as Markov
processes for division times.

4.1.1 The timer

Uncorrelated divisions The simplest model of cell size control is the age model, also
called timer, or Bellman-Harris process in the mathematical literature (Kimmel et al.,
2002). In this model, the probability that a cell of age a divides during a time interval dt
is equal to r(a)dt. After division, each daughter cell starts with age 0, thus there is no
memory effect. Age is by definition the time elapsed since birth, so it grows linearly with
time: da/dt = 1. Note that in the literature on bacterial colonies, age is sometimes defined
as replicative age (Wang et al., 2010), that is the number K of consecutive divisions along
the lineage under consideration, or as physiological age (Olivier, 2017), which evolves
non-linearly in time to describe possible phases with different aging rates. In this thesis,
we stick to the usual definition of age.
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The Population Balance Equation (PBE) describing the time evolution of the number
n(a, t) of cells of age a at time t reads

∂tn(a, t) = −∂an(a, t)− r(a)n(a, t) , (1.43)

together with the boundary condition

n(a = 0, t) = m
∫

da′r(a′)n(a′, t) . (1.44)

In eq. (1.43), the first term is convective and accounts for cell aging, and the second term
is a loss term coming from the divisions of cells of age a. The boundary condition says
that the number of newborn cells is equal to the number of dividing cells of any ages times
the number m of daughter cells produced by each division.

Although simple, the timer model has been shown to be unrealistic since it leads
to diverging fluctuations in cell size when cells grow exponentially (Trucco et al., 1970;
Amir, 2014). However, Robert et al., 2014 suggested that steady size distributions can be
reached for the timer model if cells of sizes near zero and infinity grow sub-exponentially.

Correlated divisions Experiments show correlations between the generation time of
the mother cell and that of the daughter (Taheri-Araghi et al., 2015). The classical timer
model does not account for these correlations, and more complex age-structured models
have been proposed. There are at least two ways to model age-structured populations
with mother-daughter correlations in inter-division times.

The first approach is to consider that correlations are described in the source term via
a kernel Σ(τ |τ ′) at division, where τ is the inter-division time (Powell, 1956; Lebowitz
et al., 1974; Lin et al., 2020; Levien et al., 2020). Doing so, τ becomes a variable, and the
number n(a, τ, t) of cells of age a at time t that will divide at age τ follows a population
balance equation, valid only for a ≤ τ , which does not involve a division rate:

∂tn(a, τ, t) = −∂an(a, τ, t) for 0 < a ≤ τ (1.45)

n(a = 0, τ, t) = m
∫

dτ ′Σ(τ |τ ′)n(τ ′, τ ′, t) . (1.46)

The second approach consists in introducing an intermediate variable, let us call it y,
on which the division rate r(a, y) depends and which is transmitted at division via kernel
Σ(y|y′). The variable is often thought of as a state or type, meaning it is not evolving
during the cell cycle, and using this vocabulary, this timer model with correlations can
be called a multitype age process (Sughiyama et al., 2019; Nakashima et al., 2020). For
example, in (García-García et al., 2019; Genthon et al., 2020) we proposed the single cell
growth rate as a candidate for the variable y. The equation and the boundary condition
read

∂tn(a, y, t) = −∂an(a, y, t)− r(a, y)n(a, y, t) (1.47)

n(a = 0, y, t) = m
∫

da′dy′r(a′, y′)Σ(y|y′)n(a′, y′, t) . (1.48)
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4.1.2 The sizer

In the sizer model, division is triggered by cell size only, and the probability for a cell of
size x to divide during a time interval dt is equal to r(x)dt. Since rod-shaped bacteria
grow along one axis only with constant width (Taheri-Araghi et al., 2015), throughout
this thesis we will consider size, volume and length as synonyms. Note that this is simply
a convenience, and that the sizer model is a valid model for any cell morphology. At
division, the volume x′ of the dividing cell is partitioned between the m daughter cells,
and the probability for one of them to inherit a volume x is given by the transition
kernel Σ(x|x′), normalized as: ∀x′,

∫
dx Σ(x|x′) = 1. Moreover, the conservation of

volume at division between the mother cell and the m daughter cells is imposed through
m
∫

dx xΣ(x|x′) = x′. This family of kernels allows the description of stochastic partitions
of volume, and by setting Σ(x|x′) = δ(x − x′/m), we recover the deterministic case of
equal fission, where each cell inherits a fraction 1/m of the mother cell’s volume. Within
the cell cycles, we describe cell growth with the rate dx = ν(x)dt. This general function
accounts for the most common growth strategies, such as linear growth when ν(x) = ν,
or exponential growth if ν(x) = νx.

The population balance equation for the sizer reads

∂tn(x, t) = −∂x[ν(x)n(x, t)]− r(x)n(x, t) +m
∫

dx′ Σ(x|x′)r(x′)n(x′, t) , (1.49)

where, unlike the timer, the integral term appears in the main equation.

4.1.3 The adder

In the past decade, more and more organisms have been observed to neither follow the sizer
nor the timer mechanisms, but to divide after adding an increment of volume ∆d = xd−xb
between the birth size xb and the division size xd, drawn from a probability distribution
independent of the birth size.

To model this behavior, we introduce the adder mechanism, which relies on two vari-
ables {x,∆} with ∆ = x−xb the added volume since birth. In this model we impose that
the volume evolves as dx = ν(x)dt like for the sizer, and thus d∆ = ν(x)dt, and that the
division rate per unit time

r(x,∆) = ν(x)ζ(∆) (1.50)
is equal to the product of the growth rate ν(x) and the division rate per unit volume
ζ(∆) (Taheri-Araghi et al., 2015). Indeed, the probability that the increment of volume
between birth and division takes the value ∆d knowing that the birth size is xb is given
by the following change of variable

p(∆d|xb)d∆d = p(τ |xb)dτ , (1.51)
where

p(τ |xb) = r(x(τ), x(τ)− xb)e−
∫ τ

0 r(x(t),x(t)−xb)dt (1.52)
is the probability that the cell divides after a generation time τ knowing it was born with
size xb. Finally, combining eqs. (1.50) to (1.52), we obtain:

p(∆d|xb) = ζ(∆d)e−
∫ ∆d

0 ζ(∆)d∆ , (1.53)
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which is independent of the size at birth xb.
The population balance equation and the boundary condition then read

∂tn(x,∆, t) = − (∂x + ∂∆) [ν(x)n(x,∆, t)]− ν(x)ζ(∆)n(x,∆, t) (1.54)

ν(x)n(x,∆ = 0, t) = m
∫

dx′d∆′ Σ(x|x′)ν(x′)ζ(∆′)n(x′,∆′, t) , (1.55)

The adder mechanism can also be formulated in terms of other pairs of variable,
provided that the increment of volume can be deduced from them. For example, the
adder model can be seen a mixed age-size model with variables {x, a}, because for a known
growth function ν, the increment of volume is determined by the values of age and size.
For example, in the case of exponential growth with ν(x) = νx, then ∆ = x[1−exp(−νa)].
Another simple possibility is the couple of size and size at birth {x, xb}.

4.2 Division rate and stochasticity
In the following chapters, we will sometimes choose to describe the division rates by
power laws. This simplification is justified by the shapes of the division rates inferred
from experimental data (see Doumic et al., 2015 for r(x), and the SM of Robert et al.,
2014 for r(a)). Further possible theoretical justifications for this power law have been
discussed in Nieto et al., 2020. We define

r(x) = rxα , (1.56)

where α is the strength of the size control, and similarly r(a) = raα for the timer where
α is the strength of the age control.

In the limit where α goes to zero, the division rate becomes independent of the size
of the cell, which is then said to be an uncontrolled variable. The resulting dynamics
is a simple Poisson process with rate r in this case. On the other hand, in the limit
of strong size control α → +∞, the division rate becomes a step function with value 0
before threshold size 1, and +∞ after. Cells divide deterministically when reaching the
size threshold, which can be tuned by the rescaling r(x) = r(x/x†)α. In this limit, we
recover the deterministic versions of the sizer, timer and adder, where cells divide when
reaching a certain age or size, or when growing by a constant increment of volume, without
variability. The variability in size, age or added volume at division is then a decreasing
function of the control strength α.

Before closing this section, we want to warn the reader about alternative definitions
of the sizer, timer and adder mechanisms that have been used in recent articles following
Nieto et al., 2020. In this work on exponentially growing cells (ν(x) = νx), the authors
considered what we defined as the sizer model in section 4.1.2, with power-law division
rate r(x) = rxα. They argued that this model recovers a ‘timer’ strategy when α = 0,
an ‘adder’ strategy when α = 1, and a ‘sizer’ strategy when α → ∞, because these
values yield specific relations between the average increment of volume and the average
size at birth, respectively with slopes 1, 0 and −1. Indeed, when α = 0 the division
rate is constant, size becomes uncontrolled, and the size model falls into the scope of
the timer model described by eq. (1.43), with constant division rate r(a) = r. Similarly,
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when α = 1 then r(x) = rx ∝ ν(x), so that the size model fits in with the adder model
described by eq. (1.54), with constant division rate per unit volume ζ(∆) = ζ = r/ν.
These represent only simple cases of the timer and adder models, where age and added
volume are respectively uncontrolled, and thus Poisson-distributed at division. However,
the size model cannot reproduce the timer and adder models as we defined them, with
general division rates which are functions of age and added volume respectively.

4.3 Population balance equations at the level of probabilities
The PBE for the different size control models presented in the previous section can be
recast at the level of probability distributions using eqs. (1.39) and (1.41). For simplicity,
we show how it is done for the sizer, given that the manipulations are identical for the
other models.

First, since the backward weight does not depend on the number of divisions,
eq. (1.39) can be summed over K to obtain the marginal distribution of x: pback(x, t) =
N(t)−1n(x, t). Now, replacing n(x, t) in eq. (1.49) gives

∂tpback(x, t) =− ∂x[ν(x)pback(x, t)]− (r(x) + Λp(t)) pback(x, t)

+m
∫

dx′ Σ(x|x′)r(x′)pback(x′, t) , (1.57)

where
Λp(t) = 1

N(t)
dN
dt , (1.58)

is the instantaneous population growth rate.
Second, since the forward probability explicitly depends on the number K of division,

it is useful to make it appears in the PBE as:

∂tn(x,K, t) =− ∂x[ν(x)n(x,K, t)]− r(x)n(x,K, t)

+m
∫

dx′ Σ(x|x′)r(x′)n(x′, K − 1, t) for K ≥ 1 (1.59)

∂tn(x,K = 0, t) =− ∂x[ν(x)n(x,K = 0, t)]− r(x)n(x,K = 0, t) . (1.60)

The equation is split into two because the evolution of the number n(x,K = 0, t) of cells
of size x that have not divided yet has no contribution from larger dividing cells, by
definition. The integral term involves the number n(x′, K − 1, t) of cells of any sizes with
K − 1 divisions before time t that divide into cells of size x at time t, thus increasing
by one their number of divisions to K. Now, we use eq. (1.41) to change n(x,K, t) into
pfor(x,K, t):

∂tpfor(x,K, t) =− ∂x[ν(x)pfor(x,K, t)]− r(x)pfor(x,K, t)

+
∫

dx′ Σ(x|x′)r(x′)pfor(x′, K − 1, t) for K ≥ 1 (1.61)

∂tpfor(x,K = 0, t) =− ∂x[ν(x)pfor(x,K = 0, t)]− r(x)pfor(x,K = 0, t) . (1.62)
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Summing this equation over K gives the equation for the marginal distribution of size x:

∂tpfor(x, t) = −∂x[ν(x)pfor(x, t)]− r(x)pfor(x, t) +
∫

dx′ Σ(x|x′)r(x′)pfor(x′, t) . (1.63)

Third, we consider the experimental setup of the mother machine. In this setup,
the number of cells N(t) is not evolving with time, and is equal to the number L of
microchannels that are monitored. At each division m cells are produced but only one
remains at the close end of the channel so that we follow only m = 1 cell. The PBE
eq. (1.49) is then recast at the level of the lineage distribution by setting m = 1 and using
eq. (1.36):

∂tplin(x, t) = −∂x[ν(x)plin(x, t)]− r(x)plin(x, t) +
∫

dx′ Σ(x|x′)r(x′)plin(x′, t) . (1.64)

Finally, we showed that the lineage and forward distributions obey the same differential
equation.

The difference between the population/backward and the lineage/forward equations
is the presence in the former of the instantaneous population growth rate and the number
of daughter cells. These two quantities are simply related by:

Λp(t) = (m− 1)
∫

dx r(x)pback(x, t) , (1.65)

which follows from the integration of eq. (1.57) over x, using the normalization of pback
at any time t:

∫∞
0 dx pback(x, t) = 1 and the no-flux boundary conditions

ν(x)pback(x, t) →
x→0

0 (1.66)

ν(x)pback(x, t) →
x→+∞

0 . (1.67)

Thus, the instantaneous population growth rate is the backward average of the division
rate. We recover that setting m = 1 leads to Λp(t) = 0 corresponding to a constant
population, as for the lineage distribution.

4.4 Steady-state behavior
In the mathematical literature, the population balance equations eqs. (1.43) and (1.49)
for the timer and the sizer are called renewal equation and growth-fragmentation equa-
tion, respectively. The conditions for the existence and uniqueness of solutions to these
equations have been established (see Doumic et al., 2021 for a review on the subject),
and in the long-time limit the population grows exponentially with a rate Λ, called the
Malthus parameter. More precisely, it is proven that the solutions to these equations, for
y the age or the size, obey

lim
t→∞

n(y, t)e−Λt = pback(y) , (1.68)

where pback(y) is the steady-state backward distribution, and where the Malthus parameter
is the asymptotic value of the instantaneous population growth rate:

Λ = lim
t→∞

Λp(t) . (1.69)
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4.5 Analytical results for age models without correlations
Age models without correlations have been long studied because of their analytical sim-
plicity (Kimmel et al., 2002). In particular, three important results were obtained in the
1950s, and we give here a short derivations of them termed with our notations.

The equations for the forward and backward probabilities, together with their bound-
ary conditions, read:

∂tpback(a, t) = −∂apback(a, t)− [r(a) + Λp(t)] pback(a, t) (1.70)

pback(a = 0, t) = m
∫

da′r(a′)pback(a′, t) . (1.71)

∂tpfor(a, t) = −∂apfor(a, t)− r(a)pfor(a, t) (1.72)

pfor(a = 0, t) =
∫

da′r(a′)pfor(a′, t) . (1.73)

In the backward statistics, this proportion pback(a = 0, t) of cells of age 0 at time t can
also be linked to the population growth rate when combining eq. (1.65) and eq. (1.71):

(m− 1)pback(0, t) = mΛp(t) . (1.74)

In steady-state, eq. (1.70) and eq. (1.72) can be solved and the time-independent age
distributions are given by

pback(a) = pback(0) exp
[
−Λa−

∫ a

0
r(a′)da′

]
(1.75)

pfor(a) = pfor(0) exp
[
−
∫ a

0
r(a′)da′

]
. (1.76)

We define the distribution f(τ, t), both forward and backward, of generation times
τ as the ratio of the number of cells dividing at age τ at snapshot time t, to the total
number of cells dividing in this snapshot, weighted accordingly:

fback(τ, t) = r(τ)pback(τ, t)∫
dτ ′ r(τ ′)pback(τ ′, t) (1.77)

ffor(τ, t) = r(τ)pfor(τ, t)∫
dτ ′ r(τ ′)pfor(τ ′, t)

(1.78)

Combined with the steady-state age distributions, we obtain the steady-state distributions
of generation times:

fback(τ) = mr(τ) exp
[
−Λτ −

∫ τ

0
da′ r(a′)

]
(1.79)

ffor(τ) = r(τ) exp
[
−
∫ τ

0
da′ r(a′)

]
. (1.80)

By comparing the two above relations, we obtain the first result, called Powell’s rela-
tion (Powell, 1956):

fback(τ) = mffor(τ)e−Λτ , (1.81)
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which shows that the distributions of generation times obtain when following a lineage
forward and backward in time are not the same. The backward distribution is indeed
biased toward smaller values of generation times, reflecting the over-representation in the
population of lineages that divided a lot and along which cell cycles are on average shorter,
while no such selection is present in single-lineage experiments.

Second, by integrating eq. (1.81) over τ and using the normalization of fback, we obtain
Euler-Lotka equation:

1 = m
∫ ∞

0
dτ ffor(τ)e−Λτ . (1.82)

This relation is valuable at least in two ways. From a practical point of view, and remem-
bering that the forward and lineage distributions are identical, it can be used to infer the
population growth rate from single-lineage measurements if cells are known to be age-
controlled with negligible correlations. Equivalently, given a population tree, the validity
of the timer without correlation to describe the colony can be tested by comparing the
growth rate obtained by eq. (1.82) to the measured population growth rate. On a more
conceptual level, Euler-Lotka equation offers insights on the link between single cell vari-
ability and population growth: the whole distribution of generation time is shaping the
population growth rate, and not only its mean. This idea has been exploited to expand
the population growth rate as a function of the moments of ffor(τ), thus quantifying the
correction from the first order result Λ = ln 2/〈τ〉for due to the variability in generation
times (Lin et al., 2020).

Third, let us now introduce the Kullback-Leibler (KL) divergence between two prob-
ability distributions p and q, which is the non-negative and asymmetric information-
theoretic distance between them:

DKL(p||q) =
∫

dx p(x) ln p(x)
q(x) ≥ 0 . (1.83)

We now compute the two KL divergences between the forward and backward distributions
of generation times:

DKL(fback||ffor) = lnm− Λ〈τ〉back (1.84)
DKL(ffor||fback) = − lnm+ Λ〈τ〉for . (1.85)

Combining the two inequalities gives an upper and a lower bound for the population
growth rate:

lnm
〈τ〉for

≤ Λ ≤ lnm
〈τ〉back

. (1.86)

This result is more often presented in terms of the population doubling time Td = ln 2/Λ
(for binary fission: m = 2), which is the time necessary to double the number of cells
when the population is the regime of exponential growth (Hashimoto et al., 2016). The
inequalities then read

〈τ〉back ≤ Td ≤ 〈τ〉for . (1.87)
They indicate in particular that measuring the average generation time in a single-lineage
experiment over-estimates the population doubling time.
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Let us now comment on the mathematical analogy between these three results and
relations in stochastic thermodynamics. Powell’s relation expresses the exponential bias
between two probability distributions, and in that respect is similar to detailed fluctuation
theorems like Crooks relation (eq. (1.34)). Once the backward distribution of generation
times is integrated, Euler-Lotka equation is analogous to integral fluctuation theorems
such as Jarzynski equation (eq. (1.35)), and their uses are similar. In the same way as
Jarzynski equation is used to infer equilibrium free energies from non-equilibrium work
measurements, Euler-Lotka equation provides the population growth rate from single-
lineage data. Finally, the double inequality on the population doubling time, obtained
by convexity from Powell’s relation, are equivalent to the second law of thermodynamics
(eq. (1.29)). The reason why there are two inequalities instead of one is because in
stochastic thermodynamics the forward and backward dynamics are related by a time-
reversal symmetry, and the observable which is averaged (generally a current) changes
sign under time reversal. None of these two properties are true in population dynamics.
These three results are only valid in steady state and for age models without correlations,
and one goal of chapter 2 is to generalize them for any population tree.

5 Short descriptions of datasets used
In this thesis, we use three sets of experimental data on E. coli to illustrate our theoretical
results. We give here a short description of each of them and orders of magnitude on
E. coli, that are always useful to keep in mind to understand the challenges faced by
experimenters.

E. coli is a rod-shaped bacterium, growing mainly in one direction while maintaining
its diameter almost constant around 1 µm. The volume and the length are thus propor-
tional and we use the term ‘size’ as a catch-all descriptor. The length is typically a few
micrometers, depending on the conditions and the stage in the cell cycle. The mean gen-
eration time strongly depends on the medium, and varies from ∼ 20 min for the optimal
temperature 37 ◦C, up to several hours. E. coli comes in different strains, that represent
sub-families of the species characterized by specific properties. Since E. coli bacteria have
flagella that give them motility, in the following experiments specific strains were chosen
for their poor motility, or genes that encode flagella were knocked-out, so that cells do
not escape the experimental setups unwanted.

Mother machine data from Tanouchi et al., 2017 This dataset is used in chap-
ter 2 to test the convergence of a lineage-based estimator for the population growth
rate, and in chapter 4 to test theoretical predictions on single lineage cell size distribu-
tions. The MC1400 strain is grown under three temperature conditions: 25 ◦C, 27 ◦C
and 37 ◦C in the same experimental setup as the original mother machine developed
in Wang et al., 2010, and illustrated on fig. 1.1. The dimensions of the channels are
1 µm (w) × 1 µm (h) × 25 µm (l), so that cells roughly fill all the channel in width
and height, and are constrained to grow in one direction, along its length. The nutri-
ents are brought by the medium flow at the open end of the mother machine, and the
time-scale of diffusion of the nutrients inside the channel (1 s) is much smaller than the
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time-scale of the nutrient uptake by E. coli (2 − 3 min), so that steady-state conditions
are ensured for all cells in the channel (Wang et al., 2010). They acquired 279 lineages
of 70 consecutive generations: 65 for 25 ◦C, 54 for 27 ◦C and 160 for 37 ◦C, resulting in
4550, 3780 and 11200 cell cycles respectively. The time lapse interval between two mea-
sures is 1 minute, so that at least 20 measurement points are obtained per cell cycle.
Data are accessible at: https://figshare.com/collections/Data_from_long-term_
growth_data_of_Escherichia_coli_at_a_single-cell_level/3493548

Growing population data from Kiviet et al., 2014 We use cell size and age mea-
surements in population to test our bounds on the strength of selection derived in chap-
ter 2. In these experiments, the MG1655 strain of E. coli is cultured on gel pads containing
the necessary medium for bacterial growth, and maintained at 37 ◦C. Initial cells grow in
a 2D-layer for around 9 generations, resulting in approximately 500 cells. They conducted
this experiment for 11 different growth media. The dataset was kindly communicated to
us by Philippe Nghe.

Constant population data from Hashimoto et al., 2016 We use constant popu-
lation data from the dynamic cytometer, illustrated on fig. 3.1 right, to test our bounds
on population growth rate when cells are diluted before the end of the experiment. In
this setup, cells evolve in a channel that is open at both ends. Its dimensions are 3 µm
(w) × 1 µm (h) × 30 µm (l), so that cells are constrains on a 2D layer where typically 3
rows of cells can coexist. A flow of medium carries away the excess cells at both ends in
order to maintain the population constant around 25 ∼ 40 cells, and brings the necessary
nutrients. A precise control of the medium inside the channel is allowed by an additional
source of nutrients through a cellulose membrane clamped on top of the channel. Data
points are taken regularly each 30 s ∼ 3 min, depending on the condition, such that 50
time points are acquired per cell cycle. Different experiments are realized, for the two
strains W3110 and B/r derivatives, in different media, for two temperatures: 30 ◦C and
37 ◦C. The dataset was kindly communicated to us by Yuichi Wakamoto.

https://figshare.com/collections/Data_from_long-term_growth_data_of_Escherichia_coli_at_a_single-cell_level/3493548
https://figshare.com/collections/Data_from_long-term_growth_data_of_Escherichia_coli_at_a_single-cell_level/3493548


Bibliography for the introductory chapter 25

Bibliography for the introductory chapter

[Amir, 2014] Amir, A. (2014). Cell Size Regulation in Bacteria. Physical Review Letters
112.(20), p. 208102.

[Collin et al., 2005] Collin, D., F. Ritort, C. Jarzynski, S. B. Smith, I. Tinoco, and C.
Bustamante (2005). Verification of the Crooks fluctuation theorem and recovery of
RNA folding free energies. Nature 437.(7056), pp. 231–234.

[Crooks, 1999] Crooks, G. E. (1999). Entropy production fluctuation theorem and the
nonequilibrium work relation for free energy differences. Physical Review E 60.(3),
pp. 2721–2726.

[Doumic et al., 2021] Doumic, M. and M. Hoffmann (2021). Individual and population
approaches for calibrating division rates in population dynamics: Application to the
bacterial cell cycle. arXiv:2108.13155.

[Doumic et al., 2015] Doumic, M., M. Hoffmann, N. Krell, and L. Robert (2015). Sta-
tistical estimation of a growth-fragmentation model observed on a genealogical tree.
Bernoulli 21.(3), pp. 1760–1799.

[García-García et al., 2019] García-García, R., A. Genthon, and D. Lacoste (2019). Link-
ing lineage and population observables in biological branching processes. Physical Re-
view E 99.(4), p. 042413.

[Genthon et al., 2020] Genthon, A. and D. Lacoste (2020). Fluctuation relations and
fitness landscapes of growing cell populations. Scientific Reports 10.(1), p. 11889.

[Goldenfeld et al., 2011] Goldenfeld, N. and C. Woese (2011). Life is Physics: Evolution as
a Collective Phenomenon Far From Equilibrium. Annual Review of Condensed Matter
Physics 2.(1), pp. 375–399.

[Hashimoto et al., 2016] Hashimoto, M., T. Nozoe, H. Nakaoka, R. Okura, S. Akiyoshi,
K. Kaneko, E. Kussell, and Y. Wakamoto (2016). Noise-driven growth rate gain in
clonal cellular populations. Proceedings of the National Academy of Sciences 113.(12),
pp. 3251–3256.

[Ho et al., 2018] Ho, P.-Y., J. Lin, and A. Amir (2018). Modeling Cell Size Regulation:
From Single-Cell-Level Statistics to Molecular Mechanisms and Population-Level Ef-
fects. Annual Review of Biophysics 47.(1), pp. 251–271.

[Jafarpour et al., 2018] Jafarpour, F., C. S. Wright, H. Gudjonson, J. Riebling, E. Daw-
son, K. Lo, A. Fiebig, S. Crosson, A. R. Dinner, and S. Iyer-Biswas (2018). Bridging
the Timescales of Single-Cell and Population Dynamics. Physical Review X 8.(2),
p. 021007.

[Jarzynski, 1997] Jarzynski, C. (1997). Nonequilibrium Equality for Free Energy Differ-
ences. Physical Review Letters 78.(14), pp. 2690–2693.

http://dx.doi.org/10.1103/PhysRevLett.112.208102
http://dx.doi.org/10.1038/nature04061
http://dx.doi.org/10.1038/nature04061
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.48550/arXiv.2108.13155
http://dx.doi.org/10.48550/arXiv.2108.13155
http://dx.doi.org/10.48550/arXiv.2108.13155
http://dx.doi.org/10.3150/14-BEJ623
http://dx.doi.org/10.3150/14-BEJ623
http://dx.doi.org/10.1103/PhysRevE.99.042413
http://dx.doi.org/10.1103/PhysRevE.99.042413
http://dx.doi.org/10.1038/s41598-020-68444-x
http://dx.doi.org/10.1038/s41598-020-68444-x
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140509
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140509
http://dx.doi.org/10.1073/pnas.1519412113
http://dx.doi.org/10.1073/pnas.1519412113
http://dx.doi.org/10.1146/annurev-biophys-070317-032955
http://dx.doi.org/10.1146/annurev-biophys-070317-032955
http://dx.doi.org/10.1146/annurev-biophys-070317-032955
http://dx.doi.org/10.1103/PhysRevX.8.021007
http://dx.doi.org/10.1103/PhysRevX.8.021007
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690


26 Chapter 1. Introductory chapter

[Jarzynski, 2006] Jarzynski, C. (2006). Rare events and the convergence of exponentially
averaged work values. Physical Review E 73.(4), p. 046105.

[Jun et al., 2018] Jun, S., F. Si, R. Pugatch, and M. Scott (2018). Fundamental principles
in bacterial physiology—history, recent progress, and the future with focus on cell size
control: a review. Reports on Progress in Physics 81.(5), p. 056601.

[Kimmel et al., 2002] Kimmel, M. and D. E. Axelrod (2002). Branching processes in
biology. Springer. Interdisciplinary applied mathematics. New York.

[Kiviet et al., 2014] Kiviet, D. J., P. Nghe, N. Walker, S. Boulineau, V. Sunderlikova,
and S. J. Tans (2014). Stochasticity of metabolism and growth at the single-cell level.
Nature 514.(7522), pp. 376–379.

[Kussell et al., 2014] Kussell, E. and M. Vucelja (2014). Non-equilibrium physics and evo-
lution—adaptation, extinction, and ecology: a Key Issues review. Reports on Progress
in Physics 77.(10), p. 102602.

[Lebowitz et al., 1974] Lebowitz, J. L. and S. I. Rubinow (1974). A theory for the age
and generation time distribution of a microbial population. Journal of Mathematical
Biology 1.(1), pp. 17–36.

[Leibler et al., 2010] Leibler, S. and E. Kussell (2010). Individual histories and selection in
heterogeneous populations. Proceedings of the National Academy of Sciences 107.(29),
pp. 13183–13188.

[Levien et al., 2020] Levien, E., J. Kondev, and A. Amir (2020). The interplay of phe-
notypic variability and fitness in finite microbial populations. Journal of The Royal
Society Interface 17.(166), p. 20190827.

[Lin et al., 2017] Lin, J. and A. Amir (2017). The Effects of Stochasticity at the Single-
Cell Level and Cell Size Control on the Population Growth. Cell Systems 5.(4), 358–
367.e4.

[Lin et al., 2020] Lin, J. and A. Amir (2020). From single-cell variability to population
growth. Physical Review E 101.(1), p. 012401.

[Liphardt et al., 2002] Liphardt, J., S. Dumont, S. B. Smith, I. Tinoco, and C. Bus-
tamante (2002). Equilibrium Information from Nonequilibrium Measurements in an
Experimental Test of Jarzynski’s Equality. Science 296.(5574), pp. 1832–1835.

[Mustonen et al., 2010] Mustonen, V. and M. Lassig (2010). Fitness flux and ubiquity of
adaptive evolution. Proceedings of the National Academy of Sciences 107.(9), pp. 4248–
4253.

[Nakashima et al., 2020] Nakashima, S., Y. Sughiyama, and T. J. Kobayashi (2020).
Lineage EM algorithm for inferring latent states from cellular lineage trees. Bioinfor-
matics 36.(9), pp. 2829–2838.

[Neher et al., 2011] Neher, R. A. and B. I. Shraiman (2011). Statistical genetics and
evolution of quantitative traits. Reviews of Modern Physics 83.(4), pp. 1283–1300.

http://dx.doi.org/10.1103/PhysRevE.73.046105
http://dx.doi.org/10.1103/PhysRevE.73.046105
http://dx.doi.org/10.1088/1361-6633/aaa628
http://dx.doi.org/10.1088/1361-6633/aaa628
http://dx.doi.org/10.1088/1361-6633/aaa628
http://dx.doi.org/10.1038/nature13582
http://dx.doi.org/10.1088/0034-4885/77/10/102602
http://dx.doi.org/10.1088/0034-4885/77/10/102602
http://dx.doi.org/10.1007/BF02339486
http://dx.doi.org/10.1007/BF02339486
http://dx.doi.org/10.1073/pnas.0912538107
http://dx.doi.org/10.1073/pnas.0912538107
http://dx.doi.org/10.1098/rsif.2019.0827
http://dx.doi.org/10.1098/rsif.2019.0827
http://dx.doi.org/10.1016/j.cels.2017.08.015
http://dx.doi.org/10.1016/j.cels.2017.08.015
http://dx.doi.org/10.1103/PhysRevE.101.012401
http://dx.doi.org/10.1103/PhysRevE.101.012401
http://dx.doi.org/10.1126/science.1071152
http://dx.doi.org/10.1126/science.1071152
http://dx.doi.org/10.1073/pnas.0907953107
http://dx.doi.org/10.1073/pnas.0907953107
http://dx.doi.org/10.1093/bioinformatics/btaa040
http://dx.doi.org/10.1103/RevModPhys.83.1283
http://dx.doi.org/10.1103/RevModPhys.83.1283


Bibliography for the introductory chapter 27

[Nieto et al., 2020] Nieto, C., J. Arias-Castro, C. Sánchez, C. Vargas-García, and J. M.
Pedraza (2020). Unification of cell division control strategies through continuous rate
models. Physical Review E 101.(2), p. 022401.

[Nozoe et al., 2017] Nozoe, T., E. Kussell, and Y. Wakamoto (2017). Inferring fitness
landscapes and selection on phenotypic states from single-cell genealogical data. PLoS
Genetics 13.(3), e1006653.

[Olivier, 2017] Olivier, A. (2017). How does variability in cell aging and growth rates
influence the Malthus parameter? Kinetic and Related Models 10.(2), pp. 481–512.

[Peliti et al., 2021] Peliti, L. and S. Pigolotti (2021). Stochastic Thermodynamics: An
Introduction. Princeton University Press. Princeton.

[Powell, 1956] Powell, E. O. (1956). Growth Rate and Generation Time of Bacteria,
with Special Reference to Continuous Culture. Journal of General Microbiology 15.(3),
pp. 492–511.

[Robert et al., 2014] Robert, L., M. Hoffmann, N. Krell, S. Aymerich, J. Robert, and
M. Doumic (2014). Division in Escherichia coli is triggered by a size-sensing rather
than a timing mechanism. BMC Biology 12.(1), p. 17.

[Schuh et al., 2009] Schuh, R. T. and A. V. Z. Brower (2009). Biological systematics:
principles and applications. 2nd. Ithaca: Comstock Pub. Associates/Cornell University
Press.

[Seifert, 2005] Seifert, U. (2005). Entropy Production along a Stochastic Trajectory and
an Integral Fluctuation Theorem. Physical Review Letters 95.(4), p. 040602.

[Seifert, 2012] Seifert, U. (2012). Stochastic thermodynamics, fluctuation theorems and
molecular machines. Reports on Progress in Physics 75.(12), p. 126001.

[Sekimoto, 1998] Sekimoto, K. (1998). Langevin Equation and Thermodynamics.
Progress of Theoretical Physics Supplement 130, pp. 17–27.

[Stewart et al., 2005] Stewart, E. J., R. Madden, G. Paul, and F. Taddei (2005). Aging
and Death in an Organism That Reproduces by Morphologically Symmetric Division.
PLoS Biology 3.(2), e45.

[Sughiyama et al., 2015] Sughiyama, Y., T. J. Kobayashi, K. Tsumura, and K. Aihara
(2015). Pathwise thermodynamic structure in population dynamics. Physical Review
E 91.(3), p. 032120.

[Sughiyama et al., 2019] Sughiyama, Y., S. Nakashima, and T. J. Kobayashi (2019).
Fitness response relation of a multitype age-structured population dynamics. Physical
Review E 99.(1), p. 012413.

[Taheri-Araghi et al., 2015] Taheri-Araghi, S., S. Bradde, J. T. Sauls, N. S. Hill, P. A.
Levin, J. Paulsson, M. Vergassola, and S. Jun (2015). Cell-Size Control and Home-
ostasis in Bacteria. Current Biology 25.(3), pp. 385–391.

http://dx.doi.org/10.1103/PhysRevE.101.022401
http://dx.doi.org/10.1103/PhysRevE.101.022401
http://dx.doi.org/10.1371/journal.pgen.1006653
http://dx.doi.org/10.1371/journal.pgen.1006653
http://dx.doi.org/10.3934/krm.2017019
http://dx.doi.org/10.3934/krm.2017019
http://dx.doi.org/10.1099/00221287-15-3-492
http://dx.doi.org/10.1099/00221287-15-3-492
http://dx.doi.org/10.1186/1741-7007-12-17
http://dx.doi.org/10.1186/1741-7007-12-17
http://dx.doi.org/10.1103/PhysRevLett.95.040602
http://dx.doi.org/10.1103/PhysRevLett.95.040602
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1143/PTPS.130.17
http://dx.doi.org/10.1371/journal.pbio.0030045
http://dx.doi.org/10.1371/journal.pbio.0030045
http://dx.doi.org/10.1103/PhysRevE.91.032120
http://dx.doi.org/10.1103/PhysRevE.99.012413
http://dx.doi.org/10.1016/j.cub.2014.12.009
http://dx.doi.org/10.1016/j.cub.2014.12.009


28 Chapter 1. Introductory chapter

[Tanouchi et al., 2017] Tanouchi, Y., A. Pai, H. Park, S. Huang, N. E. Buchler, and L.
You (2017). Long-term growth data of Escherichia coli at a single-cell level. Scientific
Data 4.(1), p. 170036.

[Trucco et al., 1970] Trucco, E. and G. I. Bell (1970). A note on the dispersionless growth
law for single cells. The Bulletin of Mathematical Biophysics 32.(4), pp. 475–483.

[Verley, 2012] Verley, G. (2012). Fluctuations et réponse des systèmes hors de l’équilibre.
PhD thesis.

[Wang et al., 2010] Wang, P., L. Robert, J. Pelletier, W. L. Dang, F. Taddei, A.
Wright, and S. Jun (2010). Robust Growth of Escherichia coli. Current Biology 20.(12),
pp. 1099–1103.

[Willis et al., 2017] Willis, L. and K. C. Huang (2017). Sizing up the bacterial cell cycle.
Nature Reviews Microbiology 15.(10), pp. 606–620.

http://dx.doi.org/10.1038/sdata.2017.36
http://dx.doi.org/10.1007/BF02476766
http://dx.doi.org/10.1007/BF02476766
http://dx.doi.org/10.1016/j.cub.2010.04.045
http://dx.doi.org/10.1038/nrmicro.2017.79


Chapter 2

Lineage-population bias and
selection†

†This chapter is based on the articles García-García et al., 2019; Genthon et al., 2020; Genthon et al.,
2021 with the authorization of all co-authors; and on some yet unpublished material.

29



30 Chapter 2. Lineage-population bias and selection

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2 Fluctuation theorem and consequences . . . . . . . . . . . . . 32

2.1 Fluctuation theorem . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 Bounds on the population doubling time . . . . . . . . . . . . . 35
2.3 Inference of the population growth rate from single-lineage mea-

surements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 Powell’s relation for age models . . . . . . . . . . . . . . . . . . 40

3 Quantifying selection . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1 On the definitions of fitness and selection . . . . . . . . . . . . 41
3.2 Fitness landscape . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Definition and properties . . . . . . . . . . . . . . . . 44
3.2.2 A digression: detection of mother-daughter correlations 47

3.3 Strength of selection . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.1 General fluctuation-response inequality . . . . . . . . 50
3.3.2 Fluctuation-response inequality for the strength of se-

lection . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.3 Linear response equalities . . . . . . . . . . . . . . . . 53
3.3.4 Enhanced lower bound for the strength of selection . 54
3.3.5 Illustrations of the linear response relations . . . . . . 55

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A Fluctuation theorem at the level of operators . . . . . . . . . . 59
B Path integral solution to the uncorrelated age model . . . . . . 61
C Comments on historical fitness . . . . . . . . . . . . . . . . . . 61

C.1 Link between historical fitness and fitness landscape
for models of independent mutations and divisions . . 61

C.2 Link between historical fitness and fitness landscape
for models of cell size control . . . . . . . . . . . . . . 63

C.3 Variance of historical fitness as a measure of selection
for models of cell size control? . . . . . . . . . . . . . 63

D Linear response equality for the strength of selection . . . . . . 65
D.1 Gaussian case . . . . . . . . . . . . . . . . . . . . . . 65
D.2 Small variability limit . . . . . . . . . . . . . . . . . . 66

E Upper bounds numerical comparison . . . . . . . . . . . . . . . 67
Bibliography for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . 70



1. Introduction 31

1 Introduction

Recent advances in single cell experiments, where the growth and divisions of thousand
of individual cells can be tracked, have led to the acquisition of an unprecedented amount
of single cell data. For instance, time-lapse video-microscopy experiments of growing cell
populations provide information on all the lineages in the population tree (Stewart et al.,
2005), and experiments carried out with the mother-machine configuration (Wang et al.,
2010) allows to monitor single lineages for many generations. The availability of these
data has led to many theoretical progresses in different directions, of which we give some
examples.

First, while the growth of cell populations is deterministic, single cell data have re-
vealed stochasticity at the single cell level. This variability can arise, among many possibil-
ities, from the stochasticity in the generation times (Sandler et al., 2015), in the partition
of volume at division (Campos et al., 2014), or in single cell growth rates (Taheri-Araghi
et al., 2015), which are usually linked to stochastic gene expression (Elowitz et al., 2002).
If one is able to disentangle the various sources of stochasticity (Barizien et al., 2019), he
can predict how they affect macroscopic parameters of the cell population, such as the
population growth rate (Olivier, 2017; Thomas, 2017b; Jafarpour et al., 2018; Lin et al.,
2020).

Second, as discussed in section 4.5 of chapter 1, Powell revealed a bias between the
distributions of generation times at the single-lineage and population levels, for age-
controlled populations without mother-daughter correlations and in steady-state (Powell,
1956). This implies in particular a discrepancy between the mean generation time and the
population doubling time: populations of Escherichia coli double faster than the mean
doubling time of their constituent single cells (Hashimoto et al., 2016). Following the
development of the mother-machine, the study of this lineage-population bias is now a
very active field of research, and its manifestation for cell size statistics (Thomas, 2017b;
Thomas, 2018; Totis et al., 2021) and gene expression (Thomas, 2017a; Thomas, 2019),
for example, have been thoroughly investigated. In particular, this bias goes against a
naive view of ergodicity, which states that following a single lineage for a long time should
lead to the same statistics as that obtained for an ensemble of cells, and efforts have been
made to formulate new ergodic principles (Thomas, 2017a; Rochman et al., 2018). In
parallel, a pathwise thermodynamic framework was built for population dynamics using
large deviation theory (Sughiyama et al., 2015), which was formulated in terms of two
key path distributions. In this work and others that followed, the authors compared
the lineage-population bias at the level of path probabilities to fluctuation theorems in
stochastic thermodynamics (see section 2 of chapter 1), which map typical behaviors in
one ensemble (here the population level) to atypical behaviors in another one (here the
single lineage level).

Third, the temporal information available for the lineages within a growing popu-
lation inspired new developments in the field of evolution. By tracking phenotypes on
cell lineages, one can measure selection more accurately than using classical population
growth rate measurements (Leibler et al., 2010), and optimal lineage principles have been
established to infer the population growth rate (Wakamoto et al., 2012) or selective forces
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(Lambert et al., 2015) from lineage statistics. In Nozoe et al., 2017, the authors proposed
a measure of selection which can be defined for any branching tree, independently of
its dynamics. This measure, called strength of selection, only relies on the forward and
backward samplings of the lineages detailed in section 3.2 of chapter 1, and quantifies the
distance between the distributions of phenotypic traits of interest when in single lineages
or in populations.

Many of the results cited in the second point are model-dependent, but they suggest
the existence of more universal lineage-population biases for any branching tree. The
framework proposed in Nozoe et al., 2017 is an important step in that direction. In this
chapter, we thus build on their framework to relate the single cell and population levels
for universal population trees, independently of the model.

In section 2, we show that the comparison between the forward and backward sam-
plings of the lineages of a population tree is similar to fluctuation theorems in stochastic
thermodynamics, and thus leads to two important consequences. First, we derive general
bounds on the population growth rate involving the forward and backward averages of
the number of divisions. In the long time limit, these bounds turn into inequalities for
the mean generation times and the population doubling time, that generalize Powell’s
inequality known for age models. Second, we build an estimator of the population growth
rate based on mother-machine data only, and test its convergence with experimental data
on E. coli. The estimator is only a function of the distribution for the number of divisions,
and thus connects single cell stochasticity and population growth.

In section 3, we derive universal constraints on the strength of selection, interpreted
with linear-response theory. We first obtain an inequality for the change in the average
value of a function of a cell trait between the forward and backward statistics, which
involves the variability of this function and an information-theoretic distance between the
two distributions. When applied to the fitness landscape itself, this inequality bounds the
strength of selection. In addition, we also derive a set of lower bounds for the strength of
selection. These results help understanding the link between selection and variability in
fitness in the same way as the link between fluctuations and response is rationalized by
fluctuation-dissipation theorems in physical systems.

2 Fluctuation theorem and consequences

2.1 Fluctuation theorem

The forward weight of a lineage l given in eq. (1.38) depends only on its reproductive
success, measured by mK(l), which is the size of a population where all lineages would
be equivalent to lineage l and have the same number K(l) of divisions. However, it
is unaffected by the reproductive performance of the other lineages in the population
tree, captured by the number N(t) of cells in the population. The two scales are not
independent since the reproductive success of the population can be expressed as a forward
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average of that of the lineages:

N(t)
N0

=
N(t)∑
i=1

mK(li) ωfor(li) = 〈mK〉for . (2.1)

On the contrary, the backward weight put on a lineage, given in eq. (1.37), depends on
the number of cells at time t, but it is unaffected by the reproductive performance of
the lineage considered. Therefore, the ratio of the two weights for a particular lineage
informs on the bias between the reproductive performance of that lineage with respect to
the colony:

ωback(l)
ωfor(l)

= mK(l)

〈mK〉for
. (2.2)

An equivalent relation can also be obtained in terms of the backward sampling:

ωback(l)
ωfor(l)

= 〈m
−K〉back

m−K(l) , (2.3)

where we used
N0

N(t) =
N(t)∑
i=1

m−K(li) ωback(li) = 〈m−K〉back . (2.4)

We now recast the forward/backward bias as a relation for the distributions of joint
property y and number of divisions K defined by eq. (1.39) and eq. (1.41):

pback(y,K, t) = pfor(y,K, t) eK lnm−tΛt , (2.5)

where we defined the population growth rate

Λt = 1
t

ln
(
N(t)
N0

)
. (2.6)

The population growth rate is linked to the instantaneous population growth rate Λp(t)
defined in eq. (1.58) by

Λt = 1
t

∫ t

0
dt′ Λp(t′) . (2.7)

Importantly, the bias between the two distributions expressed by eq. (2.5) is only depen-
dent on K and not on y, therefore we give two useful versions of this relation.

The most fundamental version is obtained when no property y is tracked:

pback(K, t) = pfor(K, t) eK lnm−tΛt , (2.8)

which indicates that lineages that divided more than average, in the sense of K lnm >
tΛt, are exponentially over-represented in the population as compared to single-lineage
experiments. We emphasize that this relation only relies on the forward and backward
samplings of the lineages within the population tree, and is thus independent of the
dynamics of the system. Moreover, it is valid at any time t, and does not requires a
steady-state assumption.
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A second version can be written at the level of path probabilities. Let us introduce a
vector s = {si} of variables, possibly of high dimension, to describe the dynamical state
of the system. For models of cell size control, the variables si can typically be the size and
age of the cell, or the concentration of a key protein. A path is then fully characterized
by the values s(t) of these variables in time, the number of divisions K along the path,
and the generation times of each cycle {τk}Kk=1. We call the collection of these values over
time a path χ, and the bold font is used throughout this thesis to indicate trajectories.
The probabilities of such a path are linked by

pback(χ, t) = pfor(χ, t) eK[χ] lnm−tΛt . (2.9)

In appendix A, we provide a third and complementary version of the fluctuation the-
orem, using an operator-based framework.

The two versions eqs. (2.8) and (2.9) of the forward/backward bias are akin to de-
tailed fluctuation theorems from stochastic thermodynamics, discussed in section 2.4 of
chapter 1. Indeed, eq. (2.8) has a form similar to Crooks relation (eq. (1.34)), where
the number of divisions K plays the role of the work w, and the population growth rate
Λt is the analog of the free energy difference ∆F . Similarly, eq. (2.9) resembles fluctua-
tion theorems at the level of path probabilities like eq. (1.26), where tΛt − K[χ] lnm is
analog to the entropy production stot(x). Two differences between fluctuation relations
in stochastic thermodynamics and in population dynamics must be emphasized. First,
thermodynamic fluctuation theorems describe non-autonomous systems which are driven
out of equilibrium by the application of a time-dependent protocol, whereas the relations
for cell growth derived here concern autonomous systems, in the absence of any exter-
nal protocol. Second, in stochastic thermodynamics the backward and forward dynamics
are linked by time-reversal symmetry, which is not the case for the two samplings of the
lineages that are independent of the dynamics on the tree.

These fluctuation theorems for population dynamics have in fact been known in dif-
ferent forms before. First, similar results for simple lineage dynamics were derived in
the mathematical literature (see Baake et al., 2007 and Bansaye et al., 2011 for exam-
ple), and referred to as many-to-one formulas. More recently, the Japanese group led
by Tetsuya Kobayashi worked on these relations in a series of articles (Kobayashi et al.,
2015; Sughiyama et al., 2015; Kobayashi et al., 2017; Sughiyama et al., 2017; Sughiyama
et al., 2019), and explored the rich underlying thermodynamic and information-theoretic
structure of population dynamics. In this series of works, the authors compared the
forward/backward bias to fluctuation theorems on path probabilities in stochastic ther-
modynamics, and investigated the questions of sensing, feedback and response when the
population is in a fluctuating environment, through the lens of information theory.

The connection between free energy and population growth rate has also been observed
before, in Baake et al., 2007 and the Japanese articles, using the formalism of large
deviations (Touchette, 2009). In this formalism, the rescaled number of divisions k = K/t
is said to follow a large deviation principle if the limit − lim

t→∞
ln pfor(k, t)/t exists, and is

called the rate function I(k). This states that averages of functions of k over pfor(k, t)
are dominated in the long time limit by the typical value of k which minimizes the rate
function. A similar rate function is also defined for the backward distribution, and the
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fluctuation relation can thus be expressed at the level of the rate functions (see next
section and Sughiyama et al., 2019). The Gartner-Ellis theorem links the rate function
I(k) to the population growth rate via the following variational principle (Levien et al.,
2020):

Λ = sup
k

[k lnm− I(k)] , (2.10)

which is obtained by a saddle point approximation. This relation indicates a competition
between lineages that divided a lot and those which minimize the rate function I(k). Sim-
ilar optimal lineage principles have been studied for age-controlled lineages in Wakamoto
et al., 2012 for example. By analogy with the variational principle known in statistical
physics between the densities of energy, free energy and entropy, the population growth
rate and the rate function are identified as the free energy and the entropy respectively.

Importantly, in all these works, the forward/backward bias was obtained for specific
lineage dynamics with restrictive assumptions. Only in Nozoe et al., 2017 eq. (2.5) has
been derived for general branching trees regardless of the dynamics. However, in this last
work, the connection with thermodynamics has not been made explicit.

In addition to these studies, some direct consequences of the detailed fluctuation the-
orem eq. (2.8) can still be explored, and lead to meaningful messages in the context of
population dynamics. In section 2.4 of chapter 1, we recalled how a detailed fluctuation
theorem can be turned into an integral fluctuation theorem, and used to infer equilibrium
free energies from non-equilibrium work measurements; and how it implies the inequality
of the second law of thermodynamics, which expresses a constraint on the trajectories
that are allowed or not. Similarly, in the next sections we derive (i) inequalities of the
type of the second law generalizing the bounds on the population doubling time known
for age models (eq. (1.87)), and (ii) an integral fluctuation theorem that allows the infer-
ence of the population growth rate from single-lineage measurements. Importantly, these
consequences are very general since eq. (2.8) is independent of the dynamics.

2.2 Bounds on the population doubling time
The inequalities (1.87) between the population doubling time and the average values
of the generation time in the forward and backward dynamics, detailed in section 4.5
of chapter 1, are fundamental properties of age models without correlations. We show
in this section that the fluctuation theorem can be used to derive universal bounds on
the population growth rate, and on the population doubling time when it is defined,
independently of the control mechanism.

Using eq. (2.8), we compute the two Kullback-Leibler divergences between the forward
and backward distributions for the number of divisions:

DKL(pback||pfor) = 〈K〉back lnm− tΛt ≥ 0 (2.11)
DKL(pfor||pback) = tΛt − 〈K〉for lnm ≥ 0 . (2.12)

When combined, the two inequalities give

〈K〉for lnm
t

≤ Λt ≤
〈K〉back lnm

t
, (2.13)
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which represent constraints on the population growth rate equivalent to the second law
of thermodynamics, which classically follows from the fluctuation relations. Note that
because the forward and backward samplings are not related by a timer-reversal symmetry
as previously mentioned, we obtain two inequalities instead of one for the second law.

For cells following binary fission (m = 2), the population doubling time is defined in
steady state as Td = ln 2/Λ, where Λ = lim

t→∞
Λt is the steady-state population growth rate

in the regime of exponential growth. For branching trees following an exponential growth
in the long time limit, the inequalities for Λt are then reshaped as inequalities for Td:

lim
t→∞

t

〈K〉back
≤ Td ≤ lim

t→∞

t

〈K〉for
. (2.14)

Note that eq. (2.14) is a priori different from eq. (1.87) for age models without correlations,
since the upper and lower bounds are a priori different from the backward and forward
average generation times: 〈τ〉 = lim

t→+∞
〈t/K〉. They are equal in particular for age models

without correlations where successive generation times are independent, because of the
fundamental theorem for renewal processes. More generally, by Jensen’s inequality we
have t/〈K〉 ≤ 〈t/K〉 so that lim

t→+∞
t/〈K〉 ≤ 〈τ〉 and the right hand side of eq. (1.87) is

generalized for any model which ensures a steady-state exponential growth:

Td ≤ 〈τ〉for . (2.15)

Therefore, the fact that populations double faster than the mean doubling time of their
constituent single cells is not a signature of uncorrelated age models but a consequence of
the branching structure of the population tree. To define the population doubling time we
needed one additional assumption compared to eq. (2.13) which is true independently of
the dynamics: the existence of a phase of exponential growth in the long time limit. Thus,
eq. (2.15) is valid for any model of cell size control (sizer, timer, adder, ...), irrespective of
the precise form of the division rate and of the partition at division, given that this model
ensures an exponential growth regime in the long time limit (which has been proven for
classical models of cell size control (Doumic et al., 2021)).

We now show a stronger result when the probability p(k, t) for the rescaled number of
divisions k = K/t satisfies a large deviation principle:

− lim
t→∞

1
t

ln p(k, t) = I(k) , (2.16)

where I(k) is the rate function. This function is positive and there is a single point
k∗ = 〈k〉 such that I(k∗) = 0. Note that we did not precise which distribution follows this
principle, since we get from eq. (2.8) that if either the forward or backward distribution
follows a large deviation principle, it is also true for the second distribution, with the
following relation on the rate functions:

Iback(k) = Ifor(k) + Λ− k lnm. (2.17)

In the context of semi-Markov processes, which are processes depending on both the
previous state and the time elapsed since the previous jump (like for example multitype
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age models presented in section 4.1.1 of chapter 1), large deviation principles are well
established (Maes et al., 2009), the rate functions have been computed explicitly (Maes
et al., 2009; Sughiyama et al., 2018), and similar fluctuation theorems at the level of
rate functions has been previously obtained. For example, in Sughiyama et al., 2019
the authors derived Iback(j) = Ifor(j) + Λ− k lnm for j(x, x′, τ ′) the empirical density of
transitions from state x′ to sate x at age τ ′, where the bias is the same as in eq. (2.17).
Beyond simple Markov-like cases, it remains open to determine under which dynamical
conditions the large deviation principle eq. (2.16) is satisfied.

Let us now re-write:

〈τ〉 = lim
t→∞

〈
t

K(t)

〉
(2.18)

= lim
t→∞

〈∫ ∞
0

ds e−sK(t)/t
〉

(2.19)

= lim
t→∞

∫ ∞
0

ds
∫ ∞

0
dk p(k)e−sk . (2.20)

Then, we express p(k) with the rate function, and use a saddle-point approximation of
the integral in the limit t→∞, which leads to:

〈τ〉 = lim
t→∞

∫ ∞
0

ds
∫ ∞

0
dk e−sk−tI(k) (2.21)

=
∫ ∞

0
ds e−s〈k〉 (2.22)

= 〈k〉−1 (2.23)

= lim
t→∞

t

〈K(t)〉 . (2.24)

Finally, the bounds in eq. (2.14) tend to 〈τ〉back and 〈τ〉for, and we thus recover, for
any model ensuring a large deviation principle for the rescaled number of divisions, the
inequalities known for uncorrelated age models. Since large deviation principles have been
proven for multitype age models, then inequalities eq. (1.87) on mean generation times
hold in particular for age models with correlations.

2.3 Inference of the population growth rate from single-lineage
measurements

One of the main applications of integral fluctuation theorems like Jarzynski equality
concerns the thermodynamic inference of equilibrium free energies from non-equilibrium
fluctuations of work. In the same spirit we show here that single lineage data can be used
to infer the growth rate of the corresponding freely-growing population. The detailed
fluctuation theorem eq. (2.8) can be integrated over the number of divisions K, leading
to:

Λt = 1
t

ln〈mK〉for . (2.25)

Note that it is also obtained by combining eq. (2.1) and eq. (2.6). Using the equivalence
between the statistics obtained in single lineage experiments and the forward procedure,
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Figure 2.1: Estimator Λlin of the population growth rate based on eq. (2.26), (left) as
function of the the length t of the lineages and (right) as function of the number L of
lineages used in the estimation. On the left plot, the curves for the three temperatures
converge to a constant value. On the right plot, only the curve for 37 ◦C is shown and
the horizontal dashed line represents the quantity ln(2)〈K〉lin/t, which is smaller than the
limit value of Λlin, as expected from the second law-like inequality, namely eq. (2.13). In
the inset, the purple histogram is the distribution of the number of divisions, while the
green filled histogram is the histogram deduced from it by weighting it by a factor 2K and
normalizing. All the 160 lineages were used to plot these histograms.

we built the estimator Λlin of the population growth rate from the lineage distribution of
numbers of divisions:

Λlin = 1
t

ln
[

1
L

L∑
i=1

mKi

]
, (2.26)

where L is the number of independent single lineages.
The population growth rate is often understood as the fitness of the population, and

is a central quantity in the understanding of the evolution and natural selection in the
population. However, following a large number of cells in time-lapse is challenging, mak-
ing the measure of the population growth rate difficult. The specific advantage of this
estimator is that it only requires single lineage statistics obtained from mother machine
experiments, for which cells can be followed for much longer.

Let us now show how this can be done in practice. We use the data from Tanouchi
et al., 2017, described in section 5 of chapter 1, where the growth of many independent
lineages of E. coli have been recorded over 70 generations in a mother machine at three
different temperatures (25 ◦C, 27 ◦C, and 37 ◦C). For each temperature condition, we
study the convergence of the estimator of the population growth rate Λlin as a function of
the length t of the lineages for a fixed number of independent lineages L, and as a function
of the number of independent lineages for a fixed observation time. Of course, we can
only study the convergence of the estimator and not its accuracy, since the true value of
the population growth rate cannot be measured independently from the evolution of the
population in the mother machine setup.

First, for each temperature, we take into account all the lineages available and truncate
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them at an arbitrary time t smaller than the length of the shortest lineage of the set. On
these portions of lineages of length t, we compute Λlin versus the time t as shown in fig. 2.1
left. We see that the estimator Λlin starts from zero, increases and quickly converges
towards a limiting value. The limits we found agree with those from the independent
analysis carried out in Levien et al., 2020 on the same data, where the difference in the
monotony of the estimator Λlin with time has been clarified in Levien et al., 2021.

Second, we truncate all the lineages at a fixed time equal to the length of the shortest
lineage of the set, and compute Λlin versus the number L of lineages considered for the
estimation, which have been randomly selected from the ensemble of available lineages.
As shown in fig. 2.1 right for the experiment at 37 ◦C (curves for the other temperatures
look similar), the convergence is also good in that case. The figure also confirms that
the value of the population growth rate deduced from the estimator Λlin is larger than
〈K〉lin ln(2)/t, as predicted by the right inequality of eq. (2.13).

It is well understood in the context of stochastic thermodynamics that the exponential
average of the estimator is dominated by rare values, which are not accessible or not well
sampled (Jarzynski, 2006). Indeed, the typical values are the most commonly obtained
and for which the work distribution is peaked, whereas the dominating values are the ones
for which the work distribution shifted by the exponential bias is peaked, and can be far
from typical values. Therefore the inference can require a great number of experiments
to correctly sample the region of dominating values. To understand why this problem
does not arise here, we show in inset of fig. 2.1 right the distribution plin(K) of the
number of divisions together with the same distribution weighted by the factor 2K and
normalized. Here, we observe that both distributions have a narrow support and are close
to each other: the weighted distribution is peaked at K = 67 while plin(K) is peaked at
K = 66, therefore typical and dominating values are very close, which explains why the
estimator is good. Of course, a direct consequence of this narrow support is precisely
that the estimator Λlin is very close to the naive estimator ln 2〈K〉lin/t, thus decreasing its
interest. Indeed, looking at the y-axis scale, we see that the difference between Λlin and
ln 2〈K〉lin/t is below experimental precision. Applying this inference method to data with
more variability in the distribution of the number of divisions, coming for example from
noisier cell cycles, would be more useful but at the same time it would require a larger
number of independent lineages to converge.

The idea of a lineage-based estimator for the population growth rate has been explored
in parallel in Levien et al., 2020 and Pigolotti, 2021 using the framework of large deviation
theory mentioned in sections 2.1 and 2.2. In Levien et al., 2020, assuming a large deviation
principle and using a Gaussian approximation for the distribution plin(k), where k = K/t
is the rescaled number of divisions, the authors studied the accuracy of the estimator and
pointed out that the errors caused by the finite number L of lineages and by the finite
duration t of the experiment, despite being canceled separately in the limits L → ∞
and t → ∞ respectively, could not be canceled simultaneously. This suggests that the
convergence of this estimator can be an issue, and that a trade-off between long lineages
and numerous lineages has to be found. They showed that the error between the estimator
and the true population growth rate is minimized for intermediate lineage length t and
large numbers of lineages L.
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2.4 Powell’s relation for age models
In this section, we show that the fluctuation theorem for path probabilities eq. (2.9) can
be used to derive in a simple way Powell’s relation for age models in exponential growth,
without having to solve for the age or generation time distributions. In age models, a
cell trajectory χ is only characterized by its number K of divisions, the generation times
τk for each cell cycle, and the final age a of the cell. A fundamental property of age
models without correlations is that consecutive cell cycles are independent and the path
probability can thus be factorized as a product of generation time distributions f(τ):

pfor(a, {τk}, K, t) = gfor(a)
K∏
k=1

ffor(τk) δ
(
t− a−

∑K

k=1 τk

)
, (2.27)

where gfor(a) is the probability for the cell not to divide from age 0 at time t − a to age
a at final time t.

We define the corresponding distributions fback(τ) and gback(a) in the backward dy-
namics:

pback(a, {τk}, K, t) = gback(a)
K∏
k=1

fback(τk) δ
(
t− a−

∑K

k=1 τk

)
. (2.28)

Using the fluctuation relation at the path level, namely eq. (2.9), and making the choice
∀k ∈ [1, K], τk = τ = (t− a)/K, we obtain

fback(τ) = mffor(τ)e−τΛt
[
e−aΛ gfor(a)

gback(a)

]1/K

. (2.29)

In a steady state, when t → ∞ and K → ∞, then
[
e−aΛgfor(a)/gback(a)

]1/K
→ 1, so

Powell’s relation (eq. (1.81)) is recovered:

fback(τ) = mffor(τ)e−τΛt . (2.30)

This relation can be seen as a fluctuation theorem at the scale of the single cell cycle,
while eq. (2.8) is a fluctuation theorem at the scale of the entire lineage, consisting in K
cell cycles.

Although we did not need the expressions of the forward and backward distributions
of generation times to derive Powell’s relation, they can be obtained from the analytical
path probability derived in appendix B:

pfor(a, {τk}, t,K) = e−
∫ a

0 da′ r(a′)
K∏
k=1

r(τk)e−
∫ τk

0 da′ r(a′) δ
(
t− a−

∑K

k=1 τk

)
. (2.31)

The above solution can be compared with the definition eq. (2.27) to obtain the expressions
of the probability not to divide up to age a and of the generation time distribution, in
the forward dynamics:

gfor(a) = e−
∫ a

0 da′ r(a′) (2.32)

ffor(τ) = r(τ)e−
∫ τ

0 da r(a) . (2.33)
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The second line shows the consistency between the generation time distribution defined
along lineage histories, and that defined with the snapshot age distribution eq. (1.78).

Extensions of Powell’s relation to age models with mother-daughter correlations and
death are presented in section 3 of chapter 3.

3 Quantifying selection

3.1 On the definitions of fitness and selection
Quantifying the strength of selection in populations is an essential step in any description
of evolution. However, the very notion of selection is not agreed upon and many measures
of selection have been proposed through the years to overcome successive conceptual
difficulties. In this introduction we give an overview of some attempts to define selection
and highlight the conceptual link they have with fluctuation-dissipation theorems.

The first quantitative definition of selection is the so-called fundamental theorem of
natural selection developed in Fisher, 1930. Two versions of the theorem exist: in discrete
time, where each time step is a generation, and in continuous time. In both cases, the
fitness associated with a phenotype s is defined as the reproductive success of individuals
carrying it. In discrete time, this means the number of offspring of one individual in
one generation, and in continuous time it is the division rate, which in this context of
quantitative genetics is called the reproduction rate instead. Without lack of generality,
in the following we focus on the continuous formulation. The population Fisher studied is
very simple: individuals are characterized by their phenotypes s, associated with a fitness
r(s), which is not time-dependent, and they can never switch phenotype:

∂tn(s, t) = r(s)n(s, t) . (2.34)

This equation is recast at the backward probability level, and since forward probabilities
never appear in this introduction, we note p the backward probability without ambiguity:

∂tp(s, t) = [r(s)− 〈r〉] p(s, t) , (2.35)

where we used Λp(t) = 〈r〉 (eq. (1.65)) withm = 2. In this context, the population growth
rate is defined as the population fitness, and is thus equal to the average individual fitness
value in the population. Fisher’s theorem is simply obtained by multiplying this equation
by r(s) and integrating over s:

dΛp

dt = Var(r) , (2.36)

and states that the rate of increase of the population fitness is equal to the variance of
fitness in the population. Fisher thus proposed the fitness variance a measure of selection:
it is positive when the population is heterogeneous, and when the fittest individuals
eventually invade the population, the population growth rate stabilizes at the value of the
largest individual fitness.

While insightful, this relation is limited. First of all, it suffers from dynamical insuf-
ficiency. Fisher’s theorem was intended to predict the evolution of the population fitness
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from the knowledge of the fitness variance at an initial time; however, to compute dΛp/dt
at later times, you also need the variance at later times, whose evolution is given by

dVar(r)
dt = 〈(r − 〈r〉)3〉 , (2.37)

and so on. Indeed, eq. (2.35) gives rise to infinitely many moment equations. Although
in some cases higher moments can be suppressed (Neher et al., 2011), in general you need
to know all moments, that is the full distribution, to predict the population fitness at
later times. This issue has been tackled in some works, like Smerlak et al., 2017, in which
the authors explore the possibility to predict the long run dynamics from the knowledge
of the high fitness tail of the initial fitness distribution only, characterized by a single
number.

Second and more important, the theorem is only valid for the very simple model
defined by eq. (2.34), that does not capture very important phenomena in biology such as
mutations, genetic drift, environment fluctuations, ... This criticism has triggered many
developments, some of which we present now.

Price generalized Fisher’s theorem for a general function g(s, t) of trait s and time
(Price, 1972). After multiplication of eq. (2.35) by g(s, t) and integration, Price’s equation
is obtained:

d〈g〉
dt = Cov(g, r) + 〈∂tg〉 . (2.38)

The time evolution of the average value of an arbitrary trait is split into two contributions:
the covariance term, akin to Fisher’s variance, describes the effect of natural selection, and
the second accounts for the variations in 〈g〉 that are due to anything but selection. More
precisely, the last term is called ‘environment change term’ and reflects a dynamical effect
when trait g is time-dependent. Then any phenomenon changing the values of the trait
in time is included in this term. When applied to g(s, t) = r(s), Price’s equation gives
back Fisher’s theorem. This result suffers from the same dynamic insufficiency as Fisher’s
theorem, and its very purpose is not to provide a quantitative prediction for the evolution
of 〈g〉 but rather to propose a general definition of selection effect and environment effect
(Gardner, 2020). By allowing the trait to be time-dependent, Price provided some partial
answers to the lack of generality of Fisher’s theorem, but his derivation is still based on
the simple model eq. (2.34).

When phenotype switching is allowed for example, the dynamical equation reads:

∂tn(s, t) = r(s)n(s, t) +
∫

ds′ T (s, s′)n(s′, t) , (2.39)

where T (s, s′) is the rate of switching from s′ to s. Price’s equation can of course be
generalized for this model and an extra term appears in eq. (2.38) due to switching
(Leibler et al., 2010).

In Leibler et al., 2010, the authors proposed to shift the perspective from individuals
to individuals’ histories, and to define the historical fitness associated with phenotypic
trajectory s:

Ht(s) = 1
t

∫ t

0
r(s(t′))dt′ , (2.40)
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which takes advantage of the large amount of single cell data to define selection more
accurately while maintaining the intuitive understanding of Fisher and Price’s results.
Note that we included a factor 1/t in the definition ofHt which is not present in the original
paper, to make it consistent with the population growth rate and the fitness landscape
presented below. The authors proposed the following measure of selection: when all
replications rates are multiplied by β ≥ 1, which amplifies the selective differences, the
historical mean fitness 〈Ht〉 is changed by ∂β〈Ht〉. This quantity gauges the population
response to a change in selective differences, and provides a measure of selection different
from the increase of population growth rate in time proposed by Fisher. In the context
of eq. (2.39), which accounts for independent replications and mutations, this measure is
related to the variance in historical fitness:

∂β〈Ht〉 = tVar(Ht) . (2.41)

similarly to Fisher’s theorem. Of course, one cannot easily increase all the replication
rates by a factor β in an experiment, but when evaluated at β = 1, the variance in the
right hand side is the variance in the original experiment. The authors argued that this
variance in historical fitness provides a better measure of selection than the variance in re-
productive rate proposed by Fisher, because the latter captures both individual responses
and selection effects at the level of the population, which are difficult to disentangle. For
example, if phenotype switching is much faster than replication, the variance in repli-
cation rates is largely due to the changes in phenotype, and does not reflect a selection
effect. Again, eq. (2.41) was derived only in the context of eq. (2.39), and we show in
appendix C.3 how this result is modified when applied to models of cell size control. In
this context, ∂β〈Ht〉 is no longer equal to Var(Ht) and is no longer positive-definite, and
may not be a suitable measure of selection.

An alternative method to define selection focuses on population trajectories of the
frequency distribution p(s, t) instead of individual trajectories, and introduces the notion
of fitness flux to characterize the adaptation of a population by taking inspiration from
stochastic thermodynamics (Mustonen et al., 2009; Mustonen et al., 2010). In a different
direction, an optimal lineage principle can be used to infer the population growth rate
(Wakamoto et al., 2012) or selective forces (Lambert et al., 2015) from lineage statistics.
All these methods contribute to bridging the gap between single-cell experiments at the
population level and molecular mechanisms.

Let us now comment on the link between all these results and the fluctuation-
dissipation theorem. This theorem, and the field of linear response theory to which it
belongs, states that near equilibrium the response of a system following a small pertur-
bation is proportional to the fluctuations of the system in equilibrium (Kubo, 1966). The
first and most simple example is Einstein’s relation D = µkBT (Einstein, 1905), obtained
in equilibrium by balancing the diffusion current with the particles flow due to an exter-
nal driving force. The mobility µ, which is the inverse of the drag coefficient and which
represents viscous dissipation following the application of a driving force, is proportional
to fluctuations in Brownian velocity captured by the diffusion coefficient D. These ideas
have important implications in biology explored for example in Sato et al., 2003, where
the change in the average value of a variable following the small change in an exter-
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nal parameter is proven in simple cases proportional to its variance in the unperturbed
ensemble.

All the results mentioned above on selection are also expressed in the form fluctuation-
response relations. In these cases, the responses of the population to the differences in
reproductive rates, captured either by dΛp/dt or ∂β〈Ht〉, are related to the fluctuations
in the population in the form of the variance of fitness. In Leibler et al., 2010, this view
is even at the core of the definition of ∂β〈Ht〉, which is similar to slightly change the
temperature of a system in thermal equilibrium and see how the system responds.

A generalization of the notion of historical fitness was proposed in Nozoe et al., 2017,
based on the forward and backward lineage phenotypic histories. This framework gave
rise to a new measure of the strength of selection, which overcomes the difficulty of the
previous measures: it is model-independent, and can be evaluated for any population
tree, regardless of the dynamics. The authors gave a first hint at a linear-response theory
linking the strength of selection to the variance in fitness landscape, in the case where the
latter follows a Gaussian distribution. In the next sections, we use this framework and
seek more general linear-response relations for this universal measure of selection, beyond
the Gaussian case.

3.2 Fitness landscape

3.2.1 Definition and properties

We now introduce a general cell trait S, understood in the broad sense of any cell property.
It can be quantitative, either defined in a snapshot like cell size, or defined as a time-
integrated quantity like the average single cell elongation rate along the cell lineage, for
example. In this case the trait can take different values, that we note s. The trait can
also be non-quantitative and represent a state, like for instance the belonging to the
group of wild-type cells or mutants. In that case, the trait comes in different versions, or
phenotypes, that we also note s. For simplicity, in the following we will not distinguish
between these cases, and call traits all these properties. In both cases, trait trajectories
are indicated with the bold symbols S and s.

In Nozoe et al., 2017, the authors suggested that one way to define the fitness associ-
ated with the value s of trait S could be to compare the chronological and retrospective
marginal probabilities of that trait, and they defined the fitness landscape:

ht(s) = Λt + 1
t

ln
[
pback(s, t)
pfor(s, t)

]
, (2.42)

where the marginal probabilities are obtained from the joint distributions of s and K:

pback(s, t) =
∞∑
K=0

pback(s,K, t)

= N(t)−1n(s, t) , (2.43)
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Figure 2.2: Illustrations of the fitness landscape for strong and weak selection. On the
left plot, the backward and forward distributions of trait S are significantly different and
the fitness landscape is then much steeper than on the right plot where it is almost flat
because the two distributions nearly coincide. On both plots, the fitness landscapes are
linear because the two distributions are Gaussian with the same variance.

and

pfor(s, t) =
∞∑
K=0

pfor(s,K, t)

= N−1
0

∞∑
K=0

m−Kn(s,K, t) . (2.44)

Note that in the classical framework of evolutionary dynamics, the notion of fitness land-
scape finds its origin in Wright’s seminal work (Wright, 1932), and is defined as a mapping
between the values or versions of a phenotype or a genotype, with their associated fitnesses
(Peliti, 1997).

The definition eq. (2.42) can be reshaped as a fluctuation theorem

pback(s, t) = pfor(s, t) exp [t(ht(s)− Λt)] , (2.45)

which suggests that the fitness landscape ht(s) plays a role similar to that of an effective
division rate, depending on the trait s. This expression indicates that cells with values
s of trait S are over-represented in the backward sampling as compared to the forward
one if the corresponding fitness landscape ht(s) is larger than the population growth
rate, and vice versa. This is illustrated on fig. 2.2 for two situations where the forward
and backward distributions are Gaussian with the same standard deviation, so that the
fitness landscape is linear. On the left, there is a significant difference between the two
distributions, with large values s more represented in the backward distribution, so that
the fitness landscape has a large positive slope. On the contrary, on the right plot, the
two distributions almost coincide, resulting in a near-flat fitness landscape.
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We warn the reader right away about the subtle differences between this fitness land-
scape and the other notions of fitness mentioned in the introduction. The growth rate of
the subpopulation carrying value s of trait S is defined as

Λt(s) = 1
t

ln
[
n(s, t)
n(s, 0)

]
= Λt + 1

t
ln
[
pback(s, t)
pback(s, 0)

]
. (2.46)

Therefore the fitness landscape and the subpopulation growth rate differ by

ht(s)− Λt(s) = 1
t

ln
[
pback(s, 0)
pfor(s, t)

]
= 1
t

ln
[
pfor(s, 0)
pfor(s, t)

]
, (2.47)

where the last equality follows from the fact that, at t = 0, cells have not divided yet
and so the forward and backward samplings of the population are identical. The two
notions of fitness match when the forward distribution of trait S is constant, which is for
example the case in Fisher’s very simple example where there is no mutation. Otherwise,
the sign of ht(s)− Λt(s) indicates the evolution of the frequency of the value s of trait S
as time goes by, due to every phenomenon but selection. This measure is complementary
to ht(s) − Λt which quantifies the separate effect of selection. Therefore, ht(s1) > ht(s2)
means that the trait value s1 benefits more from selection than s2, in the sense that its
frequency is increased by a greater amount when going from single lineage statistics to
population statistics, but not necessarily that s1 has a greater reproductive success than
s2. As a consequence, cells carrying the value s1 could still be less represented in the
population than those carrying trait value s2.

The fitness landscape is also in general different from the historical fitness, although it
is built to recover the latter in simple situations. For models of independent reproductions
and mutations, the fitness landscape and the historical fitness are identical (Nozoe et al.,
2017, SM), and we give an alternative proof of this equality in appendix C.1. Nonethe-
less, the fitness landscape is easier to evaluate experimentally: one has to compare the
backward and forward probabilities of a path, that can be followed by fluorescence for
example, while evaluating the historical fitness requires an estimation of the reproductive
rate. On the other hand, we show in appendix C.2 that for models of cell size, the two
notions of fitness are different, but still linked in a non-trivial way.

To gain further insight, we rewrite the definition of ht(s) in a slightly different way
using (Nozoe et al., 2017, SM)

pback(s, t) =
∑
K

pback(s,K, t)

= e−tΛt
∑
K

2Kpfor(s,K, t)

= e−tΛtpfor(s, t)
∑
K

2KRfor(K, t|s), (2.48)

where we have used the fluctuation theorem eq. (2.5) with y = s and where we introduced
the probability of the number of divisions conditioned on trait s at the forward level,
Rfor(K, t|s). The fitness landscape then reads

ht(s) = 1
t

ln
[∑
K

2KRfor(K, t|s)
]
. (2.49)
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In this form, it appears clearly that the fitness landscape measures the degree of correlation
between the final value of a cell trait and the number of divisions along the lineage.
Since lineages that divided more than average are over-represented in the population as
compared to the single-lineage statistics, if the number of divisions is positively correlated
with certain values of the trait, then their frequencies are also increased.

Two limit cases are worth mentioning. First, when the trait S and the number K
of divisions are uncorrelated, then Rfor(K, t|s) = pfor(K, t) and eq. (2.49) reads ht(s) =
ln
[∑

K 2Kpfor(K, t)
]
/t, which is equal to Λt according to eq. (2.25). In this case the

fitness landscape is flat. On the other hand, if S and K are fully correlated, in the sense
that the number K of divisions is determined by a function K(s) of trait value s at final
time, then Rfor(K, t|s) = δ(K − K(s)) and the fitness landscape is equal to the lineage
fitness ht(s) = ĥt(K(s)) = K(s) ln 2/t, which is how we call the fitness landscape when
considering the number of divisions as the trait S. A simple example of that is the
complete correlation of size and number of division in the absence of noise. Indeed, for
deterministic and symmetrical partition of volume (Σ(x|x′) = δ(x−x′/2)) and exponential
growth (ν(x) = νx), for a given initial size x0, the accessible sizes after a time t are
given by: x(t) ∈ {x0 exp[νt]/2K , K ∈ N} independently of the division times and of
the size control mechanism. Therefore, K is determined by the function K(x, x0) =
ln[x0 exp(νt)/x]/ ln 2, and

ht(x, x0) = K(x, x0) ln 2/t

= ν + 1
t

ln
(
x0

x

)
. (2.50)

The fact that this fitness landscape is a decreasing function of size x is coherent with the
over-representation of cells that divided a lot, since these cells are mechanically smaller
due to the numerous divisions. Reporting this result in eq. (2.48), we obtain a fluctuation
relation for the size

pback(x, x0, t) = e(ν−Λt)tx0

x
pfor(x, x0, t) . (2.51)

When introducing noises either on partitioning or growth, the correlations between size
and divisions can be blurred and the fitness landscape can become non-trivial. The study
of the lineage-population bias for the cell size distribution is the topic of chapter 4.

3.2.2 A digression: detection of mother-daughter correlations

Although the main use of the fitness landscape is probably the inference of selection
from lineage data, we explore in this short section the possibility to use it to detect
mother-daughter correlations. If the duration of all cell cycles in the tree are recorded,
then mother-daughter correlations in generation times are straight-forwardly analyzed by
computing the covariances between consecutive generation times (Taheri-Araghi et al.,
2015). However, this method can be expensive, and if only sparse information is known,
like the number of divisions along the lineages and the steady-state age distributions
but not the actual division times, then correlations can be revealed by looking at age
distributions.
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Figure 2.3: Simulation of a cell colony following a sizer mechanism, with N0 = 1, r(x) =
ν(x) = x, Σ(x|x′) = b(x/x′)/x′ with b(x) uniform in [0.35, 0.65] and 0 otherwise, ending
with more than 1.6 × 106 cells at final time t = 15. Left: forward and backward age
distributions shown with blue empty histogram and orange filled histogram respectively.
Right: ln [pback(a)/pfor(a)] is linear with age a but with a slope ∼ 0.62 different from the
measured steady-state population growth rate Λ = 1, indicating the presence of mother-
daughter correlations in generation times.

Indeed, in the timer model without correlations, the backward and forward age distri-
butions are analytical and given by eqs. (1.75) and (1.76). Thus, computing

ln
[
pback(a)
pfor(a)

]
= −Λa+ ln

[
pback(0)
pfor(0)

]
(2.52)

shows a linear dependence in age with a slope equal to the steady-state population growth
rate. From this result, we deduce that if ln [pback(a)/pfor(a)] is not linear with a slope equal
to Λ, then the population is incompatible with the classical timer description, which
indicates the presence of correlations in generation times. The opposite is not true, as
eq. (2.52) could hold for models with specific correlations.

We illustrate this by simulating the evolution of a cell colony following a sizer mecha-
nism. We show on fig. 2.3 left the steady state forward and backward age distributions,
and on fig. 2.3 right the logarithm of the ratio of the two probabilities. We see that
ln [pback(a)/pfor(a)] is also linear in that case, but with a slope significantly different from
the measured population growth rate, which indicates non-ambiguously that these age
statistics are incompatible with the assumption of independent generation times.

This discussion is an opportunity to mention a property of the fitness landscape. From
its definition eq. (2.42), we see that if steady-state distributions are reached for pback(s) and
pfor(s), then in the long time limit the fitness landscape becomes equal to the population
growth rate. This is why we focused on the quantity ln [pback(a)/pfor(a)] = t(ht(a) − Λ)
instead of ht(a), because it remains a non-flat function of age in the long time limit and
still encodes information about the forward/backward bias.
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3.3 Strength of selection
The strength of selection ΠS acting on trait S has been defined in Nozoe et al., 2017
as the Jeffrey’s divergence between the forward and backward distributions of that trait,
which is a non-negative and symmetric information-theoretic distance between the two
distributions:

ΠS = 1
t
J (pback(s, t)|pfor(s, t)) (2.53)

= 1
t

∫
ds [pback(s, t)− pfor(s, t)] ln

(
pback(s, t)
pfor(s, t)

)
. (2.54)

This distance can be written in a different form:

ΠS = 〈ht〉back − 〈ht〉for , (2.55)

showing that the strength of selection is the change in mean fitness landscape between
the ensembles with and without selection, or equivalently the response of the system
to the presence of selection. Please be aware that this strength of selection should not
be confused with the coefficient of selection, usually defined as the relative difference in
fitness associated with two values of a phenotypic trait (Mustonen et al., 2010). Note
also that this strength of selection is defined for a given trait S and reflects the degree of
correlation between this trait and reproductive success, and thus the selection of certain
values of this trait. This is a difference with some measures presented in section 3.1 such
as the one proposed by Fisher, which quantify the selection of the fittest individuals.

Nozoe et al. proved that when the fitness landscape ht(s) is a bijection and is normally-
distributed, the strength of selection is proportional to the variance in fitness landscape:

ΠS = tVar(ht) , (2.56)

where the variance can evaluated either with the forward or backward distribution:
Var(ht) = Varback(ht) = Varfor(ht). This result provides a link between response and
variability, understood within the framework of linear response theory as detailed in sec-
tion 3.1. We provide an alternative proof of this linear relation in appendix D.1.

However, the Gaussian case only covers a small portion of realistic cases, and fitness
landscapes can exhibit strong deviations from Gaussian distributions. For example, we
show on fig. 2.4 experimental examples of fitness landscape distributions for size (left)
and age (right) that are non Gaussian, using population data from Kiviet et al., 2014
described in section 5 of chapter 1.

In the following, we derive universal relations going beyond the Gaussian assumption,
and obtain a set of upper and lower bounds for the strength of selection, in terms of both
the forward and backward variances in fitness landscape. To do so, let us first derive in
the next section a general inequality constraining the difference in average value for an
observable between two probability distributions.

3.3.1 General fluctuation-response inequality

We consider a general system described by a reference probability distribution pa(s, t),
where s is the value taken by a state variable S. By perturbing the system, we change
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Figure 2.4: Forward distributions of fitness landscape for size (left plot) and age (right
plot) for one experiment from Kiviet et al., 2014. For both variable, the distribution is
far from a Gaussian.

the distribution of the variable S from pa(s, t) to pb(s, t). We consider an observable
depending on the variable S, through a function gt(s), and ask the question of how the
mean value of this observable is modified when the system is perturbed.

Assuming that pa(s, t) and pb(s, t) have the same support, we can define the ratio

qt(s) = pb(s, t)
pa(s, t) . (2.57)

Let us now compute the covariance between gt(s) and qt(s) with respect to pa(s, t):

Cova(gt, qt) = 〈gtqt〉a − 〈gt〉a〈qt〉a
= 〈gt〉b − 〈gt〉a , (2.58)

where we used 〈qt〉a = 1, due to the normalization of pb, and 〈qtg〉a = 〈gt〉b. Following
the method used in Dinis et al., 2020 to derive mean-variance trade-off bounds in horse
race gambling, we use the Cauchy-Schwarz inequality for the covariance:

Cova(gt, qt)2 ≤ σ2
a(gt)σ2

a(qt) , (2.59)

with σ2
a the variance with respect to pa(s, t). Finally, by combining eqs. (2.58) and (2.59),

we obtain a general bound for the difference in average values:

|〈gt〉b − 〈gt〉a| ≤ σa(gt)σa(qt) . (2.60)

The inequality can be understood as an out-of-equilibrium generalization of the
fluctuation-dissipation theorem, because it involves a comparison between a reference
unperturbed dynamics and a perturbed dynamics. The difference between the unper-
turbed and the perturbed averages of the function gt(s) is bounded by the unperturbed
fluctuations of this function, measured by σa(gt), times σa(qt) which can be seen as an
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information-theoretic distance between the two probability distributions. Indeed, since
〈qt〉a = 1 by construction, the variance of qt is given by

σ2
a(qt) =

∫
ds

(
pb(s)
pa(s) − 1

)2

pa(s) , (2.61)

which is none other than χ2(pb; pa): the χ2 divergence from pa to pb. Therefore, the
eq. (2.60) we derived is a particular form of Chapman-Robbins bound:

σ2
a(gt) ≥ sup

pb

(〈gt〉b − 〈gt〉a)2

χ2(pb; pa) , (2.62)

which we did not know at that time. The perspective is reversed in the latter: while our
inequality bounds the change in the mean value of a function between two ensembles,
Chapman-Robbins bound is a lower bound on the variance of this function, which is
typically a function of a parameter to estimate.

To derive eq. (2.60), we adopted the point of view of the unperturbed statistics pa(s, t)
as reference, but a similar bound can be obtained in terms of standard deviations with
respect to the perturbed dynamics pb(s, t). We consider the covariance between gt(s) and
q−1
t (s), with respect to pb(s, t):

Covb(gt, q−1
t ) = 〈gt〉a − 〈gt〉b . (2.63)

Following the same steps, and using the Cauchy-Schwarz inequality for this covariance we
finally obtain

|〈gt〉b − 〈gt〉a| ≤ σb(gt)σb(q−1
t ) , (2.64)

where the term σb(q−1
t ) is similarly interpreted as an information-theoretic distance mea-

sure between the two distributions, and equal to the χ2 divergence from pb to pa
Thus, combining eqs. (2.60) and (2.64), the change in mean value of the function gt is

bounded by
|〈gt〉b − 〈gt〉a| ≤ min

(
σa(gt)σa(qt), σb(gt)σb(q−1

t )
)
. (2.65)

A similar bound for |〈gt〉b − 〈gt〉a| was derived in Dechant et al., 2020, using Jensen’s
inequality. Their bound (eq. 5 or 11 in their text) also involves a measure of the distance
between the two probability distributions (Kullback-Leibler divergence) and the standard
deviation of the observable considered in the unperturbed dynamics. When applied to
path probabilities for observables that are odd under time reversal symmetry, their result
recovers Thermodynamic Uncertainty Relations. These relations take the form of in-
equalities, which generalize fluctuation-response relations far from equilibrium and which
capture important trade-offs for thermodynamic and non-thermodynamic systems as re-
cently reviewed in Horowitz et al., 2020. We carry out a numerical comparison between
the two bounds in appendix E which shows that the relative performance of the two
bounds depends on the shape of the perturbed and unperturbed distributions. In any
case, our bound is easy to evaluate since it does not require an optimization over a free
parameter, as it is the case in Dechant et al., 2020 (see eq. (2.147)).
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3.3.2 Fluctuation-response inequality for the strength of selection

The results derived in the previous section for general distributions a and b are now used
to obtain constraints on the strength of selection. Indeed, by setting the unperturbed
distribution a to be the forward distribution of a phenotypic trait S and the perturbed
distribution b to be the backward distribution of this trait (which is allowed since the
forward and backward distributions have the same support), the difference 〈gt〉back −
〈gt〉for is the change of mean value for function gt between an ensemble without selection
(forward) and with selection (backward).

An important application of the above results is when the arbitrary function gt(s) is
the fitness landscape ht(s) itself. In this case, eqs. (2.58) and (2.63) read

ΠS = Covfor(ht, etht) e−tΛt (2.66)
= Covback(ht, e−tht) etΛt , (2.67)

which generalize the linear relation between the strength of selection and the variance of
the fitness landscape, valid in the Gaussian case (eq. (2.56)). To make explicit the role of
the variability of the fitness landscape in the fashion of fluctuation-response relations, we
write eq. (2.65) in this context:

ΠS ≤ min
(
σfor(ht)σfor(qt), σback(ht)σback(q−1

t )
)
, (2.68)

where the absolute values in the left hand side can be removed because the strength of
selection is defined positive, as deduced from eq. (2.53). We finally obtained a universal
upper bound for the strength of selection acting on trait S, which involves the χ2 distances
σfor(qt) and σback(q−1

t ) between the backward and forward statistics, and the variances of
the fitness landscape in both ensembles, which are in general different from each other.

Let us make some important comments on this result.
First, in this context, the ratio qt(s) and the fitness landscape ht(s) are linked by the

simple relation qt(s) = exp [t (ht(s)− Λt)]. Consequently, even though σ(ht) is interpreted
as the variability of fitness in the unperturbed dynamics and σ(qt) as the distance between
the two ensembles, their roles can be exchanged since σ(ht) = σ(ln qt)/t is also a valid
measure of the distance between the forward and backward distributions.

Second, our perturbed and unperturbed distributions, namely backward and forward,
are particular in that they are computed from the same population tree, and cannot be
evaluated independently in different experiments. This is different from usual systems
where the statistics in the presence and absence of a perturbation are measured in two
separate experiments. Thus, the philosophy behind usual linear-response relations, that
is the use of the variability of a reference system to predict its response to a perturbation
without having to actually perturb it, does not apply here.

Third, we can actually take advantage of the equivalence between the single lineage
distribution and the forward distribution to infer the response of the colony from mother-
machine data only, where no selection is present. We build a lineage-based estimator of the
fitness landscape, using its definition eq. (2.49) relying only on the forward distribution,
similarly to what we did for the population growth rate in section 2.3:

hlin(s) = 1
t

ln
[∑L

i=1 2Kiδ(si − s)∑L
i=1 δ(si − s)

]
. (2.69)
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In the same way, qt(s) can be estimated from single-lineage data, meaning that the dis-
tance between the two arbitrarily far ensembles is available from single lineage experi-
ments, unlike the distance in most far-from-equilibrium linear-response relations which is
not in general available from the unperturbed dynamics. Note that these estimators could
suffer from the same convergence difficulties in the limit t → ∞ as Λlin. However, if we
are interested in finite time fitness landscapes and selection strengths, this limit does not
appear. Of course, in this case the bound is not really useful, since these estimators can
be used to estimate directly the strength of selection rather than the bound. Indeed, the
fitness landscape is estimated with eq. (2.69), the population growth rate with eq. (2.26)
and by combining these two quantities we obtain the backward distribution and finally
the strength of selection.

From these observations, we conclude that the appeal of eq. (2.68) is conceptual rather
than practical. It provides a universal link between the variability in fitness landscape
and the strength of selection in the form of a fluctuation-response relation.

3.3.3 Linear response equalities

The linear-response inequality eq. (2.65) becomes a linear-response equality when Cauchy-
Schwarz inequality is saturated, that is when gt and qt (or q−1

t ) are linearly dependent.
This is true in the small variability limit σ(tht) → 0 (which is equivalent to σ(qt) → 0)
where the two probability distributions approach each other, and when function gt is the
fitness landscape ht.

We show in appendix D.2 that the left hand side of eq. (2.65) reads

〈gt〉back − 〈gt〉for ∼
σ(tht)→0

t Cov(ht, gt) , (2.70)

where the covariance term between the general variable gt and the fitness landscape ht is
reminiscent of the covariance term in Price’s equation eq. (2.38). Note however, that in
our result there is no ‘environment term’ like in Price’s equation, because the difference
〈gt〉back− 〈gt〉for is defined to capture the effect of selection only. For general functions gt,
eq. (2.65) is not saturated since gt and ht are not linearly dependent in general. However,
when gt = ht then

ΠS ∼
σ(tht)→0

t Var(ht) , (2.71)

which saturates the bound. In both eq. (2.70) and eq. (2.71), the variance and the
covariance can be equivalently taken over the forward or backward sampling.

The limit of small variability can also be written t � σ(ht)−1 which defines a char-
acteristic timescale of the system. In practice, this limit can be reached either for short
times or in the case of a strong control mechanism on the divisions, leading the lineages
to stay synchronized even after a finite time. It is also possible to regard this limit as
a regime of weak selection (Neher et al., 2011), since the strength of selection is small
precisely because of eq. (2.68).
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3.3.4 Enhanced lower bound for the strength of selection

To complement the upper bound on the strength of selection given by eq. (2.68), we now
derive a non-trivial lower bound, which presents an interest to quantify the minimal effect
of selection on a particular trait.

We know that the strength of selection is positive because Jeffrey’s divergence is
positive, which comes from Jensen’s inequality. We can therefore improve this trivial lower
bound on the strength of selection by using a sharpened version of Jensen’s inequality
recently derived in Liao et al., 2019. In practice, the strength of selection is decomposed
as a sum of two Kullback-Leibler (KL) divergences: J (pback|pfor) = DKL(pback||pfor) +
DKL(pfor||pback), and the new version of Jensen’s inequality is used to enhance the trivial
lower bound of each KL divergence.

We define the convex functions ϕfor(x) = etx, ϕback(x) = e−tx and the function

Ψ(ϕ, x, y) = ϕ(x)− ϕ(y)
(x− y)2 − ϕ′(y)

x− y
, (2.72)

where ϕ′ stands for the derivative of ϕ. The sharpened version of Jensen’s inequality
reads

〈etht〉for − et〈ht〉for ≥ σ2
for(ht) inf

h
Ψ(ϕfor, h, 〈ht〉for) . (2.73)

We then divide this expression by exp(tΛt):

〈et(ht−Λt)〉for − et(〈ht〉for−Λt) ≥ σ2
for(ht)

exp(tΛt)
inf
h

Ψ(ϕfor, h, 〈ht〉for) , (2.74)

where the first term is 1 because of the normalization of the probability distribution pback
in eq. (2.45), so that

Λt − 〈ht〉for ≥ −
1
t

ln
(

1− σ2
for(ht)

exp(tΛt)
inf
h

Ψ(ϕfor, h, 〈ht〉for)
)
. (2.75)

Similarly, we find

〈ht〉back − Λt ≥ −
1
t

ln
(

1− σ2
back(ht)

exp(−tΛt)
inf
h

Ψ(ϕback, h, 〈ht〉back)
)
. (2.76)

Liao et al. proved that when ϕ′(x) is a convex (resp. concave) function, then Ψ(ϕ, x, y)
is an increasing (resp. decreasing) function of x, and thus the infimum of function
Ψ(ϕ, x, y) on x is reached for x = xmin (resp. x = xmax). Because of the convexity
of ϕ′for(x) = t exp [tx], the minimum of Ψ is reached when evaluating Ψ at the mini-
mum value hmin of the fitness landscape ht(s). Similarly, because of the concavity of
ϕ′back(x) = −t exp [−tx], the minimum of Ψ is reached when evaluating Ψ at the maxi-
mum value hmax. Finally, we use the relation − ln(1 − x) ≥ x valid for any real number
x ≤ 1 and we combine the two inequalities to obtain the improved lower bound on the
strength of selection:

ΠS ≥
1
t

[
σ2

for(ht)
exp(tΛt)

Ψ(ϕfor, hmin, 〈ht〉for) + σ2
back(ht)

exp(−tΛt)
Ψ(ϕback, hmax, 〈ht〉back)

]
. (2.77)
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Note that the right hand side of eq. (2.77) is positive due to the convexity of ϕfor and ϕback,
and therefore does represent an improvement with respect to the trivial bound which is
zero.

This lower bound depends on the forward and backward variances of the fitness land-
scape, similarly to the upper bound eq. (2.68), and is therefore a kind of linear-response
inequality as well. In addition, it also depends on the average and extreme values of the
distributions of fitness. When the fitness landscape is a monotonic function of the value
of the trait, which is the case for cell age and size for example, these extreme values are
given by the extreme values of the trait itself.

Liao et al. also proposed another lower bound, looser but simpler than the one in-
volving the function Ψ. Indeed, one can replace infh Ψ(ϕfor, h, 〈ht〉for) by infh ϕ′′for(h)/2
in eq. (2.73). Moreover infh ϕ′′for(h)/2 = ϕ′′for(hmin)/2 = t2 exp(thmin) since ϕ′′for(h) is an
increasing function of h. The same goes for the other inequality, and combining the two
leads to

ΠS ≥
t

2

[
σ2

for(ht)et(hmin−Λt) + σ2
back(ht)et(Λt−hmax)

]
. (2.78)

3.3.5 Illustrations of the linear response relations

We now illustrate our results and test the tightness of the different bounds for growing
cell populations, using both simulations and time-lapse video-microscopy experimental
data from Kiviet et al., 2014.

First, we illustrate eq. (2.60) for the number of divisions K, and for the linear function
gt(K) = K, so that the inequality bounds 〈K〉back − 〈K〉for. We simulate lineage trees
starting from one cell, and following a sizer mechanism. Each simulation of such a tree
yields a single point on fig. 2.5, which shows the ratio of σfor(K)σfor(qt) to 〈K〉back−〈K〉for
versus the population growth rate Λt. Two sets of points are presented, which only differ
in the final time of the simulation. As expected from eq. (2.60), all points in both sets
are above 1. When the duration of the simulation is small (t = 3), the final population
is small, around N ∼ 20, therefore for a given tree the lineages do not have time to
differentiate significantly and the variability in the number of divisions among the lineages
is small. In that case, simulations points are approaching the horizontal dashed line at
y = 1 corresponding to the saturation of the inequality. The final population N fluctuates
significantly from one simulation to the next, because the simulation time is short and all
simulations start with a single cell with random initial size. As a result, the dispersion
of values of Λt is large. Now, when doubling the duration of the simulation, the cloud
of scattered points is considerably reduced in both directions. The horizontal dispersion
reduces because as t increases, the state of the system at the final time becomes less and
less affected by the initial condition. On the vertical axis, there is a gap between the
lower part of the scatter plot and the horizontal line at y = 1 due to the increase of
heterogeneity in the number of divisions in the lineages with the simulation time.

Second, we test the upper and lower bounds on the strength of selection acting on
cell size and age using data from Kiviet et al., 2014. We show on fig. 2.6 the upper
bounds U given by eq. (2.68) and the lower bounds L given by eq. (2.77), normalized by
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Figure 2.5: Points of σfor(K)σfor(qt)/(〈K〉back−〈K〉for) against Λt for many tree simulations
using a size-controlled model. Each dot corresponds to a single tree, the two sets of data
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strength of selection acting on size ΠX (left plot) and age ΠA, normalized by the latter.
The x-axis represents the 11 colonies in different growth conditions from Kiviet et al.,
2014, in no particular order.
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the strength of selection Π, for size X on the left and age A on the right. The x-axis
labels in no particular order the 11 colonies which have grown in different conditions. As
expected, points representing the upper bound and those representing the lower bound
are respectively above and below the horizontal dashed line at y = 1. Experiments for
which the normalized upper bound approaches 1 indicate that there is small variability in
terms of number of divisions among the lineages. We see that the upper bound is typically
tight and gives a good approximation for the strength of selection. The lower bound is
less tight, but is nevertheless around 70% of the value of the strength of selection, which
is a significant improvement compared to the trivial lower bound which is zero.

4 Conclusion
We have studied the relation between two different samplings of lineages in a general
branching tree, proposed in Nozoe et al., 2017: the backward sampling presents a statisti-
cal bias with respect to the forward sampling, an observation which is important to relate
experiments carried out at the population level with the ones carried out at the single
lineage level. This bias has been exploited in two directions: to extend relations between
single cell stochasticity and population growth beyond age models, and to characterize
natural selection and the role of fluctuations for the latter.

This statistical bias can be rationalized by a set of fluctuation relations, which relate
the probability distributions in the two ensembles and which are similar to fluctuation re-
lations known in stochastic thermodynamics. This analogy leads to an efficient method to
infer the population growth rate from an analysis of single lineages, as we demonstrated by
the analysis of the mother machine data from Tanouchi et al., 2017. A second important
consequence of the fluctuation relations in the context of population dynamics is the set
of inequalities for the mean numbers of divisions and the population growth rate. In the
phase of exponential growth in the long time limit, these inequalities generalize for any
model of cell size control the inequalities between mean generation times and population
doubling time known for age models.

The second axis is the study of the strength of selection, and its interpretation as a
response to the lineages variability. The general idea of comparing the response of a system
in the presence of a perturbation to its fluctuations in the absence of the perturbation lies
at the heart of the fluctuation-dissipation theorem, which has a long history in physics
(Kubo, 1966), with some applications to evolution (Kaneko et al., 2018). Remarkably,
the present framework with forward (unperturbed) and backward (perturbed) dynamics
can be conveniently applied to population dynamics without having to perform additional
experiments, since both probabilities can be calculated with the same lineage tree. We
derived a set of inequalities for the average of an arbitrary function of a trait and for
its fitness landscape, valid beyond the Gaussian assumption, and which constrain the
strength of selection, even in the presence of time-dependent selection pressures. These
inequalities may also be interpreted as trade-offs between the strength of selection and
the similarity between lineages (inverse of the variability).

We point out again that these results are universal in the sense that they only rely on
the branching structure of the population tree and are independent of the dynamics of the
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tree, that is the ensemble of rules governing the division of the branches. In the context
of cell populations, this means for instance that our results are valid for any mechanism of
cell size control, in presence of any source of noise and possible mutations, and regardless
of the nature of the cell. Although we illustrated our results with cell populations, we
hope they could be insightful in other contexts as well. In ecology for example, such trees
are used to represent phylogeny (Schuh et al., 2009), where lineages represent species or
versions of genes, and divisions represent speciations or mutations. This could also open
new perspectives to address a number of important problems like the differentiation of
stem cells (Tak et al., 2021) or virus evolution.

As mentioned in the introductory chapter, the use of this framework is limited to
situations where the genealogy of the tree is accessible, which may not be the case for
various settings, as for in vivo experiments or in the context of ecology. A next logical
step would then be trying to elucidate the links between the state of a population at
observation time and its past history. A second difficulty lies in one assumption of the
framework, namely that all lineages survive up to final time, which prevents us from
studying datasets where cells die or are diluted. This obstacle is precisely addressed in
chapter 3.

Finally, we hope that our work contributes to clarifying the connection between single
lineage and population statistics and to understanding the fundamental constraints which
cell growth and division must obey. To further test predictions which involve a comparison
between these two levels, it would be useful to perform experimental studies in bulk and
in single-lineage setups with the same strains and conditions.
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5 Appendices

A Fluctuation theorem at the level of operators
In this appendix, we present an operator-based framework which provides an alternate
route to eq. (2.8) and eq. (2.25). Unlike the main derivation of these results, the present
approach relies on the population balance equation. For simplicity, we illustrate this
method for the sizer, given that other size control mechanisms like the timer and the
adder can be treated along the same lines and lead to similar results.

Let us first recall the population balance equation for the backward probability with
explicit dependence on the number K of divisions:

∂tpback(x,K, t) =− ∂x[ν(x)pback(x,K, t)]− (r(x) + Λp(t)) pback(x,K, t)

+m
∫

dx′ Σ(x|x′)r(x′)pback(x′, K − 1, t) . (2.79)

We define the backward generating function Gback(x, λ, t) as

Gback(x, λ, t) =
∞∑
K=0

e−λKpback(x,K, t) . (2.80)

We then multiply eq. (2.79) by e−λK and sum over K to obtain

∂tGback(x, λ, t) = Lback(λ) Gback(x, λ, t) , (2.81)

where linear operator Lback(λ), acting on Gback(x, λ, t), is defined on a test function f as

Lback(λ)f = −∂x[ν(x)f ]− (r(x) + Λp(t))f +me−λ
∫

dx′r(x′)Σ(x|x′)f . (2.82)

Although this operator depends on the size x, we choose not to write this dependence
explicitly to ease the reading. By the same method, we obtain the operator at the forward
level:

Lfor(λ)f = −∂x[ν(x)f ]− r(x)f + e−λ
∫

dx′r(x′)Σ(x|x′)f . (2.83)

By direct comparison, we obtain the fluctuation relation at the level of operators

Lback(λ) = Lfor(λ− lnm)− Λp(t)1 . (2.84)

This equality between two operators implies relations between their eigenvalues and
eigenvectors as well. Let us call gback(x, λ) (resp. gfor(x, λ)) an eigenvalue of the operator
Lback(λ) (resp. Lfor(λ)), and V g

back(x, λ) (resp. V g
for(x, λ)) the associated eigenvector. Then

eq. (2.84) gives

gback(x, λ) = gfor(x, λ− lnm)− Λp(t) , (2.85)
V g

back(x, λ) = V g
for(x, λ− lnm) . (2.86)

When solving eq. (2.81), the long-time behavior of Gback(x, λ, t) is controlled by the
largest eigenvalue of Lback(λ), which we call µback(x, λ), and reads

Gback(x, λ, t) ∼
t→∞

Cµ
back(x, λ)V µ

back(x, λ) eµback(x,λ)t , (2.87)
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where Cµ
back(x, λ) is the constant coefficient of the eigenvector V µ

back(x, λ) associated with
the largest eigenvalue in the decomposition of the initial condition Vback(x, λ, t = 0) on
the set of the eigenvectors of Lback(λ). We investigate the particular case λ = 0. On the
one hand, using the definition eq. (2.80) we obtain Gback(x, 0, t) = pback(x, t) and thus the
normalization of the probability gives∫

dx Gback(x, 0, t) = 1 . (2.88)

On the other hand, integrating the long time behavior eq. (2.87) over x, we get∫
dx Gback(x, 0, t) ∼

t→∞

∫
dx Cµ

back(x, 0)V µ
back(x, 0) eµback(x,0)t . (2.89)

The only solution to satisfy both conditions eqs. (2.88) and (2.89) is

∀x, µback(x, 0) = 0 (2.90)∫
dx Cµ

back(x, 0)V µ
back(x, 0) = 1 . (2.91)

Since the largest backward eigenvalue is independent of the size x for λ = 0, we define
the size-independent backward eigenvalue µ̂back(λ = 0) = 0. Reporting µ̂back(λ = 0) in
eq. (2.85), the right hand side of the equation has to be independent of the size x as well, so
we define the size-dependent forward eigenvalue: µ̂for(λ = − lnm) = µfor(x, λ = − lnm)
for any x. Finally, eq. (2.85) gives

µ̂for(λ = − lnm) = Λ , (2.92)

where Λ is the steady-state population growth rate.
Let us now propose a second derivation of the link between the population growth

rate and the forward statistics for the number of divisions eq. (2.25). On the one hand,
using the definition of the generation function we get∫

dx Gfor(x,− lnm, t) =
∑
K

mKpfor(K, t) . (2.93)

On the other hand,

Vfor(x,− lnm, t) ∼
t→∞

Cµ
for(x,− lnm)V µ

for(x,− lnm) eµ̂for(− lnm)t . (2.94)

Using eqs. (2.86) and (2.91) and the fact that the initial condition is the same for both
backward and forward samplings: Gfor(x, λ, t = 0) = Gback(x, λ, t = 0) for any x and λ,
we prove that ∫

dx Cµ
for(x,− lnm)V µ

for(x,− lnm) = 1 . (2.95)

Finally, integrating eq. (2.94) over x and combining eqs. (2.92), (2.93) and (2.95), we
recover

Λ = lim
t→∞

1
t

ln
∑
K

mKpfor(K, t) . (2.96)
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B Path integral solution to the uncorrelated age model
In this appendix, we provide a path-integral solution to the age model without correla-
tion (eq. (1.43)) using the method of characteristics. We re-parameterize n(a, t,K) as
n̂(z,K) = n(a(z), t(z), K) with da/dz = 1 and dt/dz = 1, so that the equation on n̂
reads:

dn̂(z,K)
dz = −r(a(z))n̂(z,K) . (2.97)

The solution to this equation is given by

n̂(z,K) = n̂(0, K)e−
∫ z

0 dz′ r(a(z′)) . (2.98)

We now choose the parameterization a(z) = z and t(z) = z+t(0) so that n(a(0), t(0), K) =
n(0, t− a,K) = m

∫∞
0 dτK r(τK)n(τK , t− a,K − 1), and

n(a, t,K) = me−
∫ a

0 da′ r(a′)
∫ ∞

0
dτK r(τK)n(τK , t− a,K − 1) . (2.99)

This relation can be iterated by expressing n(τK , t−a,K−1) as a function of n(τK−1, t−
a − τK , K − 2) and so on until reaching cells with no divisions, given by the boundary
term:

n(τ1, t,K = 0) = δ(τ1 − t)e−
∫ τ1

0 da′ r(a′)N0 . (2.100)
The final solution reads

n(a, t,K) = mKN0e
−
∫ a

0 da′ r(a′)
K∏
k=1

∫ ∞
0

dτk r(τk)e−
∫ τk

0 da′ r(a′) δ

(
t− a−

K∑
k=1

τk

)
, (2.101)

and thus the number of lineages following a certain path is given by

n(a, {τk}, t,K) = mKN0e
−
∫ a

0 da′ r(a′)
K∏
k=1

r(τk)e−
∫ τk

0 da′ r(a′) δ

(
t− a−

K∑
k=1

τk

)
. (2.102)

The forward path probability is then obtained by dividing the above formula by mKN0:

pfor(a, {τk}, t,K) = e−
∫ a

0 da′ r(a′)
K∏
k=1

r(τk)e−
∫ τk

0 da′ r(a′) δ

(
t− a−

K∑
k=1

τk

)
, (2.103)

where ffor(τ) = r(τ) exp [−
∫ τ

0 da′ r(a′)] is the forward distribution of generation times.

C Comments on historical fitness
C.1 Link between historical fitness and fitness landscape for models of inde-

pendent mutations and divisions

In Nozoe et al., 2017 (SM), the authors proved that when considering independent di-
visions and mutations, described by eq. (2.39), the fitness landscape and the historical
fitness of a trajectory s are equal:

ht(s) = Ht(s) . (2.104)



62 Chapter 2. Lineage-population bias and selection

In this appendix, we provide an alternative proof of eq. (2.104) in the case where trait
S takes only discrete values s ∈ {si}ni=1. In this case, the probability inside the sum of
eq. (2.49) is given by the heterogeneous Poisson distribution:

pfor(K, t|s) = (∑n
i=1 r(si)ti)K

K! e−
∑n

i=1 r(si)ti , (2.105)

where ti is the time spent in state si for the trajectory s, which is called occupation time,
such that ∑n

i=1 ti = t.
This result comes from the fact that the division rate only depends on the current sate

of the cell, and that divisions do not affect the trajectory, so that the number of divisions
on different portions of the trajectory are independent:

pfor(K1, ..., Kn, t|s) =
n∏
i=1

pfor(Ki, t|s) , (2.106)

where Ki is the number of divisions that happened during the duration ti when the cell
was in state si (even if this duration is discontinuous). In each state, the division rate is
constant, so that each term in the product is a Poisson distribution:

pfor(Ki, t|s) = (r(si)ti)Ki
Ki!

e−r(si)ti . (2.107)

Combining these results, we obtain

pfor(K, t|s) =
∑

K1+...+Kn=K

n∏
i=1

(r(si)ti)Ki
Ki!

e−r(si)ti

= e−
∑n

i=1 r(si)ti
∑

K1+...+Kn=K

n∏
i=1

(r(si)ti)Ki
Ki!

, (2.108)

where we recognize the multinomial development:

∑
K1+...+Kn=K

n∏
i=1

(r(si)ti)Ki
Ki!

= (∑n
i=1 r(si)ti)K

K! , (2.109)

which proves eq. (2.105).
Finally, plugging eq. (2.105) inside the fitness landscape eq. (2.49) leads to:

ht(s) =
n∑
i=1

r(si)
ti
t

(2.110)

= 1
t

∫ t

0
dt′ r(s(t′)) (2.111)

= Ht(s) (2.112)
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C.2 Link between historical fitness and fitness landscape for models of cell
size control

Not all traits of interest follow an equation like eq. (2.39). For example, in classical models
of cell size control, age and size evolve continuously during cell cycles, and their values
are reset at division. The important difference between these two families of models is
that in eq. (2.39) mutations and divisions are uncoupled, while for models of cell size
control the sudden change in the values of age and size occur only at division and occur
for all divisions. Because of this, we show in this appendix that the fitness landscape
and historical fitness are in general different, but still linked by an exponential average
relation. For simplicity, we illustrate our point with the sizer model, but the argument
can be made more general.

Using a path integral approach, similar to that of appendix B, one can obtain a solution
to the sizer population balance equation eq. (1.49) for a trajectory x of cell size x, at the
level of the forward and backward probabilities (García-García et al., 2019):

pback(x) = 2K exp
[
−tΛt −

∫ t

0
dt′r(x(t′))

] K∏
k=1

r(x(t−k ))Σ(x(t+k )|x(t−k ))pback(x(0)) (2.113)

pfor(x) = exp
[
−
∫ t

0
dt′r(x(t′))

] K∏
k=1

r(x(t−k ))Σ(x(t+k )|x(t−k ))pfor(x(0)) , (2.114)

where t−k and t+k indicate the times just before and just after the k-th division.
If we consider a forward dynamics where the division rate is doubled as compared

to the backward dynamics, we obtain a particular lineage-population bias involving the
historical fitness:

p2r
for(x) = prback(x) exp [t(Λt −Ht(x))] . (2.115)

By comparing this relation with the definition of the fitness landscape eq. (2.45), we
conclude that the fitness landscape ht(x) and the historical fitness Ht(x) are in general
different since the forward probability with modified division rate 2r is in general different
from that with original division rate r. However, integrating eqs. (2.45) and (2.115) over
x and using the normalization of the forward distributions, we obtain

〈e−Ht〉back = 〈e−ht〉back . (2.116)

C.3 Variance of historical fitness as a measure of selection for models of cell
size control?

In section 3.1, we mentioned the measure of selection proposed in Leibler et al., 2010 for
models of independent mutations and divisions described by eq. (2.39), namely

∂β〈Ht〉 =
∫
Dx Ht(x)∂βpβrback(x) = tVar(Ht) ≥ 0 , (2.117)

where β is a multiplicative factor for all the division rates. The variance in the right
hand side is computed with the backward distribution with modified rates βr; but for
simplicity we omit the subscript for all variances and averages in the following, which are
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all computed with respect to pβrback(x). The derivation of this result relies on the fact that
the number of cells following trajectory x can be written as

n(x, β) = pfor(x)etβHt(x) , (2.118)

where pfor(x) only depends on the mutation rates, and is independent of the division rates
and thus of β.

Since the forward distribution in eq. (2.115) explicitly depend on division rate r, we
expect a quantitative difference when computing ∂β〈Ht〉 for models of cell size control.
Indeed, pβrback(x) is given by eq. (2.115) with r replaced by βr, so that:

∂βp
βr
back(x) = N(β)−1 exp [tβHt(x)] ∂βp2βr

for (x) + tHt(x)pβrback(x)− pβrback(x)N(β)−1∂βN(β) .
(2.119)

Using eq. (2.114), with division rate 2βr, we compute:

∂βp
2βr
for (x) = K(x)β−1p2βr

for (x)− 2tHt(x)p2βr
for (x) . (2.120)

Finally, N(β) is given by the integration of eq. (2.115) over all paths x, so:

N(β)−1∂βN(β) =N(β)−1
∫
Dx ∂βp

2βr
for (x) exp [βtHt(x)]

+N−1(β)
∫
Dx p2βr

for (x)tHt(x) exp [βtHt(x)] (2.121)

=β−1〈K〉 − 2t〈Ht〉+ t〈Ht〉 (2.122)
=β−1〈K〉 − t〈Ht〉 . (2.123)

Combining the above results, we find

∂βp
βr
back(x) = pback(x)

[
t (〈Ht〉 −Ht(x)) + β−1 (K(x)− 〈K〉)

]
, (2.124)

so that finally
∂β〈Ht〉 = β−1Cov(K,Ht)− tVar(Ht) . (2.125)

The change in mean historical fitness now involves both the variability in historical
fitness, with a minus sign, and the correlations between number of divisions and historical
fitness. This quantity has no clear sign, and it is easy to find examples where it is negative.
Let us consider that the division rate r(x) is an increasing function of x, and that division
is symmetrical: Σ(x|x′) = δ(x − x′/2). Histories with large fitness are histories where
the cell is large on average along the trajectory, thus with few divisions. The covariance
between number of divisions and historical fitness is therefore negative, and so is the
left hand side of eq. (2.125). This is a consequence of the dependence of the forward
probability on reproductive rates: increasing reproductive rates favors histories with large
fitness through the term exp(tβHt(x)), but this makes these histories less probable via
the term p2βr

for (x). Finally, Var(Ht) and ∂β〈Ht〉 may no longer be adequate measures of
selection, while then strength of selection Π proposed in Nozoe et al., 2017 is defined and
positive for any branching tree, including for models of cell size control.
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D Linear response equality for the strength of selection
D.1 Gaussian case

We show in this section that a linear relation between the strength of selection and the
variance of the fitness landscape holds in the case where the fitness landscape is normally
distributed. To do so, let us first derive a first result: when integrating eq. (2.45) over s
and using the normalization of either pback or pfor, the population growth rate is expressed
as

etΛt = 〈etht〉for (2.126)
e−tΛt = 〈e−tht〉back . (2.127)

We now assume that ht(s) can be accounted for by a continuous probability distri-
bution even when trait S is discrete. We set a Gaussian forward distribution with mean
〈ht〉for and variance σfor(ht)2 for the fitness landscape ht(s), then exp(tht(s)) follows a
log-normal distribution of mean

〈etht〉for = et〈ht〉for+(tσfor(ht))2/2 . (2.128)

This relation shows that for a given forward average fitness landscape, the growth rate is
positively affected by the variability between the lineages.

The backward average of the fitness landscape is given by the forward average of a
biased fitness landscape:

〈ht〉back = e−tΛt
∫
ht(s)etht(s)pfor(s, t)ds (2.129)

We make the hypothesis that the fitness landscape is a bijective function of the trait value
and use the conservation of the probability: pfor(s, t)ds = pfor(h)dh, leading to

〈ht〉back = e−tΛt√
2πσfor(ht)2

∫
hethe−(h−〈ht〉for)2/(2σfor(ht)2)dh

= e−tΛt
(
〈ht〉for + tσfor(ht)2

)
et〈ht〉for+(tσfor(ht))2/2 . (2.130)

Finally, combining eqs. (2.126), (2.128) and (2.130), we obtain

〈ht〉back = 〈ht〉for + tσfor(ht)2 , (2.131)

and thus
ΠS = tσfor(ht)2 . (2.132)

Moreover, combining eqs. (2.128) and (2.132) we deduce that 〈ht〉for and 〈ht〉back are
symmetrical around Λt: 〈ht〉back − Λt = Λt − 〈ht〉for = t σ2

for(ht)/2. In other words, in
this particular case, the Kullback-Leibler divergence is symmetrical: DKL(pfor||pback) =
DKL(pback||pfor).

When ht(s) follows a Gaussian distribution in the forward statistics, it also follows a
Gaussian distribution with mean 〈ht〉back and standard deviation σback(ht) in the backward
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statistics, because the bias of the fluctuation relation between pback and pfor is exponential
in ht. Then exp [−tht(s)] follows a log-normal distribution of mean

〈e−tht〉back = e−t〈ht〉back+(tσback(ht))2/2 . (2.133)

We now use eqs. (2.127) and (2.131) to replace the backward average:

etΛt = et(〈ht〉for+tσfor(ht)2)−(tσback(ht))2/2 . (2.134)

By comparing eqs. (2.128) and (2.134), it follows that σback(ht) = σfor(ht). Finally, the
standard deviation in eq. (2.132) can be taken indifferently with respect to both statistics:

ΠS = tVar(ht) . (2.135)

D.2 Small variability limit

In this appendix, we study the two sides of the fluctuation-response inequality on an
arbitrary function gt of a phenotypic trait S (eq. (2.65)) in the limit where the forward
and backward distributions approach each other, and show that they are mathematically
equivalent in this limit in the case where the function gt is the fitness landscape ht.
The difference between the two distributions is captured by the distance term σ(qt), or
equivalently σ(ln qt) = σ(tht), where the standard deviations can be taken either in the
backward or forward statistics.

We first use this limit in the forward statistics: σfor(tht)→ 0. From eq. (2.45), we get
that:

〈gt〉back = et(〈ht〉for−Λt)
∫
gt(s)et(ht(s)−〈ht〉for)pfor(s, t)ds . (2.136)

Since σfor(tht) is the characteristic distance of tht to its mean, the small variability limit
implies that t(ht(s) − 〈ht〉for) is small, and therefore a first order expansion of the expo-
nential function gives

〈gt〉back ∼
σ(tht)→0

et(〈ht〉for−Λt) [〈gt〉for + tCovfor(ht, gt)] , (2.137)

where the covariance is a first-order correction to 〈gt〉for in σfor(tht). Now we compute
the prefactor exp[−tΛt], starting with eq. (2.126), and a second-order expansion of the
exponential since the first order vanishes:

etΛt =
∫
etht(s)pfor(s, t)ds

∼
σ(tht)→0

et〈ht〉for

∫ [
1 + t (ht(s)− 〈ht〉for) + t2

2 (ht(s)− 〈ht〉for)2
]
pfor(s, t)ds

∼ et〈ht〉for

[
1 + (tσfor(ht))2

2

]
, (2.138)

which is a second-order correction to exp[t〈ht〉for] in σfor(tht). Combining eqs. (2.137)
and (2.138) we find at first order

〈gt〉back − 〈gt〉for ∼
σ(tht)→0

t Covfor(ht, gt) . (2.139)
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Doing the same calculation from the backward point of view: σback(tht)→ 0, we obtain

〈gt〉for = et(Λt−〈ht〉back)
∫
gt(s)et(〈ht〉back−ht(s))pback(s, t)ds

∼
σ(tht)→0

et(Λt−〈ht〉back) [〈gt〉back − tCovback(ht, gt)] . (2.140)

The prefactor is computed with the same expansion starting from eq. (2.127):

e−tΛt =
∫
e−tht(s)pback(s, t)ds

∼
σ(tht)→0

e−t〈ht〉back

∫ [
1 + t (〈ht〉back − ht(s)) + t2

2 (〈ht〉back − ht(s))2
]
pback(s, t)ds

∼ e−t〈ht〉back

[
1 + (tσback(ht))2

2

]
. (2.141)

Combining eqs. (2.140) and (2.141), we find at first order:

〈gt〉back − 〈gt〉for ∼
σ(tht)→0

t Covback(ht, gt) . (2.142)

When comparing eqs. (2.139) and (2.142), we conclude that the covariance can be taken
equivalently in the forward or backward statistics.

Let us now turn to the right hand side of inequality eq. (2.65). Using the same kind
of Taylor expansion for qt = exp[t(ht(s)− Λt)], it is straight-forward to show that

σfor(gt)σfor(qt) ∼
σ(tht)→0

tσfor(ht)σfor(gt) (2.143)

σback(gt)σback(q−1
t ) ∼

σ(tht)→0
tσback(ht)σback(gt) . (2.144)

Therefore, the inequality eq. (2.65) does not get necessarily saturated in this limit. How-
ever, in the particular case where gt(s) is the fitness landscape ht(s), then eq. (2.139)
reads

ΠS ∼
σ(tht)→0

t Var(ht) , (2.145)

and thus the inequality eq. (2.68) is saturated in this limit.

E Upper bounds numerical comparison
In this section we compare numerically the upper bound UGL obtained in eq. (2.65):

UGL = min
(
σa(gt)σa(qt), σb(gt)σb(q−1

t )
)
, (2.146)

to the upper bound UDS derived by Dechant and Sasa (Eq. 5 in Dechant et al., 2020):

UDS = inf
γ>0

(
Ka
gt(γσ)− γσ〈gt〉a +DKL(pb||pa)

)
, (2.147)

where σ = sign(〈gt〉b − 〈gt〉a) and Ka
gt(γ) = ln〈exp (γgt)〉a the cumulant-generating func-

tion of gt. Both quantities UGL and UDS bound the difference |〈gt〉b − 〈gt〉a| between the
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average values of a function gt of a variable S with respect to probability distributions pa
and pb.

To compare them, we took beta distributions for pa and pb, having the same support
[0, 1] so that both bounds are defined. Beta-distributed variables admit a probability
density function (pdf) of the form f(s, α, β) = sα−1(1 − s)β−1/B(α, β), where B(α, β) is
a normalization constant, and their mean is given by 〈s〉 = α/(α + β). We fix the pdf
in the ensemble b to pb(s) = f(s, 3, 3), whose bell shape is reminiscent of a Gaussian
distribution, on a finite interval. The pdf in the ensemble a is taken as pa(s) = f(s, α, β),
where α and β are varied in [2, 4]. We choose the simple function gt(s) = s.

Results are shown on fig. 2.7. The first row of figures shows the differences between
the upper bounds and the actual difference |〈s〉b − 〈s〉a|, for our bound UGL (fig. 2.7a),
and for Dechant-Sasa’s bound UDS (fig. 2.7b). As expected, all points on these two plots
are positive. We plot on fig. 2.7c the real difference 〈s〉b − 〈s〉a, which is in complete
agreement with the theory: 〈s〉b − 〈s〉a = 1/2 − α/(α + β). Finally, fig. 2.7d shows a
comparison between our bound and Dechant-Sasa’s bound: blue regions represent sets
of parameters (α, β) where our bound is numerically tighter, and the opposite is true in
red regions. We note that, if the blue region is larger than the red region, on the other
hand the advantage of one bound over the other |UGL − UDS|, is generally larger in the
red region. Therefore, the answer to the question ‘Which bound is tighter?’ depends
on the actual distributions pa(s) and pb(s). However, we note that our bound is easier
to compute since it does not require the optimization over an external parameter, which
is the case for UDS in Dechant et al., 2020 (parameter γ in eq. (2.147)). Note that this
optimization can be bypassed by choosing a specific value γ in eq. (2.147), but then the
corresponding bound is less tight than the version with the infimum.
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(a) (b)

(c) (d)

Figure 2.7: Comparison between the upper bounds UGL (eq. (2.146)) and UDS derived in
Dechant et al., 2020 (eq. (2.147)), for beta distributions pa(s) = f(s, α, β) and pb(s) =
f(s, 3, 3). Parameters α and β are varied between 2 and 4. First row: difference between
the upper bounds and |〈s〉b−〈s〉a|, (a) for our bound, and (b) for Dechant-Sasa’s bound,
showing that all points are indeed above 0. (c): exact difference 〈s〉b−〈s〉a, in agreement
with the theoretical value 〈s〉b − 〈s〉a = 1/2− α/(α + β). (d): comparison between UGL
and UDS, blue regions indicate where our bound is tighter, i.e. smaller, and red regions
indicate where Dechant-Sasa’s bound is tighter. For all four plots, the grid is 41×41, and
numerical values are rounded to 10−15 to avoid python floats precision errors.
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1 Introduction
In the previous chapter, we made the important assumption that all lineages survive
up to final time. In many situations however, lineages can end before the end of the
experiment for various reasons. For example, in experiments on growing populations, cells
can die as a reaction to antibiotics (Wakamoto et al., 2013), when placed in nutrient-poor
environments (Schink et al., 2019), or because of the accumulation of damage proteins
(Wang et al., 2010). In confined geometries, populations are maintained constant inside a
chamber, and cells are flushed away by dilution in order to balance divisions (Hashimoto
et al., 2016; Koldaeva et al., 2022). These two situations are represented on fig. 3.1.
On the left, a freely-growing population in bulk is represented with dead cells pictured
with black and white hatching. On the right, a population is maintained constant in a
microfluidic channel called the dynamics cytometer (Hashimoto et al., 2016). This setup
is open at both ends, and cells are continuously carried away from the chamber by a flow
of growth medium that also brings the necessary nutrients. Note that we also included
the possibility for cells to die inside the chamber so that lineage ending has two possible
origins in this case.

The issue in all these situations is how early-ending lineages should be taken into
account in the analysis. Indeed, the large amount of cytometer data exploited to analyze
the relations between single cell stochasticity and population growth, and to infer the
mechanism of cell size control, are meaningful only if the role of diluted lineages is well
established. Otherwise, unwanted biases between surviving cells in the chamber and
diluted cells could distort the conclusions. Another question naturally arises: what can
we say about growing populations from measurements made in finite population setups?
This question is reminiscent of the link between mother machine data and population
growth rate explored in section 2.3 of chapter 2.

In this short chapter, we extend the results of the previous chapter to the cases men-
tioned above. Once again, the formalism we develop here applies to any branching tree
independently of the dynamics. Therefore, we use ‘death’ as a catch-all term for any
termination of lineages before final time regardless of its cause, examples of which have
been given above. After adapting the forward and backward samplings to population
trees with lineages that stop before final time, we show that most of our results hold
in a modified form. We discuss the difference between the selection bias which reflects
the difference in distribution between single lineage and population experiments, and the
survivor bias that arises if surviving lineages have different features from lineages that
end before. These two biases can be entangled, thus we propose a measure of the effect
of death on the strength of selection.

2 Extension of the formalism

2.1 The backward and forward samplings in presence of death
We now consider a branching tree starting with N0 cells at time t = 0 and ending with
N(t) living cells at time t, where lineages can either survive up to time t or die before,
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Figure 3.1: Cartoons of the two main experimental setups where lineages can end before
the end of the experiment. On the left, free growth in bulk with dead cells represented
with black and white hatching. On the right, the dynamics cytometer from Hashimoto
et al., 2016 where cells grow in a chamber open at both ends, and are evacuated by the
flow of growth medium in order to maintain the population constant inside the chamber.
Some cells are also represented with hatching in this setup to indicate the possibility that
cells die inside the chamber.

Forward Backward

Figure 3.2: Example of branching tree starting with N0 = 1 lineage and ending with
n(σ = 0, t) = 3 dead lineages indicated by a red crosses, and N(t) = n(σ = 1, t) = 6 alive
lineages at time t. In the array, the survival status σ takes value 1 for surviving lineages
and 0 for dead lineages, and the other columns indicate the number K of divisions along
the lineage and the backward and forward weights computed with eqs. (3.1) and (3.2).
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as represented on fig. 3.2. The survival status of the lineages at time t is indicated by a
Boolean variable σ, taking value 1 for alive lineages and 0 for dead lineages, irrespective
of the time of death.

The forward and backward samplings of the lineages, introduced in Nozoe et al., 2017
and presented in section 3.2 of chapter 1, are affected by the presence of death in the
following way. When taking a snapshot of the population at time t, only living lineages
appear, and in the backward sampling we sample them uniformly with weights

ωback(l) = N(t)−1δ(σ(l)− 1) . (3.1)

On the other hand, starting from t = 0 and following the lineages up to time t by choosing
with uniform probability 1/m one of the m daughter cell born at each division, both dead
or living lineages are sampled with the forward weights

ωfor(l) = N−1
0 m−K(l) , (3.2)

where K(l) is the number of divisions along lineage l up to time t. We give a simple
example of how these weights are computed in practice on fig. 3.2. A major difference
with the deathless case immediately appears: some lineages are sampled in the forward
manner but not in the backward manner.

Let us now recast these weights at the level of the probabilities to pick a lineage with
K divisions. We call L(t) the ensemble of all lineages at time t, both dead and alive,
and we define the number of lineages with K division and with survival status σ, and the
probability to pick one, as:

n(K, σ, t) =
∑
l∈L(t)

δ(K −K(l))δ(σ − σ(l)) (3.3)

p(K, σ, t) =
∑
l∈L(t)

δ(K −K(l))δ(σ − σ(l))ω(l) . (3.4)

The numbers of cells alive in the population at time t is thus given by N(t) = n(σ =
1, t) = ∑

K n(K, σ = 1, t). The forward and backward probabilities finally read

pfor(K, σ, t) = N−1
0 m−Kn(K, σ, t) (3.5)

pback(K, σ = 0, t) = 0 (3.6)
pback(K, σ = 1, t) ≡ pback(K, t) = N(t)−1n(K, σ = 1, t) . (3.7)

2.2 Fluctuation relation and consequences
A fluctuation relation similar to eq. (2.8) can be obtained for surviving lineages, that
are the ones with a non-zero weight in both samplings. To do so, let us introduce some
notations. The forward probability of survival

pfor(σ = 1, t) =
∑
K

pfor(K, σ = 1, t) = N−1
0
∑
K

m−Kn(K, σ = 1, t) (3.8)

is a central quantity in this problem. Importantly, it should not be confused with the ratio
n(σ = 1, t)/|L(t)| of living lineages amongst all lineages, dead and alive. In particular,
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the latter can increase or decrease with time, depending on the prevalence between death
and division events, whereas pfor(σ = 1, t) is a strictly decreasing function of the number
of death events, and is unaffected by divisions, therefore it tends to 0 as t→∞. We now
define the decrease rate of the forward probability of survival

Γt = 1
t

ln pfor(σ = 1, t) . (3.9)

By comparing the backward and forward probabilities pback(K, t) and pfor(K, σ = 1, t)
to pick a living lineage with K divisions, we obtain the following fluctuation theorem:

pback(K, t) = p?for(K, t) eK lnm−t(Λt−Γt) , (3.10)

where we defined the conditional probability pfor(K, t|σ = 1) = pfor(K, σ = 1, t)/pfor(σ =
1, t) and introduced the notation shorthand

p?for(·, t) = pfor(·, t|σ = 1) (3.11)

for the forward distribution conditioned on survival. Note that death enters eq. (3.10)
both via the term pfor(σ = 1, t) and by lowering the population growth rate Λt, which is
no longer necessarily positive.

Similarly to the previous chapter, such a detailed fluctuation theorem can be used
to derive an integral fluctuation theorem and two inequalities. Integrating the forward
probability gives:

〈etΛt−K lnm〉back = 1− pfor(σ = 0, t) . (3.12)

This result is analogous to the generalization of Jarzynski’s equality for absolutely irre-
versible processes obtained in Murashita et al., 2014, namely 〈exp (−∆stot)〉 = 1− λ. In
thermodynamics, these processes are characterized by trajectories that are allowed only in
one direction (either forward or backward in time) and have a zero probability to happen
in the other direction, and λ is the total statistical weight of the unidirectional transitions.
Similarly here, dead lineages have a positive weight in the forward sampling and a null
one in the backward sampling. In this analogy, K lnm − tΛt plays the role of the total
entropy production, and pfor(σ = 0, t) is the probability λ of the singular part, that is the
set of ‘irreversible lineages’.

Inequalities of the type of the second law are obtained using the positivity of the two
following Kullback-Leibler divergences:

DKL(pback||p?for) = 〈K〉back lnm− t (Λt − Γt) ≥ 0 (3.13)
DKL(p?for||pback) = −〈K〉for? lnm+ t (Λt − Γt) ≥ 0 . (3.14)

Since the number K of divisions is positively defined, eq. (3.14) implies that Λt − Γt is a
positive quantity. Combined, the two inequalities read

〈K〉for? lnm ≤ t (Λt − Γt) ≤ 〈K〉back lnm, (3.15)

which generalizes eq. (2.13).
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Figure 3.3: Analysis of data for a single constant population with dilution from Hashimoto
et al., 2016. The top plot shows the test of eq. (3.15), where the bounds on Λt − Γt are
tighter as time increases. The bottom plot shows the evolution of Λt and Γt with time
separately, with a clear convergence of Λt toward 0, which is expected for constant pop-
ulations, and a slower convergence of Γt toward a steady value, not fully achieved within
the reach of the experiment. The data were analyzed and the plots kindly communicated
to us by Takashi Nozoe.
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We tested these inequalities on data from Hashimoto et al., 2016, presented in section 5
of chapter 1, and the results are shown on fig. 3.3 (top). The values of 〈K〉for? , 〈K〉back,
Λt and Γt are computed for a single population, maintained approximately constant with
20 ∼ 40 cells at any time. We see that the relative discrepancies between the curves
are reducing with time from t ∼ 1300 min, meaning that the bounds on Λt − Γt are
getting tighter. This is due to the fact that, because of dilution, all cells in the cytometer
are likely to have a common ancestor which is close in the past, thus leading to a small
variability in the numbers of divisions amongst lineages. Steady-state is not fully reached
in this experiment, as shown on the bottom plot where the separate evolution of Λt and
Γt are displayed. As expected for constant populations, Λt tends to 0 quickly, while the
convergence of Γt is slower.

2.3 Link with population dynamics
In the previous chapter, we insisted on the fact that the formalism is independent of the
dynamics and can be used to study any branching tree. In particular, the population
growth rate Λt = ln (N(t)/N0) /t and the instantaneous population growth rate Λp(t) =
∂tN/N are only functions of the numberN(t) of lineages. If we now investigate a particular
dynamics, these quantities become related to the division rate of the model by eq. (1.65).
Similarly, the decrease rate Γt is defined for any tree by simply counting the living lineages
weighted by their forward weights, but when considering a particular dynamics it can be
linked to the death rate of the model, as shown below.

The precise variables of the model do not matter here, so we consider the general case
of mixed age-size controlled populations, where the division rate r depends on both age a
and size x. This covers the most popular models of cell size control presented in section 4
of chapter 1: namely the sizer, where r depends only on the size; the timer, for which r
depends only on the age; and the adder where r depends on the increment of volume since
birth which can be deduced from the knowledge of age and size. We now add a death rate
γt, where the subscript indicates a possible time dependence. This death rate is a function
of an aging factor z, which is typically a number of damage proteins (Maisonneuve et al.,
2008). We model the dynamics of this factor with the accumulation rate λ during the cell
cycle, and the transmission kernel Σ(x, z|x′, z′, a′) at division. In all generality, the death
rate also depends on the age and the size, and the growth rate ν and the division rate
r are also function of z, to account for possible aging effects (Lindner et al., 2008). For
simplicity we define the vector y = {x, a, z} of variables.

The population balance equation for the backward probability is given by

∂tpback(y, t) =− ∂x [ν(y)pback(y, t)]− ∂z [λ(y)pback(y, t)]− ∂a [pback(y, t)]
− [r(y) + γt(y) + Λp(t)] pback(y, t) (3.16)

pback(x, a = 0, z, t) =m
∫

dy′ Σ(x, z|y′)r(y′)pback(y′, t) . (3.17)

Direct integration of eq. (3.16) over y leads to

Λp(t) =
∫

dy [(m− 1)r(y)− γt(y)] pback(y, t) . (3.18)
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In presence of death, the population growth rate is the net difference between the backward
averaged division and death rates.

Similarly, the equation for the forward probability reads
∂tpfor(y, σ = 1, t) =− ∂x [ν(y)pfor(y, σ = 1, t)]− ∂z [λ(y)pfor(x, z, σ = 1, t)]

− ∂a [pfor(y, σ = 1, t)]− [r(y) + γt(y)] pfor(y, σ = 1, t) (3.19)

pfor(x, a = 0, z, σ = 1, t) =
∫

dy′ Σ(x, z|y′)r(y′)pfor(y′, σ = 1, t) . (3.20)

Integrating this equation over y gives

∂tpfor(σ = 1, t) = −pfor(σ = 1, t)
∫

dy γt(y)pfor(y, t|σ = 1) . (3.21)

We then define the instantaneous forward death rate as

Γp(t) = ∂tpfor(σ = 1)
pfor(σ = 1) = −

∫
dy γt(y)pfor(y, t|σ = 1) . (3.22)

Note the similarity in construction between Λp(t) and Γp(t), and between their time-
averaged versions Λt and Γt:

Λt = 1
t

∫ t

0
dt′ Λp(t′) (3.23)

Γt = 1
t

∫ t

0
dt′ Γp(t′) . (3.24)

Finally we showed that Λt results from the competition between division and death, while
Γt depends only on the death rate γt. Note that the mixed age-size model we considered
was only an example, and that eqs. (3.18) and (3.22) hold for any vector y of variables
obeying a population balance equation.

2.4 The case of uniform dilution
In the context of confining geometries such as the dynamics cytometer, the general ‘death’
rate we introduced in the previous section is called the dilution rate. It is almost always
postulated for these constant population experiments that the dilution rate is uniform:
γt(y) ≡ γt (Powell, 1956; Hashimoto et al., 2016; Levien et al., 2020), and balances
division:

γt = (m− 1)
∫

dy r(y)pback(y, t) . (3.25)
This states that for each cell division, a random cell is chosen with uniform probability
and removed from the population, which is known as the Moran process (Moran, 1958).
This is of course a simple modeling of the dilution that really occurs, and we discuss the
implications of this hypothesis in section 4.4.

In general, the terms 〈γt〉back in Λp(t) (eq. (3.18)) and 〈γt〉for? in Γp(t) (eq. (3.22)) do
not cancel. However, they are equal for uniform dilution rates, so that the bias in the
fluctuation theorem eq. (3.10) reduces to Λt−Γt = (m−1)

∫ t
0 dt′ 〈r〉back. This is the same

bias as the one when there is no dilution, and as we shall see in the following, when dilution
(or death) is uniform, the results become identical to their versions without dilution. In
this case, the rate Γp(t) is simply equal to the dilution rate Γp(t) = −γt = −(m−1)〈r〉back,
and understood as the opposite of the population growth rate.
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3 Generalized Powell’s relation

Age models without mother-daughter correlations are characterized by a series of results
on the distribution of generation times detailed in section 4.5 of chapter 1, namely Powell’s
relation and Euler-Lotka equation, that give important relations between the variability in
generation times and the population growth rate. Since the original article Powell, 1956,
these results have been extended in several directions, in particular to include mother-
daughter correlations and for populations with cell death or dilution.

Even though Powell himself considered in Powell, 1956 and in later works Powell, 1964;
Powell, 1969 the case of ‘continuous cultures’, which are populations maintained constant
with uniform dilution, and the case of correlations between mother and daughter, the
next major advances have been made in Lebowitz et al., 1974. In this work, the authors
considered populations with an age-dependent death rate γ(a), which includes Powell’s
continuous cultures when γ(a) ≡ γ is a constant, and with mother-daughter correlations
mediated by a transition kernel at division Σ(τ |τ ′), as presented in section 4.1.1 of chap-
ter 1. They obtained a generalization of Euler-Lotka equation involving the distribution
of generation times for newborn cells, and, for uniform dilution only, a series of relations
between this newborn distribution and the forward and backward distributions. Recently,
the Markovian assumption behind the kernel Σ(τ |τ ′) has been released in Pigolotti, 2021.
Note that the case of continuous cultures is still under focus today, with an emphasis on
the competition between multiple species (Levien et al., 2020).

With the development of mother-machines, relations comparing forward and backward
distributions received a renewed interest, in particular in the recent works Sughiyama et
al., 2019; Nakashima et al., 2020. In these two articles, the authors described multitype
age models, as presented in section 4.1.1 of chapter 1, where the correlations are accounted
for by cell types y, an age-and-type-dependent death rate γ(a, y) and mother-daughter
correlations in types via kernel Σ(y|y′). The advantages of this choice of model are that
it may be closer to the biological mechanism causing correlations, and that it allows them
to derive a generalized Powell’s relation for each type y, which involves a type-dependent
correction Z(y) to the classical Powell’s relation. Note that their results are particular in
that they compare the forward distribution of generation times in the absence of death
to the backward distribution in the presence of death, and for that reason they explicitly
involve the death rate.

We aim here to complete this set of results for age models with mother-daughter
correlations and age-dependent death rate. The case of Lebowitz’s model with kernel
Σ(τ |τ ′) is treated in appendix A, where we obtain new relations between the forward
and backward distributions for non-uniform death rates. In the following, we focus on
multitype age models with kernel Σ(y|y′), and we offer an alternative derivation of the
result from Sughiyama et al., 2019. In addition to their result, (i) we obtain an explicit and
simple expression for the constant Z(y), (ii) we show that when comparing the forward
and backward distributions both in the presence of death the bias is simplified as it does
not involve the death rate anymore, and (iii) we derive an inequality on average generation
times conditioned on type.

Before going into details, note that for models with age-dependent death rate but
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without correlations, the derivation of Powell’s relation starting from the fluctuation the-
orem, presented in section 2.4 of chapter 2, holds. The key point is that the probability of
a trajectory with K divisions can be factorized as a product of K probabilities for single
cycles because there is no memory between mother and daughter, and this remains true
even when adding an age-dependent death rate. The resulting Powell’s relation and Euler-
Lotka equation are then identical to those without death, except for Λ being replaced by
Λ − Γ and for the forward distribution ffor(τ) being replaced by the same distribution
f ?for(τ) conditioned on survival.

3.1 Age distributions
Let us recap the equations for the forward and backward probabilities together with their
boundary conditions:

∂tpback(a, y, t) = −∂apback(a, y, t)− [r(a, y) + γ(a, y) + Λp(t)] pback(a, y, t) (3.26)

pback(a = 0, y, t) = m
∫

da′dy′r(a′, y′)Σ(y|y′)pback(a′, y′, t) (3.27)

∂tp
?
for(a, y, t) = −∂ap?for(a, y, t)− [r(a, y) + γ(a, y) + Γp(t)] p?for(a, y, t) (3.28)

p?for(a = 0, y, t) =
∫

da′dy′r(a′, y′)Σ(y|y′)p?for(a′, y′, t) , (3.29)

where the death rate γ depends on both age a and type y.
The steady-state solutions to these equations read

pback(a, y) = pback(0, y) exp
[
−Λa−

∫ a

0
da′ (r(a′, y) + γ(a′, y))

]
(3.30)

p?for(a, y) = p?for(0, y) exp
[
−Γa−

∫ a

0
da′ (r(a′, y) + γ(a′, y))

]
. (3.31)

3.2 Powell’s relation with joint probabilities
We define the steady-state joint distribution f(τ, y) of generation time τ and state y as
the ratio of the number of cells dividing at age τ while in state y at a given snapshot
time, to the total number of cells dividing in this snapshot, weighted in both the forward
and backward samplings:

fback(τ, y) = r(τ, y)pback(τ, y)∫
dτ ′dy′ r(τ ′, y′)pback(τ ′, y′) (3.32)

f ?for(τ, y) = r(τ, y)p?for(τ, y)∫
dτ ′dy′ r(τ ′, y′)p?for(τ ′, y′)

. (3.33)

These distributions are independent of the time of the snapshot in steady-state. Integrat-
ing the boundary conditions eqs. (3.27) and (3.29) over y and using the normalization of
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kernel Σ, we get that the denominators of eqs. (3.32) and (3.33) are given by:∫
dy pback(0, y) = m

∫
dτdy′r(τ, y′)pback(τ, y′) (3.34)∫

dy p?for(0, y) =
∫

dτdy′r(τ, y′)p?for(τ, y′) . (3.35)

Then, we identify the distribution of types y for newborn cells:

ρnb(y) = p(0, y)∫
dy p(0, y) , (3.36)

for both the forward and backward probabilities.
Finally, combining the results above we obtain

fback(τ, y) = mρnb
back(y)r(τ, y) exp

[
−Λτ −

∫ τ

0
da (r(a, y) + γ(a, y))

]
(3.37)

f ?for(τ, y) = ρnb
for(y)r(τ, y) exp

[
−Γτ −

∫ τ

0
da (r(a, y) + γ(a, y))

]
, (3.38)

and the generalized Powell’s equation reads

fback(τ, y) = m
ρnb

back(y)
ρnb

for(y) f
?
for(τ, y)e−(Λ−Γ)τ . (3.39)

In the absence of mother-daughter correlations, that is when Σ(y|y′) ≡ Σ̂(y), the newborn
distributions are unbiased: ρnb

back = ρnb
for = Σ̂, which is a direct consequence of the boundary

conditions. Therefore, the fraction in eq. (3.39) cancel, and eq. (3.39) can be integrated
over states y to recover Powell’s relation in presence of death but without correlations:
fback(τ) = mf ?for(τ)e−(Λ−Γ)τ .

3.3 Powell’s relation with conditional probabilities
It can be useful to recast this result for the distributions f(τ |y) of generation time condi-
tioned on state y, defined as:

f(τ |y) = r(τ, y)p(τ, y)∫
dτ ′ r(τ ′, y)p(τ ′, y) (3.40)

= f(τ, y)
∫

dτ ′dy′ r(τ ′, y′)p(τ ′, y′)∫
dτ ′ r(τ ′, y)p(τ ′, y) (3.41)

= f(τ, y)
ρd(y) , (3.42)

where we identified the distribution of states at division:

ρd(y) =
∫

dτ ′ r(τ ′, y)p(τ ′, y)∫
dτ ′dy′ r(τ ′, y′)p(τ ′, y′) . (3.43)
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The distributions of states at birth and at division are related by a simple relation, both
in the forward and backward statistics:

ρnb(y) =
∫

dy′ Σ(y|y′)ρd(y′) , (3.44)

which is a normalized version of the boundary conditions eqs. (3.27) and (3.29).
The conditioned distributions are thus given by:

fback(τ |y) = m
ρnb

back(y)
ρd

back(y)r(τ, y) exp
[
−Λτ −

∫ τ

0
da (r(a, y) + γ(a, y))

]
(3.45)

f ?for(τ |y) = ρnb
for(y)
ρd

for(y)r(τ, y) exp
[
−Γτ −

∫ τ

0
da (r(a, y) + γ(a, y))

]
. (3.46)

Finally, Powell’s relation on conditional distributions reads:

fback(τ |y) = mf ?for(τ |y)e−(Λ−Γ)τ

Y (y) , (3.47)

with the state-dependent normalization constant

Y (y) = ρnb
for(y)

ρnb
back(y)

ρd
back(y)
ρd

for(y) . (3.48)

Let us show how the result from Sughiyama et al., 2019, namely

fback(τ |y) = mf ◦for(τ |y)e−Λτ−
∫ τ

0 da γ(a,y)

Z(y) , (3.49)

where f ◦for(τ |y) is the forward distribution in the absence of death, is recovered from
eq. (3.47). In the absence of death (γ = Γ = 0), the normalization of f ◦for in eq. (3.46) reads∫∞
0 dτ f ◦for(τ |y) = ρnb,◦

for (y)/ρd,◦
for (y)×

∫∞
0 dτ r(τ, y) exp [−

∫ τ
0 da r(a, y)] = ρnb,◦

for (y)/ρd,◦
for (y) =

1. Therefore, we obtain

f ?for(τ |y) = ρnb
for(y)
ρd

for(y)f
◦
for(τ |y) exp

[
−Γτ −

∫ τ

0
da γ(a, y)

]
. (3.50)

When plugging eq. (3.50) into eq. (3.47), we obtain eq. (3.49), with Z(y) =
Y (y)ρd

for(y)/ρnb
for(y) = ρd

back(y)/ρnb
back(y).

The advantages of our formulation are that the two distributions can be evaluated on
the same population tree, and that knowledge of the shape of the death rate γ(a, y) is not
required since Γ can be computed simply by counting surviving lineages. Moreover we
obtain explicit expressions for the constants Y (y) and Z(y), in terms of the distributions
of types y at birth and at division.
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3.4 Euler-Lotka equations
We saw in section 4.5 of chapter 1 that Euler-Lotka equation can be derived by simply
integrating Powell’s relation over generation time τ . Therefore, generalized Euler-Lotka
equations in presence of age-and-type-dependent death and mother-daughter correlations
can be derived from eqs. (3.39) and (3.47):

1 = m
∫

dy ρ
nb
back(y)
ρnb

for(y)

∫
dτ f ?for(τ, y)e−(Λ−Γ)τ (3.51)

1 = mY (y)−1
∫

dτ f ?for(τ |y)e−(Λ−Γ)τ . (3.52)

These relations link the shifted population growth rate Λ − Γ to the variabilities of the
different distributions involved: forward distributions of generation times, either joint
with or conditioned on type y, and the forward and backward distributions of state at
birth and at division.

3.5 Inequality on average generation times
Before closing this section, we show that a weaker form of the inequalities on mean
generation times eq. (1.87) known in uncorrelated age models can be derived in presence
of correlations and death. Using the positivity of the two Kullback-Leibler divergences
between fback(τ |y) and f ?for(τ |y), we obtain from eq. (3.47):

lnm− ln Y (y)− (Λ− Γ)
∫

dτ τfback(τ |y) ≥ 0 (3.53)

− lnm+ ln Y (y) + (Λ− Γ)
∫

dτ τf ?for(τ |y) ≥ 0 , (3.54)

which leads for any type y to:

〈τ |y〉for? ≥ 〈τ |y〉back , (3.55)

where we defined 〈τ |y〉 =
∫

dτ τf(τ |y).

4 Quantifying selection in population trees with
death

One of the main applications of the formalism with the forward and backward samplings
of the lineages is the definition of a model-independent measure of selection, as exposed
in section 3 of chapter 2. This selection involves the ratio between the forward and the
backward frequencies of a phenotypic trait, where a bias between the two distributions
results, in the absence of death, from the correlations between the value of the trait and
the number of divisions along the lineage. When adding death, the frequency of a value
s in the population is due to both the correlations between this trait and the divisions,
and the correlations between this trait and survival.
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4.1 The survivor bias
In this section we show how the forward and backward probabilities are modified when
death is non-uniform. For that, let us consider a general model with an unspecified vector
χ of cell properties, possibly of high dimension. We imagine two experiments: one in
which the population is not subject to death, indicated by a superscript ◦, and the other
one where cells die with a rate γt(χ). Moreover, we make the important assumptions that
the rate at which χ evolves inside cell cycles, the division rate, and the partition of χ
at division are the same in the two experiments, and that there is no extra term for one
of the two experiments, so that the two population balance equations differ only by the
death term proportional to γt(χ).

The expected numbers of lineages following the path χ are then linked by

n(χ) = n◦(χ) exp
[
−
∫ t

0
dt′γt(χ(t′))

]
. (3.56)

where the exponential term is called the survival probability for trajectory χ:

psurv(χ) = exp
[
−
∫ t

0
dt′γt′(χ(t′))

]
. (3.57)

We divide eq. (3.56) by N−1
0 m−K[χ] (for simplicity we consider that N0 = N◦0 here), and

we obtain
pfor(χ, σ = 1) = p◦for(χ)psurv(χ) , (3.58)

We then condition the probability in the left hand side on survival: pfor(χ, σ = 1) =
p?for(χ)pfor(σ = 1). The term pfor(σ = 1) could be expressed in terms of the death rate by
combining eqs. (3.9), (3.22) and (3.24) (with y = χ here), but instead we write it as a
normalizing factor pfor(σ = 1) = 〈psurv(χ)〉for◦ :

p?for(χ) = p◦for(χ) psurv(χ)
〈psurv(χ)〉for◦

, (3.59)

A similar bias can be obtained at the level of backward probabilities. First, integrating
eq. (3.56) over every paths leads to

Nt = N◦t 〈psurv(χ)〉back◦ . (3.60)

Then when dividing eq. (3.56) by Nt we obtain

pback(χ) = p◦back(χ) psurv(χ)
〈psurv(χ)〉back◦

. (3.61)

Equations (3.59) and (3.61) express survivor biases, which involve the comparison
between the survival probability of a given path and its average value. Of course, if death
is uniform these two biases are canceled.

Note that, when combining the version of eq. (3.10) at the level of path probabilities
with eq. (3.59), we recover the fluctuation theorem between the backward probability
with death and the forward probability without death derived in Sughiyama et al., 2019.
This theorem is only defined at the level of trajectories, and is model dependent, while
eq. (3.10) is more general.
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4.2 Effect of death on fitness and selection
The measures of fitness and selection discussed in chapter 2 can be used for populations
where some lineages end prematurely, we must simply adapt them to compare the forward
and backward distributions of surviving lineages only. The fitness landscape is then
defined as

ht(s) = Λt − Γt + 1
t

ln
[
pback(s, t)
p?for(s, t)

]
. (3.62)

A similar function comparing the backward distribution to the forward distribution, not
conditioned on survival, could also be considered. However, such a definition would face
at least two problems: first, one needs a proper definition of the forward probability of
a cell state s at time t for lineages that died before time t, and second, the support of
the two distributions could be different, leading to a diverging fitness landscape when
pfor(s, t) 6= 0 and pback(s, t) = 0. Moreover, the interpretation of this function in terms
of selection would be less clear. For these reasons, we stick to the definition given by
eq. (3.62).

Like in chapter 2, this definition can be combined with the fluctuation relation for the
number of divisions eq. (3.10) and turned into

ht(s) = 1
t

ln
[∑
K

mKpfor(K, t|s, σ = 1)
]
. (3.63)

When pfor(K, t|s, σ = 1) = pfor(K, t|σ = 1) for any s, then the fitness landscape is
flat and equal to the population growth rate. This condition is called the conditional
independence of K and s knowing σ = 1. Be careful that the conditional independence
does not imply, and is not implied by, the regular independence between K and s. This
means in particular that the trait s can be correlated to both K and σ, and still have a flat
landscape. Similarly, the strength of selection is now defined as the Jeffrey’s divergence
between the backward distribution and forward distribution conditioned on survival:

ΠS = 1
t

∫
ds (pback(s, t)− p?for(s, t)) ln

(
pback(s, t)
p?for(s, t)

)
. (3.64)

Even though showing that these measures of fitness and selection can be generalized
to surviving lineages is interesting in itself, in this section we focus on the quantitative
effect of death on the strength of selection. Indeed, the strength of selection ΠS results
from the combination of the intrinsic selection effect, present in the absence of death and
due to the variability in lineage reproductive successes and to the correlations between
phenotype and reproductive success; and of the survival biases that impact the forward
and backward distributions. For this reason, we propose the following measure for the
effect of death on selection:

∆ΠS = ΠS − Π◦S . (3.65)

The sign of ∆ΠS indicates if death increases or decreases the distance between the forward
and backward distributions, when compared to the deathless case.
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When focusing on phenotypic trajectories S, and using eqs. (3.59) and (3.61), ∆ΠS
can be made more explicit, as shown in appendix B:

∆ΠS = Covback◦ (h◦t , psurv)
〈psurv〉back◦

− Covfor◦ (h◦t , psurv)
〈psurv〉for◦

. (3.66)

The covariances between the fitness landscape in the absence of death h◦t (s), representing
the intrinsic selection effect, and the probability of survival up to time t: psurv(s); express
that only the correlations between reproductive success and survival are determinant. This
also indicates that one cannot disentangle the two effects into two separate terms. There
are two situations where death does not change the strength of selection, i.e. ∆ΠS = 0:
(i) when both covariances are null, and (ii) when they are non-zero but cancel. (i) They
are both null when there are no correlations between selection and survival, which is the
case in particular when either (a) the survival probability or (b) the fitness landscape are
constant functions. Case (a) has been discussed previously: the survival probability is
uniform when the death rate is uniform, and in this case there is no survivor bias, and
thus no effect on the strength of selection. Case (b) may seem less intuitive: if the fitness
landscape in the absence of death h◦t is constant, then even with a phenotype-dependent
death rate leading to strong survivor biases, death has no effect on selection. Since in
this case Π◦S = 0, this implies that ΠS = 0 as well, in other words, death cannot create
selection if it is not present beforehand. (ii) Correlations between survival and fitness
with the forward and backward distributions are non zero but identical if death impacts
the forward and backward distributions ‘equivalently’, in such a way that the distance
between them (in the sense of the Jeffrey’s divergence) remains the same as compared to
the case without death. The simple example of a two-state model is provided in the next
section, where we show under which conditions ∆ΠS is positive, negative or null.

Finally, a linear response inequality, akin to the constraints on the strength of selection
we derived in section 3.3.2 of chapter 2, can be derived using Cauchy-Schwarz inequality:

|∆ΠS | ≤
σfor◦(h◦t )σfor◦ (psurv)
〈psurv〉back◦

+ σback◦(h◦t )σback◦ (psurv)
〈psurv〉for◦

. (3.67)

Unlike in eq. (3.66), here selection and survival are decoupled and the bound involves
products of the variabilities in fitness and in survival probability.

4.3 Illustrative example
Let us illustrate the possible values of ∆ΠS with a simple two state model: cells come
in two phenotypes a and b, with division rates ra and rb and death rates γa and γb. In
order to avoid extinction, we suppose that ra > γa and rb > γb, and we start with a large
even number N0 of initial cells. For simplicity, we consider that in this initial population,
phenotypes are equally represented: N0(a) = N0(b) = N0/2. Moreover, there are no
mutations, that is individuals cannot switch to the other phenotype between divisions,
and at division two cells of the same phenotype as the mother are produced.

We show in appendix C that the strength of selection is given by:

ΠS = rbe
t(rb−γb) + rae

t(ra−γa)

et(rb−γb) + et(ra−γa) − rbe
−γbt + rae

−γat

e−γbt + e−γat
. (3.68)
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In the absence of death (γa = γb = 0), the long time limit of the first fraction is dominated
by the phenotype that divides faster. Without loss of generality we consider that ra > rb,
so that the strength of selection is given by:

Π◦S →t→∞
ra − rb

2 = ∆r
2 . (3.69)

Note that in this case, Π◦S is proportional to the selection coefficient in population genetics,
which is defined as the difference in reproduction rates ∆r = ra − rb .

With death, the asymptotic behavior of the first fraction is controlled by the phenotype
that have the largest net reproductive rate, resulting from the balance between division
and death, while the second fraction is controlled by the phenotype that dies the slowest.
We still suppose that ra > rb, then the possible outcomes for ∆ΠS are:

∆ΠS →
t→∞



∆r/2 if γa > γb and ra − γa > rb − γb
−∆r/2 if γa > γb and rb − γb > ra − γa
−∆r/2 if γb > γa

0 if γa = γb

0 if ra − γa = rb − γb .

(3.70)

This simple two-state model provides cases where death increases selection, decreases
selection, or has no effect, corresponding respectively to ∆ΠS > 0, ∆ΠS < 0 and ∆ΠS = 0.

Death has no effect on selection in two situations. First, when death is uniform: γa =
γb (then each covariance in eq. (3.66) is null), and second, when ra − γa = rb − γb (which
implies that γa > γb) meaning that death ‘shifts’ the forward and backward distributions
equally, so that their distance remains constant. The last situation corresponds to the
equality between the two terms in the right hand side of eq. (3.66), each representing the
correlations between death and reproductive success in one sampling. Indeed, it is easy
to show:

Cov◦back (h◦t , psurv)
〈psurv〉back◦

= Cov◦for (h◦t , psurv)
〈psurv〉for◦

→
t→∞
−∆r

2 (3.71)

when ra − γa = rb − γb.
We now associate the trait values s = 1 ans s = 0 to the phenotypes a and b respec-

tively. Then, to analyze the other cases, we show in appendix C how the distributions
themselves are expressed in the long-time limit:

pback(s) →
t→∞


δ(s) if rb − γb > ra − γa
δ(1− s) if ra − γa > rb − γb
(δ(s) + δ(1− s)) /2 if ra − γa = rb − γb

(3.72)

p?for(s) →t→∞


δ(s) if γa > γb

δ(1− s) if γb > γa

(δ(s) + δ(1− s)) /2 if γa = γb

(3.73)

In the absence of death, p◦back(s) →
t→∞

δ(1 − s) because cells of type a divide faster
and then represent an increasing fraction of the population, and p◦for(s) is equal to 1/2 for
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each phenotype for any time t because each subpopulation starts with an initial forward
weight 1/2. When introducing death, the backward distribution is controlled by the net
reproduction rate which is the difference between the division and death rates, so that
both phenotypes can invade the population in the long time limit. When a cell dies, the
corresponding subpopulation permanently loses a fraction of its initial forward weight 1/2,
therefore the phenotype that dies the slowest is increasingly represented in the forward
sampling, up to having a weight 1.

There is only one case where selection is increased by death: when cells that divide
faster also die faster, while keeping a larger division-death balance. In that way, phenotype
a remains over-represented in the population like in the absence of death, but because it
dies faster, its forward weight tends to 0, against 1/2 without death. As a consequence,
the distance between the two samplings increases.

On the other hand, if the balance between divisions and death favors phenotype b
while maintaining a smaller death rate for b, then phenotype b invades the two statistics
and thus there is no difference between forward and backward. Similarly, when phenotype
b that divides slower also dies faster, it remains under-represented in the population, and
also becomes under-represented in the forward sampling, so that forward and backward
distributions are identical. In these two cases, the strength of selection in the presence of
death is null, and so the distance between the two samplings is decreased by death.

4.4 A digression: inference of the bulk growth rate from cy-
tometer measurements

Bulk population experiments are challenging to carry out, and steady-state exponential
growth is particularly difficult to reach. On the other hand, the dynamics cytometer
offers lineages with many generations. A natural question is then: how to use these
finite population measurements to infer the steady-state population growth rate? If the
hypotheses of section 4.1 are valid for this kind of experimental setup, then we can answer
this question using eq. (3.56). The assumptions involve in particular that the dilution rate
γt can be expressed as a function of a vector χ of variables that would behave similarly in
a free growth experiment. In particular, the confined geometry of the setup should have
no consequence on the rate at which cells grow. When this is true, we multiply eq. (3.56)
by the inverse psurv(χ)−1 of the survival probability and integrate over all trajectories to
obtain

N◦t = Nt 〈psurv(χ)−1〉back , (3.74)

which is an alternative form of eq. (3.60). The population growth rate is then given by

Λ◦t = Λt + 1
t

ln
(
N0

N◦0

)
+ 1
t

ln〈psurv(χ)−1〉back , (3.75)

where N0 and N◦0 are the initial numbers of cells in each setup. In confined geometries the
number of cells allowed in the chamber is bounded by the chamber capacity Nmax, so that
the population growth rate is vanishing in the long time limit: Λt ≤ ln(Nmax/N0)/t → 0
when t → ∞. Moreover, the initial numbers of cells N0 and N◦0 are fixed, so the second
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term in the right hand side also vanishes in the long time limit. Finally, the long time
population growth rate in free growth is given by

Λ◦ = lim
t→∞

1
t

ln〈psurv(χ)−1〉back . (3.76)

The dilution-less population growth rate is related to the backward average of the survival
probability inverse. Indeed, paths with a probability to disappear which is null have a
weight one in the average: we know that all lineages following these paths are observed so
no bias is required. On the other hand, a path with a low probability of survival is highly
weighted to compensate the loss of the many lineages following the same path which are
not observed because of dilution.

In practice, inferring the population growth rate from cytometer measurements is
challenging for two reasons. First, the backward average in eq. (3.76) is computed with
the empirical backward distribution:

Λ◦ = lim
t→∞

1
t

ln
 1
n(σ = 1)

n(σ=1)∑
i=1

exp
[∫ t

0
dt′γt′(χi(t′))

] . (3.77)

For this empirical distribution to accurately reproduce the backward distribution, that
is the solution of the partial differential equation, a large number of living lineages is
required. However the number of cells in these setups is typically small, of the order of
20 ∼ 40, thus rare lineages are not be observed in general, although they are the lineages
with the largest weights in the average. Second, one need to identify the relevant variables
χ which control the dilution rate.

Both these difficulties are resolved when supposing that dilution is uniform, that is
when γt does not depend on χ. In this case eq. (3.76) reduces to

Λ◦ = lim
t→∞

1
t

∫ t

0
dt′γt′ . (3.78)

The integral term in the right hand side is simply evaluated by counting the number
of cells that are evacuated by the medium. This is how the population growth rate is
estimated for example in Hashimoto et al., 2016 (actually they count the number of cells
born in a time interval, which is equivalent to the number of diluted cells in a constant-
population setup). The question of the validity of the uniform dilution in the dynamics
cytometer is still to be clarified, and work should be done to investigate the potential
variables χ controlling dilution.

5 Conclusion
The development of experiments on finite populations in confined geometry created a new
kind of cellular data, which takes the form of sparse population trees where most lineages
end before the end of the experiment because cells are evacuated from the chamber in
order to balance divisions. Given the importance of these experiments which allow a
precise control of the conditions everywhere inside the chamber and where single cells can
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be tracked with accuracy, it is important to understand how this kind of population tree
should be sampled, and how selection should be characterized.

In this chapter, we showed how to adapt the forward and backward samplings of the
lineages proposed in Nozoe et al., 2017. Unlike the simple case treated in chapter 2 where
all lineages are taken into account in each sampling, here dead lineages are sampled
only in the forward manner, given that they do not appear in the population at final
time. This difference leads to modified versions of the results from chapter 2, where
the fluctuation theorem on the number of divisions is recast for living lineages only, and
involves a normalizing term Γt accounting for the forward weight of the surviving lineages
(or dead lineages, the sum of the two being 1). The consequences of the fluctuation
theorem such as the inequalities between population growth rate and average numbers of
divisions, and Powell’s relation for age models are also generalized by simply replacing Λt

by Λt − Γt.
Even though our inspiration came from datasets obtained in constant population ex-

periments, the results in this chapter are more general, and apply to any branching tree
where some lineages do not survive up to the end. In particular, the population can re-
main constant but also increase or decrease, depending on the sign of Λt − Γt. Moreover,
the cause of the death is not specified so that the death rate can be a function of any
cell trait. This is a progress compared to the majority of articles on the subject where
dilution was considered uniform and equal to the population growth rate. Consequently,
this framework could be useful in other situations, like for in vitro population experiments
on antibiotic resistance (Lambert et al., 2015), in which case death means biological death
of the cell, for in vivo time-lapse experiments, or in evolutionary context where species
have become extinct (Stadler, 2013).

Note, however, that this framework suffers from the same limitation as in the case
without death, namely the genealogy is needed to build the forward statistics. When
this information is not accessible only the backward sampling can be performed, and
work needs to be done to define selection and infer the past history of the population
from snapshot data only. Moreover, relations involving a comparison between the two
samplings are valid only for surviving lineages, and thus do not take advantage of the
large amount of data from dead lineages. These data can be exploited with the tree
sampling (Levien et al., 2020), and linking the tree and forward/backward samplings
would be a logical next step.

The strength of selection, as defined in the previous chapter, is a measure of the
distance between the forward and backward distributions for a particular cell trait. In
the presence of death, these two distributions and thus the strength of selection can be
perturbed by a survivor bias, which reflects the variability in the survival probabilities.
The overall selection then results from the correlations between the intrinsic selection in
the absence of death and the survivor bias. We propose a general measure of the effect of
death on selection whose sign indicates if death tends to increase or reduce the difference
between the forward and backward statistics.

Finally, the survivor bias implies that the surviving population may not be represen-
tative of the whole population, because some phenotypes may be more likely to die than
others. As a consequence, the growth rate of the surviving population might be differ-
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ent from the growth rate of the whole population. In the context of finite populations
where death means dilution, this suggests the following effect: if cells that are diluted
and cells staying inside the chambers do not have the same distribution of division rates,
then one cannot infer the population growth rate by simply counting the number of cells
born/evacuated. Even though the formula we proposed cannot be used in practice until
the variables that control the dilution rate are identified, which could be difficult to inves-
tigate, we hope that it will encourage people to test the validity of the uniform dilution
hypothesis. The analysis carried out in Hashimoto et al., 2016 (figure S3) suggests that
the distribution of generation times is independent of the position inside the chamber,
in particular at the ends of the channel where cells are about to be expelled; which sup-
ports the hypothesis of uniform dilution. However, this analysis relied on the assumption
of the timer mechanism, and results could be different for other species following other
mechanisms of cell size control.
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6 Appendices

A Powell’s relation and Euler-Lotka equation for age models
with correlations and age-dependent death rate

In section 4.1.1 of chapter 1, we presented two different ways to model mother-daughter
correlations in the generation times for age-controlled populations. The first one relies on
an intermediate variable, representing a cell type, which is transmitted at division with
correlations, and on which the division and death rates depend. The generalization of
Powell’s relation for this model in presence of an age-and-type-dependent death rate is
treated in section 3 of the main text. In this appendix, we present the equivalent derivation
for the second model, where generation time τ is considered as a variable and inherited at
division via kernel Σ(τ |τ ′), normalized as ∀τ ′,

∫
dτΣ(τ |τ ′) = 1. The population balance

equation reads (Lebowitz et al., 1974):

∂tn(a, τ, t) = −∂an(a, τ, t)− γ(a, τ)n(a, τ, t) for 0 < a ≤ τ (3.79)

n(a = 0, τ, t) = m
∫

dτ ′Σ(τ |τ ′)n(τ ′, τ ′, t) . (3.80)

As pointed out in section 4.1.1 of chapter 1, there is no division rate in this model; however
there is a death rate γ(a, τ). This implies that even if the newborn cell is ‘programmed’
via the kernel Σ, at the moment of the division of its mother, to divide after a time τ , it
will actually survive until reaching age τ with probability exp [−

∫ τ
0 da γ(a, τ)]. Note that

we allow the death rate to be a function of the age τ at which the cell is programmed to
divide, unlike the model proposed in Lebowitz et al., 1974 where it is only a function of
the age a of the cell.

This population balance equation and its boundary condition are recast at the levels
of the backward probability and forward probability conditioned on survival:

∂tpback(a, τ, t) = −∂apback(a, τ, t)− [γ(a, τ) + Λp(t)] pback(a, τ, t) for 0 < a ≤ τ (3.81)

pback(a = 0, τ, t) = m
∫

dτ ′Σ(τ |τ ′)pback(τ ′, τ ′, t) (3.82)

∂tp
?
for(a, τ, t) = −∂ap?for(a, τ, t)− [γ(a, τ) + Γp(t)] p?for(a, τ, t) for 0 < a ≤ τ (3.83)

p?for(a = 0, τ, t) =
∫

dτ ′Σ(τ |τ ′)p?for(τ ′, τ ′, t) , (3.84)

and the steady state solutions to these two equations read

pback(a, τ) =
pback(0, τ) exp [−Λa−

∫ a
0 da′ γ(a′, τ)] for 0 ≤ a ≤ τ

0 for a > τ
(3.85)

p?for(a, τ) =
p?for(0, τ) exp [−Γa−

∫ a
0 da′ γ(a′, τ)] for 0 ≤ a ≤ τ

0 for a > τ .
(3.86)

Similarly to the case treated in the main text, we define the steady-state distribution
of generation times as the ratio of the number of cells dividing at age τ to the total number
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of cells dividing at the same instant, weighted in the two samplings:

f(τ) = p(τ, τ)∫
dτ ′ p(τ ′, τ ′) . (3.87)

We also define the newborn distribution of generation times:

ρnb(τ) = p(0, τ)∫
dτ ′ p(0, τ ′) , (3.88)

which represents the proportion of newborn cells that are programmed to divide after a
time τ among all the newborn cells, in both samplings. Combining the above definitions,
the distributions of generation time are given by:

fback(τ) = mρnb
back(τ) exp

[
−Λτ −

∫ τ

0
da γ(a, τ)

]
(3.89)

f ?for(τ) = ρnb
for(τ) exp

[
−Γτ −

∫ τ

0
da γ(a, τ)

]
, (3.90)

and the generalized version of Powell’s relation reads

fback(τ) = m
ρnb

back(τ)
ρnb

for(τ) f
?
for(τ)e−(Λ−Γ)τ . (3.91)

Once again, this bias does not depend explicitly on the death rate γ but instead on the
decrease rate of the forward probability of survival Γ.

When integrating this relation over τ , we obtain a generalization of Euler-Lotka equa-
tion. Since four probability distributions appear in this version of Powell’s relation, each
of them can be isolated and integrated out which leads to four different Euler-Lotka
equations. They all link the modified population growth rate Λ − Γ to the combined
variabilities in generation time of the three remaining distributions. A different set of
Euler-Lotka equations can be obtained by plugging the solutions eqs. (3.85) and (3.86) in
the boundary conditions eqs. (3.82) and (3.84) and integrating over τ :

1 = m
∫ ∞

0
dτ exp

[
−Λτ −

∫ τ

0
da γ(a, τ)

]
ρnb

back(τ) (3.92)

1 =
∫ ∞

0
dτ exp

[
−Γτ −

∫ τ

0
da γ(a, τ)

]
ρnb

for(τ) , (3.93)

where we recover with eq. (3.92) a result originally derived in Lebowitz et al., 1974. These
expressions have the advantage of being simpler because they involve only one probability
distribution: the newborn distribution of generation times, but they involve the death rate
γ explicitly.

B Measure of the effect of death on the strength of selection
In this appendix, we prove the covariance formula eq. (3.66). We start from the definition
of the strength of selection in the presence of death:

ΠS = 1
t

∫
Ds (pback(s, t)− p?for(s, t)) ln

(
pback(s, t)
p?for(s, t)

)
, (3.94)
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where the distributions inside the logarithm can be expressed using eqs. (3.59) and (3.61).
Doing so, the survival probability cancel in the numerator and the denominator:

ΠS = 1
t

∫
Ds (pback(s, t)− p?for(s, t)) ln

(
p◦back(s, t)
p◦for(s, t)

)
(3.95)

=
∫
Ds h◦t (s) (pback(s, t)− p?for(s, t)) . (3.96)

Then, we compute ∆ΠS by subtracting Π◦S =
∫
Ds h◦t (s) (p◦back(s, t)− p◦for(s, t)) from the

above relation:

∆ΠS =
∫
Ds h◦t (s) [(pback(s, t)− p◦back(s, t))− (p?for(s, t)− p◦for(s, t))] (3.97)

= 1
〈psurv(χ)〉back◦

∫
Ds h◦t (s)p◦back(s, t) [psurv(χ)− 〈psurv(χ)〉back◦ ]

− 1
〈psurv(χ)〉for◦

∫
Ds h◦t (s)p◦for(s, t) [psurv(χ)− 〈psurv(χ)〉for◦ ] (3.98)

=Covback◦ (h◦t , psurv)
〈psurv〉back◦

− Covfor◦ (h◦t , psurv)
〈psurv〉for◦

. (3.99)

C Simple two-state example
In this appendix, we give the detailed analysis of the two-state model introduced
in section 4.3. The number of cells in the subpopulation a evolves as n(a, t) =
N0 exp [t(ra − γa)] /2 and similarly for the subpopulation b. The total number of cells
is given by the sum of these two subpopulations, so that the backward probability reads

pback(s, t) = e−tΛt

2
[
et(ra−γa)δ(1− s) + et(rb−γb)δ(s)

]
(3.100)

= et(ra−γa)δ(1− s) + et(rb−γb)δ(s)
et(ra−γa) + et(rb−γb)

. (3.101)

In the dynamics without death, since the initial distribution of phenotypes is even and
since there is no phenotype switching, then for any time t:

p◦for(s, t) = δ(s) + δ(1− s)
2 . (3.102)

To obtain the forward probability with death, we use transformation eq. (3.59):

p?for(s, t) = e−tΓt

2
(
δ(s)e−tγb + δ(1− s)e−tγa

)
(3.103)

= δ(s)e−tγb + δ(1− s)e−tγa
e−tγb + e−tγa

. (3.104)

The fitness landscape ht(s), defined by eq. (3.62), is then obtained by computing the
ratio of the above distributions:

ht(s) = rbδ(s) + raδ(1− s) . (3.105)
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We recover that in this situation the fitness landscape is equal to the historical fitness.
Finally, the strength of selection is given by:

ΠS = 〈ht〉back − 〈ht〉for? (3.106)

= rbe
t(rb−γb) + rae

t(ra−γa)

et(rb−γb) + et(ra−γa) − rbe
−γbt + rae

−γat

e−γbt + e−γat
. (3.107)

The behaviors of pback(s, t), p?for(s, t) and ΠS in the long time limit are directly obtained
from the above equations.
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1 Introduction

In chapter 2 we presented a framework based on the forward and backward samplings
of the lineages within a population tree, which allowed us to derive general relations be-
tween the statistics obtained in population and mother machine setups, and to formulate
universal constraints on the strength of selection acting on cell traits correlated with divi-
sions. Using the notion of fitness landscape, we derived eq. (2.51), a very simple bias for
the cell size distributions, valid when growth is deterministic and exponential and when
volume partitioning is deterministic and symmetric. This relation involves a factor x, the
size, that biases the population distribution towards smaller cells, which is intuitive since
when there is no noise, more divisions mechanically leads to smaller sizes. However, when
introducing noises either in the partitioning of volume at division or in single-cell growth,
the formalism of fitness landscape can become difficult to use. An alternative route to
investigate this bias and the importance of these sources of stochasticity, that we take in
this chapter, is to solve independently the population and lineage equations.

Understanding cell size statistics can be interesting because it offers many insights on
the laws of growth and division, and because the size framework also applies to molecular-
level quantities. These could be a number of proteins or mRNA, which also grow within
the cell cycle and are split between the daughter cells at division. Lineage-population
biases for cell size have been recently derived at the level of the first moments of the size
distribution (Totis et al., 2021), and of the distribution of size at birth (Thomas, 2017;
Thomas, 2018) in some particular cases. However, general understanding of the bias at
the level of distributions, illustrated in fig. 4.1, is lacking. In the mathematical literature,
the existence of a solution to the growth-fragmentation equation modeling the time evolu-
tion of the population cell-size distribution and its convergence have been largely analyzed
(Michel, 2006; Doumic Jauffret et al., 2010; Balagué et al., 2013). Moreover, under the
assumptions of deterministic partitioning of volume amongst the daughter cells, exponen-
tial growth and power-law division rate, the growth-fragmentation equation reduces to a
pantograph equation, whose solution is analytical (Hall et al., 1990; Zaidi et al., 2021).
Surprisingly, these analyses have not been applied to lineage statistics.

In chapter 2, the fluctuations in the number of divisions were taken advantage of in
order to infer the population growth rate form mother machine data. Another possible
use of such data has recently been explored by Jia et al., who derived steady-state size
distributions for lineage data and used them to infer single-cell parameters describing the
laws of cell growth and division, both for bacteria in exponential growth (Jia et al., 2021)
and yeasts (Jia et al., 2022). Along the same line, in this chapter we derive analytical
cell-size lineage distributions, different from those obtained in Jia et al., 2021 by allowing
growth laws that are more general than the exponential growth, and use them to fit
mother machine data and thus: (i) check the validity of the model and the assumptions
to describe the data, and (ii) infer cell cycle parameters.

This chapter is organized as follows: after introducing the hypotheses of the size-
control model in section 2, we derive in section 3 exact steady-state lineage cell-size
distributions, in the case of deterministic volume partitioning, both symmetric and asym-
metric. The lineage-population bias is then obtained by comparison with population
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Size

Mother machinePopulation

Figure 4.1: Snapshot cell-size distributions for two different experimental setups. The
population distribution ψ (red) is computed by uniformly sampling cell sizes in a freely
growing population in a batch culture, and the lineage distribution φ (blue) is obtained
by uniformly sampling the sizes of the constant number of mother cells (in blue) at the
bottoms of each micro-channel in a mother machine device.

distributions from the mathematical literature. We also show that these lineage distribu-
tions can account for experimental data on E. coli, and illustrate how they can be used for
parameters inference. When introducing stochasticity in volume partitioning, we seek in
section 4 large and small size asymptotic lineage distributions, and show that only a sub-
part of the model parameters control these tails, and thus the lineage-population in these
limits. In addition, we show that these asymptotic behaviors hold when considering the
more realistic adder model. In section 5, we introduce in-cycle noise around exponential
growth, and show how it affects the large-size behavior and the lineage-population bias.
Finally, we comment in section 6 on the effect of maintaining the population constant on
the size distributions in simple cases.

2 Preliminaries

2.1 Model and definitions
We consider size-regulated populations, for which the number n(x, t) of cells of size x at
time t follows the population balance equation eq. (1.49). We restrict ourselves to the
class of homogeneous kernels Σ, which only depends on the ratio of volume between the
daughter and mother cells:

Σ(x|y) = 1
y
b

(
x

y

)
, (4.1)

and we call b(x) the partition kernel. The partition kernel is normalized as
∫ 1

0 dx b(x) = 1,
and the conservation of volume at division imposes that m

∫ 1
0 dx xb(x) = 1. Moreover,

we forbid births of cells of size 0 by setting b(0) = b(1) = 0. The kernel b is very general,
and accounts for deterministic symmetric partition observed in bacteria and fission yeast:
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b(x) = δ(x−1/m); deterministic asymmetric partition characterizing for example budding
yeast: b(x) = ∑m

i=1 δ(x − 1/ωi)/m with ωi > 1 and ∑m
i=1 1/ωi = 1; and stochastic parti-

tion which can be modeled for example as a Beta distribution for size or as a Binomial
distribution for protein segregation.

For better readability, in this chapter we call φ and ψ the forward and backward
probability distributions:

φ(x, t) = pfor(x, t) (4.2)
ψ(x, t) = pback(x, t) , (4.3)

and recall the population balance equations at the probability level with these new nota-
tions:

∂tφ(x, t) = −∂x[ν(x)φ(x, t)]− r(x)φ(x, t) +
∫ dx′

x′
b(x/x′)r(x′)φ(x′, t) (4.4)

∂tψ(x, t) = −∂x[ν(x)ψ(x, t)]− [r(x) + Λp(t)]ψ(x, t) +m
∫ dx′

x′
b(x/x′)r(x′)ψ(x′, t) .

(4.5)

In section 4.2 of chapter 1, we argued that a power law was a good approximation for
the division rate, as indicated by the inference from experimental data. Moreover, a power
law for the growth rate includes the most common growth strategies, which we call linear
growth for β = 0, and exponential growth characterizing most bacteria (Taheri-Araghi
et al., 2015) for β = 1. Since in sections 4 and 5 we will investigate the behavior of the
tails of the size distributions in the small and large size limits, we make the power-law
assumptions in these limits:

r(x) ∼ r0x
α0 as x→ 0 (4.6)

r(x) ∼ r∞x
α∞ as x→∞ (4.7)

ν(x) ∼ ν0x
β0 as x→ 0 (4.8)

ν(x) ∼ ν∞x
β∞ as x→∞ (4.9)

b(x) ∼ b0x
κ0 as x→ 0 . (4.10)

The last line accounts for a broad class of kernels defined on [0, 1], including the Beta
distribution commonly used for volume partitioning (Jia et al., 2021). These different
exponents are not independent: the population grows exponentially with a rate Λ =
lim
t→∞

Λp(t) in the long-time limit and reaches steady-state size distributions only if certain
conditions are met (Balagué et al., 2013), among which are:

α0 − β0 + 1 > 0 (4.11)
α∞ − β∞ + 1 > 0 (4.12)

κ0 − β0 > 0 . (4.13)

The first two lines reflect the necessary balance between growth and division: eq. (4.11)
ensures that there is more growth than division for small cells, to avoid the creation of
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cells of vanishing sizes; and eq. (4.12) guarantees that there is more division than growth
for large cells, to prevent the survival of cells of diverging sizes. Additionally, eq. (4.13)
imposes that there is enough growth to counterbalance the birth of cells with vanishing
volumes. In sections 4 and 5, we suppose that these conditions are fulfilled.

Finally, in the next sections we use moments of order k of the distributions b, ψ and φ,
which are the Mellin transforms of these distributions (up to a constant 1 in the exponent):

Lk =
∫ 1

0
xkb(x)dx (4.14)

Mk =
∫ ∞

0
xkψ(x)dx (4.15)

Nk =
∫ ∞

0
xkφ(x)dx . (4.16)

2.2 The special case of exponential growth
Cells that grow exponentially with a rate ν(x) = νx (for all x) are characterized by two
important properties.

First, for any partitioning kernel b, the steady-state population growth rate matches
the single cell growth rate (Hall et al., 1990). This follows from the integration of eq. (4.5)
after multiplication by x, and using the mass conservation property of kernel b:

∂t〈x〉back = [ν − Λp(t)] 〈x〉back , (4.17)

provided that the no-flux boundary conditions x2pback(x, t)→ 0 when x→ 0 and x→ +∞
are met. Therefore, in steady-state the left hand side is null and

Λp(t) →
t→∞

Λ = ν . (4.18)

Second, the lineage-population bias is analytical for exponentially-growing cells in
steady-state. Let us multiply the population equation eq. (4.5) by x, and recast it for the
function q(x) = xψ(x) in steady-state:

0 = −νx∂xq(x)− [r(x) + ν] q(x) +
∫ dx′

x′
mx

x′
b(x/x′)r(x′)q(x′) . (4.19)

We identify the derivative of a product −νx∂xq(x)− νq(x) = −ν∂x[xq(x)]:

0 = −ν∂x[xq(x)]− r(x)q(x) +
∫ dx′

x′
mx

x′
b(x/x′)r(x′)q(x′) . (4.20)

This equation is eq. (4.4), obeyed by the lineage distribution φ with modified partition
kernel b̂(x) = mxb(x), which we note φmxb(x)(x). Therefore q(x)b(x) is proportional to
φmxb(x):

φmxb(x)(x) = Kxψb(x)(x) , (4.21)

with K =
(∫∞

0 dx xψb(x)(x)
)−1

a normalization constant. Importantly, b̂ is a proper
kernel, which is normalized as a consequence of the conservation of volume of the original
kernel b:

∫ 1
0 dx b̂(x) = m

∫ 1
0 dx xb(x) = 1.
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In the case of deterministic symmetric partitioning, the modified partition kernel
b̂(x) = mxb(x) = mxδ(x − 1/m) = δ(x − 1/m) = b(x) in the single lineage dynamics
is equal to the partition kernel b(x) in the population dynamics and we recover a result
from Doumic et al., 2021:

φ(x) = Kxψ(x) . (4.22)

Although the above relation and eq. (2.51) have been obtained with different approaches,
and although eq. (4.22) is a steady-state statement while eq. (2.51) is a time-dependent
relation, in both cases the biases involve a factor x, which comes from the correlations
between size and number of divisions. It is clear that if no such correlations were present,
the over-representation of lineages with high-reproductive success in a population would
not affect the size distribution, so that the lineage and population size distributions would
be identical.

From eq. (4.22), it is straightforward to show that the average size is larger in lineages
than in populations:

〈x〉for = 〈x〉bak + Varback(x)
〈x〉back

≥ 〈x〉back . (4.23)

3 Exact lineage distributions for deterministic parti-
tioning

Exact population solutions to eq. (4.5) have been obtained in the particular case of ex-
ponential growth (ν(x) = νx), for deterministic symmetric (Hall et al., 1990) and asym-
metric (Zaidi et al., 2021) partitioning, and power law division rates (r(x) = xα). The
same method can be adapted to derive the lineage distribution, for which the hypothesis
of exponential growth can even be relaxed and replaced by a more general power law
growth rate: ν(x) = νxβ. Note that in order to obtain an analytical solution for all sizes,
we need to impose power law division and growth rates with respective exponents α and
β for all sizes, with α − β + 1 > 0. This hypothesis will be relaxed in the next sections
concerning the distribution tails, and replaced by eqs. (4.6) to (4.10).

For symmetric partitioning between the m daughter cells, we show in appendix A.1
that the solution reads

φ(x) = C

xβ

∞∑
k=0

ck exp
[
−mk(α−β+1) r

ν

xα−β+1

α− β + 1

]
, (4.24)

where the coefficients ck are given in appendix A.1 and C is a normalization constant.
For exponential growth, we find that this lineage distribution is related to the population
distribution ψ(x) obtained in Hall et al., 1990 by φ(x) = xψ(x), which was expected in
the light of section 2.2.

It is worth mentioning that this distribution takes a very simple form in the limit
of strong control α → +∞, where cells divide deterministically when reaching size 1.
In this limit, c0 = 1, c1 tends to −1 and all other ck tend to 0, such that the lineage
size distribution reduces to φ(x) = Cx−β for x ∈ [1/m, 1] and 0 otherwise. This result is
analogous to the one for populations: ψ(x) ∝ x−2 for x ∈ [1/2, 1] and 0 otherwise, obtained
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for binary fission and exponential growth (Hall et al., 1990; Thomas, 2018). Note also
that in this limit, there is no randomness in the dynamics of cell growth and division, and
thus the steady-state size distribution is simply the solution to the flux-balance equation
∂x[ν(x)φ(x, t)] = 0.

In the case of asymmetric partitioning, for simplicity we choose to focus on binary
fission (m = 2). The volume of the dividing cell is split unequally between the daughters:
one inherits a fraction 1/ω1 of the mother size and the other daughter a fraction 1/ω2,
with ω1 > ω2 > 1 and 1/ω1 + 1/ω2 = 1. The choice of the protocol to track one of the
two daughters is of major importance (Jia et al., 2021). If one chooses to always track the
smallest of the two daughters, then the partition kernel is given by: b(x) = δ(x− 1/ω1).
This is equivalent to the partition kernel for symmetric partitioning between m daughter
cells where m is replaced by ω1, and the size distribution is therefore given by eq. (4.24),
when replacing m by ω1. On the other hand, in the random tracking protocol, each
cell is tracked at division with probability 1/2, so that the partition kernel is given by
b(x) = δ(x − 1/ω1)/2 + δ(x − 1/ω2)/2. In this case, we show in appendix A.2 that the
size distribution reads

φ(x) = C

xβ

∞∑
k=0

∞∑
l=0

ck,l exp
[
−ωk(α−β+1)

1 ω
l(α−β+1)
2

r

ν

xα−β+1

α− β + 1

]
, (4.25)

where the coefficients ck,l are given in appendix A.2 and C is a normalization constant.
For exponential growth, we find that this lineage distribution is related to the popula-
tion distribution ψ(x) obtained in Zaidi et al., 2021 by φ2xb(x)(x) = xψb(x)(x), which we
expected in the light of section 2.2.

3.1 Shapes of the theoretical solutions

We numerically investigate the influence of the parameters of the model on the analytical
steady-state size distributions eq. (4.24) and eq. (4.25), and show the results on fig. 4.2.
The first row corresponds to symmetric partitioning and the second one to asymmetric
partitioning. On the top left plot, as the strength of the size control α is increased the
distribution gets narrower, and in the limit of large control, division becomes deterministic
and φ(x) = Cx−β for x ∈ [1/2, 1]. On the top right plot, the growth rate power β is varied.
For β = 0, φ presents a flat maximum and a fast decline for large size. As β increases, the
maximum becomes more peaked and the decrease at large size is slowed, which follows
from the fact that increasing the growth rate allows cells to reach larger sizes. On the
bottom left plot, we vary the volume ratio 1/ω1 of the smallest daughter cell that we follow
at each division. The smaller the daughter we follow, the wider the curve on the left hand
side. Finally, the bottom right plot corresponds to the random tracking protocol, where
1/ω1 is the ratio of the smallest of the two daughters cells. As the asymmetry is increased,
the curve becomes bimodal, intuitively corresponding to the two subpopulations produced
by the smaller and larger daughters at each division.
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Figure 4.2: Theoretical lineage distributions for binary fission m = 2, for symmetric
partitioning on the first row, and asymmetric partitioning on the second row. On the first
row, the distribution is computed with eq. (4.24), with β = 1 and α varying on the left,
and α = 10 and β varying on the right. For asymmetric partitioning, the left plot was
generated with the smallest daughter tracking protocol (eq. (4.24) with m = ω1), and the
right plot with the random tracking protocol (eq. (4.25)). For both plots, we fixed α = 10
and β = 1, and varied the asymmetry ω1. For all four plots we fixed r/ν = 0.01.

3.2 Test on experimental data: parameters inference

In experimental systems, the partitioning is stochastic rather than deterministic, however
for E. coli data obtained in mother machine (Tanouchi et al., 2017), the coefficient of
variation of the volume ratio at division was found to be smaller than 10% (Jia et al.,
2021). This encourages us to test the validity of our theoretical distributions. We use
data from Tanouchi et al., 2017, described in section 5 of chapter 1, where the size of
many independent cell lineages of E. coli has been recorded every minute over 70 gener-
ations at three different temperatures (25 ◦C, 27 ◦C, and 37 ◦C), precisely 65 lineages for
25 ◦C, 54 for 27 ◦C, and 160 for 37 ◦C. We fit the experimental distributions for the three
temperatures using the three models: symmetric partitioning, asymmetric partitioning
with smaller/larger cell tracking and random tracking. For each temperature, the best fit
is shown on fig. 4.3, and the fitting parameters are given in table 4.1.
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Figure 4.3: Experimental lineage distributions (blue histograms) for E. coli data from
Tanouchi et al., 2017 in three temperature conditions: 25 ◦C (left), 27 ◦C (right) and
37 ◦C (bottom). The best fits (orange curves) are computed with eq. (4.24) or eq. (4.25),
and the fitting parameters are given in table 4.1.

First of all, we observe that our model is in very good agreement with experiments
at 27 ◦C and 37 ◦C, and that the fit at 25 ◦C is average but fails to capture the decay of
the right tail. In particular, our results reproduce the three-stages discussed in Jia et al.,
2021: fast increase for small cells, slow decay for medium-sized cells, and fast decay for
large cells. In the following we analyze the values of the parameters for the condition
27 ◦C and 37 ◦C in particular, given than they provide the best fits to experimental data.
Surprisingly, for all temperatures the best fit is given by asymmetric partitioning with
smallest-daughter tracking protocol, where the daughter cell which is followed inherits
a fraction 1/ω1 = 0.43 of the mother volume. This value is really close to the value
0.44−0.45 obtained by direct analysis of the sizes at birth and division along the lineages
(Jia et al., 2021). The strength of the control α tends to increase with temperature, in
qualitative agreement with what was found in Jia et al., 2021, and the ratio r/ν tends to
decrease with temperature. Note that we cannot disentangle the values of r and ν only
from the steady-state profile. Finally, the power β in the growth rate is equal to 1.26 for
27 ◦C at 1.23 for 37 ◦C, which suggests that in these conditions E. coli grows slightly faster
than exponential for large sizes (x > 1), and slightly slower than exponential for small
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25 ◦C 27 ◦C 37 ◦C

Tracking
protocol

Smallest
daughter

Smallest
daughter

Smallest
daughter

α 7.89 11.49 11.92
β 1.02 1.26 1.23

1/ω1 0.40 0.43 0.43
r/ν 4.5× 10−5 3.5× 10−6 1.8× 10−7

Table 4.1: Parameters of the best fits to E. coli data from Tanouchi et al., 2017 shown on
fig. 4.3. In all cases, the best fit was given by the tracking protocol where partitioning is
asymmetric and the smallest cell is always followed, given by eq. (4.24) with m = ω1.

sizes (x < 1). This may be linked to the super-exponential growth observed for E. coli in
Kar et al., 2021, where the exponential growth rate ν increases during the cell cycle.

To conclude, in spite of the stochasticity in partitioning present in experimental sys-
tems, our model for deterministic partitioning gives a very good description of the data
for two temperature conditions, and a correct fit for the last temperature. It captures the
complexity of the distributions, and the inferred parameters show the same trends as the
ones obtained from the model proposed in Jia et al., 2021, based on a N -step description
of the cell cycle. In contrast to this work, our approach allows growth laws that are more
general than exponential, and the dependency of the distributions eq. (4.24) and eq. (4.25)
on size is more explicit in our model. Also, the present model is simpler in that it involves
only one step in the cell cycle. Even though our result produces a fit for the condition
25 ◦C that is less precise than the one obtained with the N -step model, it performs much
better than the N -step model when N is fixed to 1, suggesting that models with N steps
may not be minimal.

4 Asymptotic behavior for general partitioning ker-
nel

In this section, we seek large-size and small-size asymptotic solutions to eq. (4.4) for
general kernels b. We shall see that the tails of the lineage distribution only depend
on the behaviors of the division rate, growth rate and partitioning kernel at large and
small sizes, like what happens for the population distribution (Balagué et al., 2013).
Therefore, the following results apply to cells obeying more complex growth laws than
in the previous section. For example, fission yeasts have been observed to follow piece-
wise growing patterns (Horváth et al., 2013; Pesti et al., 2021), either bi-linear or bi-
exponential during the elongation phase. The bacterium Corynebacterium glutamicum
exhibits asymptotically linear growth (Messelink et al., 2021), unlike most bacteria. In
these examples, the growth phases are dictated by the age of the cell, but in size-controlled
populations, large (resp. small) cells are on average old (resp. young) cells so that the
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growth rate at large (resp. small) age is also the growth rate at large (resp. small) size.
Moreover, E. coli has also be shown to deviate from exponential growth for large and
small sizes (Robert et al., 2014).

In the following, we then suppose that the different rates follow power laws in the
small and large size limits, given by eqs. (4.6) to (4.10), and that conditions eqs. (4.11)
to (4.13) ensuring the existence of a solution are fulfilled.

4.1 Large size limit
For stochastic partitioning, the large-size population distribution has been derived in
Balagué et al., 2013:

ψ(x) ∼
x→∞

ν(x)−1 exp
[
−
∫ x

dy Λ + r(y)
ν(y)

]
(4.26)

∼
x→∞

x−β∞ exp
[
−r∞
ν∞

xα∞−β∞+1

α∞ − β∞ + 1 −
Λ
ν∞

∫ x

y−β∞dy
]
. (4.27)

This result can be understood intuitively as follows: if the distribution is decreasing fast
enough in the large-size limit, we can neglect the integral term corresponding to the
divisions of larger cells in eq. (4.5), then the resulting equation is exactly solvable and the
solution is eq. (4.26), as shown by Friedlander et al., 2008.

We prove in appendix B.1 and appendix C that the lineage distribution reads

φ(x) ∼
x→∞

x−β∞ exp
[
−r∞
ν∞

xα∞−β∞+1

α∞ − β∞ + 1

]
, (4.28)

which is the population distribution eq. (4.26) when setting Λ = 0. The behavior for
large sizes is thus independent of the partition kernel b, which implies in particular that
it coincides with the large-size behavior for symmetric partitioning obtained by keeping
only the first term the series of eq. (4.24). In order to test this expression, we numerically
solve the PBE using a finite difference method with an implicit scheme. Results are shown
on fig. 4.4 left for three different values of the strength of size control α = 2, 3 and 5. In
all three cases, the large-size behavior is in very good agreement with the theory.

For cells growing exponentially in the large-size limit, comparing eqs. (4.27) and (4.28)
leads to the following lineage-population bias:

xΛ/ν∞ψ(x) ∼
x→∞

φ(x) if β∞ = 1 . (4.29)

If cells grow exponentially with rate ν ≡ ν∞ for all sizes and not only for large-sizes, then
we showed in section 2.2 that the population growth rate matches the single cell growth
rate Λ = ν, so that the lineage-population bias eq. (4.29) for an arbitrary kernel in the
large-size limit is the same as the bias for deterministic symmetric partitioning derived in
section 2.2. This is not surprising since in this limit the behavior does not depend on the
kernel.
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Figure 4.4: Large and small sizes asymptotic behaviors of the lineage distribution φ. For
both plots, we chose r(x) = xα, ν(x) = xβ, and b(x) = x2(1− x)2/B(3, 3) for all x, where
B(x, y) is the Beta function. Left: large size limit given by eq. (4.28) for β = 1, and for
three different values of the strength control α. The slopes α−β+1 = α of the solid lines
are, from left to right: 5, 3 and 2. Right: small size limit given by eq. (4.34) for α = 5
and for three different values of β. The slopes κ0 + 1 − β = 3 − β of the solid lines are,
from top to bottom: 1.5, 2 and 2.5.

For non-exponential growth in the large-size limit, the lineage-population bias is given
by:

ψ

φ
∼

x→∞
exp

[
− Λ
ν∞

x1−β∞

1− β∞

]
if β∞ 6= 1 , (4.30)

For any value β∞ 6= 1, the right hand side of eq. (4.30) is a decreasing function of x,
showing that large cells are under-represented in the population statistics as compared to
the lineage statistics, similarly to what happens for exponential growth.

4.2 Small size limit
Balagué et al. showed that the population distribution was given in the small-size limit
by (Balagué et al., 2013):

ψ(x) ∼
x→0

xκ0+1−β0 if β0 < 1
xκ0 if β0 ≥ 1 .

(4.31)

In order to understand intuitively the case splitting into two regimes, we give here an
argument adapted from the fragmentation theory (Cheng et al., 1988), which is also
easily generalizable to the lineage case. We multiply eq. (4.5) by xk and integrate over x:

r0(mLk − 1)Mk+α0 = ΛMk − ν0kMk+β0−1 . (4.32)

From the power-law behavior of b near 0, we get that not all moments Lk exists: there is a
critical kc < 0 under which Lk diverges. First we consider the case α0 > 0. When letting
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k → k+
c , the left hand side of eq. (4.32) diverges, and so must the moment M of lowest

order in the right hand side. When β0−1 ≥ 0,Mk is the moment of lowest order and must
diverge, while Mk+β0−1 and Mk+α0 converge, so that Mk ∝ Lk where the proportionality
constant is positive, and thus ψ coincide with b: ψ(x) ∼

x→0
xκ0 . On the other hand, when

β0 − 1 < 0, the moment of lowest order is Mk+β0−1 and thus Mk+β0−1 ∝ Lk, where the
proportionality constant is positive because kc < 0. In that case, ψ(x) ∼

x→0
xκ0+1−β0 .

When α0 = 0, the stability condition reads β0 − 1 < 0, so that we are in the second case.
The lineage equation on moments is obtained by following the same steps:

r0(Lk − 1)Nk+α0 = −ν0kNk+β0−1 . (4.33)

The fundamental difference with the population case is the absence of terms in Nk. As a
consequence, we obtain Nk+β0−1 ∝ Lk regardless of the value of β0, so that:

φ(x) ∼
x→0

xκ0+1−β0 . (4.34)

This analytical prediction is in perfect agreement with numerical resolutions of the PBE
using a finite difference method with an implicit scheme, shown on fig. 4.4 right, for three
different values of β = 0.5, 1 and 1.5.

Finally, we obtain the lineage-population bias by comparing eqs. (4.31) and (4.34):

ψ(x) ∼
x→0

φ(x) if β0 < 1
xβ0−1φ(x) if β0 ≥ 1 .

(4.35)

When β0 = 1, there is no lineage-population bias as predicted in section 2.2. Indeed,
ψb(x)(x) is equal to φ2xb(x)(x)/x ∼

x→0
xκ0+1/x = φb(x)(x), where the factor x and the

modified kernel 2xb(x) that increases coefficient κ0 by 1 exactly compensate.
Interestingly, there is no bias for any value β0 < 1, which, following the discussion

of section 2.2, implies that there is no correlation between size and divisions. Indeed,
with deterministic partitioning, the daughter cell inherits half the volume of its mother,
so that the only way to reach vanishing sizes it to divide a lot, whereas when all fractions
of volume are allowed at division, a cell can also reach small sizes with few divisions if
it inherits a small fraction of its mother volume. As a consequence, the correspondence
between final size and number of divisions is blurred by the presence of noise in the volume
partitioning.

On the other hand, when β0 > 1, that is for cell growing slower than exponential in the
region of small sizes, the lineage-population bias depends on β0. Surprisingly, the lineage
statistics is biased towards small cells as compared to the population statistics, unlike what
we expected from the knowledge of deterministic partitioning. This suggests a correlation
between small sizes and small numbers of divisions, that may be explained by the fact
that cells that reach very small sizes, because of extremely-asymmetric partitioning, must
grow during a very long time before reaching sizes at which they are likely to divide again,
and end up with less divisions than average.
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4.3 Validity for the adder model
Until now, we focused on the sizer model, where the division rate is only a function of the
size x of the cell. Other models of cell size control have been proposed in the literature
and presented in section 4.1 of chapter 1. In particular, the adder model which postulates
that the distribution of volume added between birth and division is independent of the
birth volume has been observed to account for a broad range of experimental data (Taheri-
Araghi et al., 2015; Jun et al., 2018). In this section, we show that the asymptotic results
derived above remain valid for the adder model. To do so, let us first re-write explicitly
the population balance equation (eq. (1.54)) at the population probability level for the
pair or variables (x, xb) where xb is the size at birth:

∂tψ(x, xb) = −∂x [ν(x)ψ(x, xb)]− [Λp(t) + ν(x)ζ(x− xb)]ψ(x, xb) for x > xb

(4.36)

ν(xb)ψ(xb, xb) = m
∫ dx′

x′
dx′b b(xb/x′)ν(x′)ζ(x′ − x′b)ψ(x′, x′b) , (4.37)

where ψ(x, xb) is the fraction of cells of size x at time t which were born at size xb.
The lineage equation is obtained from this equation by setting m = 1 and Λp(t) = 0
again. Note already a fundamental difference between this equation and eq. (4.5): the
term accounting for the birth of new cells enters as a boundary condition for the adder,
because the added volume is reset to 0 at division.

For the large-size limit, a direct integration of the steady-state version of eq. (4.36)
gives

ψ(x, xb) = ψ(xb, xb)
ν(xb)
ν(x) exp

[
−
∫ x

xb

dy Λ
ν(y) +

∫ x−xb

0
dy ζ(y)

]
. (4.38)

For any given xb, in the limit where x→ +∞, we have x−xb ∼ x, so that the exponential
does not depend on xb anymore. Thus, the marginal size distribution obeys:

ψ(x) ∼
x→+∞

Cν(x)−1 exp
[
−
∫ x

dy
(

Λ
ν(y) + ζ(y)

)]
, (4.39)

where C =
∫∞

0 dxb ψ(xb, xb)ν(xb) comes from the integration of the joint probability
ψ(x, xb) over xb. Finally, this large-size behavior is the same as eq. (4.26) for the sizer,
with r(x) = ν(x)ζ(x). As a consequence, the lineage-population biases in the large-size
limit eqs. (4.29) and (4.30) remain valid for the adder model.

In the small-size limit, we saw before that the tail behavior was independent of the
shape of the division rate, which is the only difference between the sizer and adder models,
so we anticipate that the results are unchanged. To prove it, we still consider ν(x) ∼

x→0
ν0x

β0 and b(x) ∼
x→0

b0x
κ0 . Multiplying eq. (4.36) by xk and integrating over x and xb leads

after simple manipulations to:

ν0(mLk − 1)
∫

dxdxb xβ0+kζ(x− xb)ψ(x, xb) = ΛMk − ν0kMk+β0−1 , (4.40)

where Mk =
∫∞

0 dx xkψ(x) ≡
∫∞

0 dxdxb xkψ(x, xb) is the k-th moment of the marginal
size distribution ψ(x).
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Figure 4.5: Example of size evolution versus time for a single lineage from Tanouchi et al.,
2017, in the condition 27 ◦C.

Now we suppose that there is a δ0 ≥ 0 such that ζ(x) = O(xδ0) when x→ 0, meaning
that the division rate per unit volume ζ is growing as a power law or slower. In this case,
the integral in the left hand side is smaller than Mk+β0+δ0 , and thus the integral does not
diverge when Mk+β0+δ0 does not diverge. The rest of the proof is the same as for the
sizer, where β0 + δ0 plays the role of α0. Finally, the small-size lineage-population biases
eq. (4.35) remain true for the adder model.

Before closing this section, we would like to draw the attention of the reader on the
fact that in none of the different lineage-population biases derived in the previous sections
does the division rate appear explicitly. In this section we showed that they hold for the
adder model, which is a particular choice of two-variable division rate. This observation
suggests that these biases could be correct for a much broader class of division rates,
possibly involving other variables.

5 Noisy single-cell growth
Until now we considered that single-cell growth was deterministic. However, experimental
data suggest that exponentially-growing cells are subject to stochasticity at different levels.
Note that for these cells, the term ‘single cell growth rate’ often refers to the numerical
factor ν in the function ν(x) = νx, rather than to the function itself as we used before;
therefore to be coherent with the literature on the subject we adopt this definition in
this section. The variability in single cell growth rates has been mainly modeled with a
Markov process, where the single cell growth rate changes from one cycle to the next one,
but remains constant inside each cycle, so that the growth of a single cell is deterministic
(Doumic et al., 2015; García-García et al., 2019). This kind of modeling accounts for
cell-to-cell variability, which affects the population growth rate (Olivier, 2017), either
increasing or decreasing it depending on mother-daughter correlations (Lin et al., 2020).
On the other hand, experimental cycles exhibit fluctuations around the exponential trend,
as shown on fig. 4.5 for a single cell size trajectory using E. coli data from Tanouchi et al.,
2017. This prompts us to describe single-cell growth as a random process with a diffusive
term accounting for in-cycle variability. Experimental data on E. coli (Kiviet et al., 2014)
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suggest that both in-cycle and cell-to-cell sources of variability are present. However,
a recent study (Jia et al., 2021) suggested that the cell-to-cell variability in growth has
little impact on the steady-state size distribution. We thus decide to focus on the in-cycle
source of variability in cell growth.

In the absence of noise, the Langevin dynamics of cell growth is given by dx = νxdt,
and when considering noisy exponential growth, a Gaussian noise is usually put on the
growth rate itself (Alonso et al., 2014): dx = (νdt+

√
2DdW )x, where W is the Wiener

process. In the corresponding Fokker-Planck representation, this leads to a new term
with diffusion coefficient D(x) = Dx2, which we call multiplicative noise. Therefore, the
number n(x, t) of cells of size x at time t follows

∂tn(x, t) = −ν∂x[xn(x, t)] +D∂x2 [x2n(x, t)]− r(x)n(x, t) +m
∫ dx′

x′
b(x/x′)r(x′)n(x′, t) ,

(4.41)
supplemented with the ‘no-flux’ boundary conditions at x = 0 and x =∞:

lim
x→0

D∂x[x2n(x, t)]− νxn(x, t) = lim
x→∞

D∂x[x2n(x, t)]− νxn(x, t) = 0 , (4.42)

which ensure that eq. (1.65) holds, namely that the instantaneous population growth
rate is the average value of the division rate. With the stronger boundary conditions
x2pback(x, t) → 0 when x → 0 and x → +∞, and x3∂xpback(x, t) → 0 when x → 0 and
x → +∞, we recover eq. (4.18), namely that the steady-state population growth rate
Λ is equal to the single cell growth rate ν. This follows again from the integration of
the population balance equation at the level of the population distribution obtained from
eq. (4.41), after multiplication by x. In the following we suppose that these conditions
are fulfilled.

To our knowledge, exact solutions to eq. (4.41) were obtained for deterministic parti-
tioning and only for specific growth rates ν(x), division rates r(x) and diffusion coefficients
D(x). For instance, it was solved for constant functions ν(x), r(x) and D(x), both for
symmetric (Efendiev, Brunt, Wake, et al., 2018) and asymmetric (Efendiev, Brunt, Zaidi,
et al., 2018) partitioning; and for asymmetric partitioning, exponential growth ν(x) = νx,
multiplicative noise D(x) = Dx2 and quadratic division rate r(x) = rx2 (Zaidi et al.,
2016). In this last case, the solution is a series of modified Bessel functions, generalizing
the Dirichlet series obtained when there is no diffusion, and arising from the quadratic
division rate which turns eq. (4.41) into a modified Bessel equation. Therefore, it seems
difficult to generalize this method to more general power law division rates.

In this section, in order to investigate the impact of this source of stochasticity on the
lineage-population bias derived in section 4.1, we seek asymptotic lineage and population
distributions for large sizes and for more general divisions rates r(x) = rxα and partition
kernels. We show in appendix B.2 and appendix C that the lineage and population steady
state distributions are equivalent in the large size limit and given by

ψ(x) ∼
x→∞

φ(x) ∼
x→∞

x
ν

2D−
3
2−

α
4 exp

[
− 2
α

√
r

D
x
α
2

]
. (4.43)

Just like the case of deterministic growth, the large-size behaviors of φ and ψ are inde-
pendent of the partitioning kernel. In the case α = 2, we recover the result obtained in
Zaidi et al., 2016 (up to a missing factor

√
x due to a typo).
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Figure 4.6: Large size asymptotic behaviors of the lineage and population distributions
φ and ψ given by eq. (4.43). We fixed r(x) = xα, ν(x) = x, D = 0.4 and b(x) =
x2(1− x)2/B(3, 3) for all x, and show two different values of the strength control α. The
slopes α/2 of the solid lines are, from left to right: 5 and 2.

We numerically solve the PBE with the diffusive term using a finite difference method,
both for the lineage statistics and the population statistics. The scheme is implicit in the
first case and hybrid in the second: all terms are implicit except Λp(t), explicitly computed
using eq. (1.65). Results are shown on fig. 4.6, for two different values α = 4 and α = 10 of
the size control strength. In both cases, the population and lineage distributions coincide
in the large-size limit and align with the theoretical prediction eq. (4.43).

It may seem surprising that, unlike what happens in the case of deterministic growth
discussed in section 4.1, no lineage-population bias is observed here. In fact, this can be
understood by a generalization of the exact lineage-population bias obtained for deter-
ministic exponential growth (eq. (4.21)). With the same method, we show in appendix D
that the steady-state population distribution ψb(x)

ν with growth rate ν and partition kernel
b(x) is equal to the lineage distribution φmxb(x)

ν+2D for the modified dynamics with ν̂ = ν+2D
and b̂(x) = mxb(x), divided by the size:

φ
mxb(x)
ν+2D (x) = Kxψb(x)

ν (x) . (4.44)

Thus, eq. (4.43) is coherent with eq. (4.44), where the bias towards smaller cells accounted
for by the factor x is balanced by the larger effective growth rate ν + 2D favoring larger
cells. Indeed, one easily check from eq. (4.43) that φν+2D(x)/x = φν(x).

Finally, similarly to what happens for small sizes in presence of a stochastic kernel, the
lineage-population bias is killed by the presence of multiplicative noise. When there is no
noise, only cells that divided few times can reach large sizes, which imposes correlations
between the number of divisions and the final size. Here however, this correlation is
canceled because the number of divisions can be balanced by the noisy growth: large cells
can come from lineages with numerous divisions if they grew faster on average than the
deterministic growth at rate ν.
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6 Constant populations
Before closing this chapter, we comment on some properties of constant populations in
simple cases. In chapter 3, we investigated the effect of death or dilution on the phenotypic
distributions and showed that they are biased when the death/dilution rate is phenotype-
dependent. To obtain the explicit size distributions in presence of a non-trivial death
rate is a whole new problem, but when the population is kept constant, simple relations
can be derived. For consistency, in this section we adopt the notations from chapter 3,
where ψ(x, t) and ψ◦(x, t) are the distributions in the presence and absence of death,
respectively.

The population balance equation for the backward size distribution ψ(x, t) in the
presence of death reads:

∂tψ(x, t) =− ∂x[ν(x)ψ(x, t)]− [r(x) + Λp(t) + γt(x)]ψ(x, t)

+m
∫
dx′Σ(x|x′)r(x′)ψ(x′, t) , (4.45)

where the death rate γt(x) is a priori time and size dependent. For simplicity we consider
deterministic growth here (D = 0), which has no consequences on the following results.
We recall that the instantaneous population growth rate is given by eq. (3.18):

Λt =
∫
dx [(m− 1) r(x)− γt(x)]ψ(x, t) , (4.46)

and can be canceled in two simple cases: when the dilution is uniform and perfectly
balances the population growth:

γt(x) ≡ γt = (m− 1)
∫

dx r(x)ψ(x, t) , (4.47)

and when the death rate is phenotype-dependent and balances each division on average:

γt(x) ≡ γ(x) = (m− 1) r(x) . (4.48)

We already noted that in the first case the size distribution is unchanged, which can be
seen here by plugging eq. (4.47) into eq. (4.45): ψ(x, t) follows the same equation eq. (4.5)
as the population distribution without death ψ◦(x, t).

In the second case, for any size x there is on average one division giving birth to m
daughter cells for m − 1 death events each killing one cell. Reporting this death rate in
eq. (4.45) leads to:

∂tψ(x, t) = −∂x[ν(x)ψ(x, t)]−mr(x)ψ(x, t) +m
∫
dx′Σ(x|x′)r(x′)ψ(x′, t) , (4.49)

which is eq. (4.4) describing single lineages without death, with a rescaled division rate
r̂(x) = mr(x), so that

ψr(x, t) = φ◦mr(x, t) . (4.50)
We can understand qualitatively this relation as follows: in a mother machine, one mother
cell is replaced by one smaller cell with rate r(x). On the other hand, with the size-
dependent death rate in population, at a rate r(x) one mother cell gives birth to m
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smaller daughter cells and m− 1 cells of the same size as the mother are removed. Thus
with rate r(x), m mother-sized cells are replaced by m smaller cells, which is equivalent
to say that one mother is replaced by one daughter at a rate r̂(x) = mr(x). We then
understand easily that the protocol with the size-dependent death rate leads to statistics
biased towards smaller cells as compared to the lineage statistics.

7 Conclusion
The recent development of mother machine devices revived the interest in the statistical
comparison between lineage measurements and population snapshots. The unprecedented
amount of single-cell data offers new insights on the way cells maintain size homeostasis.
It is hence fundamental to quantify the statistics obtained in single-lineage setups and to
understand how they differ from classical population snapshot.

To investigate this bias for cell size distributions, we worked on the steady-state popu-
lation balance equation, separately for the population and lineage levels. We showed that
for the special case of exponential growth, the population distribution is proportional
to the lineage distribution with modified partitioning kernel and single cell growth rate,
divided by the size x. This bias is reminiscent of the correlations between the size and
the number of divisions and implies in particular than cells are on average smaller in
population than in lineage. For more general power-law growth rates, with determinis-
tic partitioning, we obtained the exact analytical expression for the lineage distribution,
which is in good agreement with experimental data on E. coli, despite the slight stochas-
ticity of the partitioning present in these data. This expression can then be used to infer
the relevant parameters of the model, such as the strength of the size control, the growth
rate and the asymmetry of the division.

We would like to emphasize a point here: the fact that E. coli data are in good agree-
ment with the theoretical predictions obtained for the size-control model we considered
does not mean that cells from these data follow a sizer mechanism, but only that the
sizer provides a good description for the size variable. Indeed, we now know that E. coli
follows an adder mechanism instead (Taheri-Araghi et al., 2015), and it was shown that
if the sizer reproduces perfectly the size distribution for single lineage E. coli data, the
sizer-simulated and experimental age distributions are indeed different (see Robert et al.,
2014, fig. S8). Nonetheless, the fact that the inferred parameters are in good agreement
with their values obtained by direct analysis of the data without any assumption on the
model shows that the sizer description of the size distribution is meaningful, and not an
artifact from over-fitting for example.

When relaxing the hypothesis of deterministic partitioning, we derived the small and
large-size tails for both statistics. We showed that the large-size behavior is independent of
the partitioning kernel, and that the lineage-population bias depends only on the growth
rate of large cells. In the small size limit, the distributions only depend on the behavior
of the partitioning kernel near 0 and of the growth rate of small cells, but is independent
of the division rate. Two regimes are observed for the small-size lineage-population bias:
for fast-growing small cells it is canceled, while for slow-growing small cells, it explicitly
depends on the growth rate of small cells. Importantly, we showed that these asymptotic
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behaviors remain valid for the adder mechanism, which is increasingly seen as the most
relevant model for cell size control. When considering noisy in-cycle growth, the two
large-size distributions become equal and explicitly depend on the noise.

An important result of this article is the cancellation of the lineage-population bias on
cell-size when noise is introduced in the system, either on the growth rate for large sizes,
or on the partitioning kernel for small sizes. Indeed, noise kills the correlations between
the size and the number of divisions undergone by the cell, thus the selection of lineages
with high reproductive success in population has no impact on the size distribution.

This work can be extended in several directions. First, experimental inference suggests
a non-trivial behavior of the division rate at large sizes (Robert et al., 2014), even though
the estimation in this region could be unreliable because of the lack of statistics. Therefore,
it would be useful to relax the hypothesis of a power-law division rate. Second, we
focused on a one-variable model, with the exception of the two-variable adder model,
and it would be interesting to investigate more complex models with n variables. For
example, modeling cell-to-cell variability in growth imposes to treat the single-cell growth
rate ν as a second random variable. Finally, constant-population experiments, such as the
dynamics cytometer (Hashimoto et al., 2016), may not all be well described by a uniform
dilution rate, but rather by a dilution rate dependent on size, generation, ... as discussed
in section 4.4 of chapter 3. In this case, the size distribution obtained would not be the
same as in a freely-growing population but would bear the mark of the dilution protocol.
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8 Appendices

A Exact lineage solution for deterministic partitioning
In this appendix, we seek exact solutions to eq. (4.4) for deterministic volume partitioning,
either symmetric or asymmetric, and power law division and growth rates r(x) = rxα and
ν(x) = νxβ.

A.1 Symmetric partitioning

We follow the method proposed in Hall et al., 1990 which consists in two changes of
variables to reshape the PBE into an equation for constant division and growth rates. We
start from the steady-state equation:

[νxβφ(x)]′ = −rxαφ(x) +m1+αrxαφ(mx) , (4.51)

and we define Z(x) = xβφ(x), then

Z ′(x) = r

ν
xα−β

[
−Z(x) +m1−β+αZ(mx)

]
. (4.52)

We now define u = rxα−β+1/[ν(α− β + 1)] and Y (u) = Z(x), so that the equation on Y
reads:

Y ′(u) + Y (u) = m1−β+αY (m1−β+αu) . (4.53)
The equation on Y has the same shape as eq. (4.51) for constant growth and division
rates: α = β = 0, and for a modified number of daughter cells m̂ = m1−β+α. Hall and
Wake solved this equation in the case where m̂ > 1, which is equivalent to 1− β + α > 0
since m > 1. The solution to this equation is (Hall et al., 1989):

Y (u) = C
∞∑
k=0

ck exp
[
−mk(α−β+1)u

]
(4.54)

c0 = 1 (4.55)

ck = (−1)kmk(α−β+1)∏k
j=1(mj(α−β+1) − 1)

. (4.56)

Reverting to the notation in x with the function φ gives

φ(x) = C

xβ

∞∑
k=0

ck exp
[
−mk(α−β+1) r

ν

xα−β+1

α− β + 1

]
. (4.57)

A.2 Asymmetric partitioning

For simplicity we consider binary fission (m = 2), with asymmetric partitioning: b(x) =
δ(x− 1/ω1)/2 + δ(x− 1/ω2)/2, where ω1 > ω2 > 1 and 1/ω1 + 1/ω2 = 1. Starting from:

[νxβφ(x)]′ = −rxαφ(x) + rxα

2
[
ω1+α

1 φ(ω1x) + ω1+α
2 φ(ω2x)

]
, (4.58)
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and making the same two changes of variables as for the symmetrical case, the equation
reads

Y ′(u) + Y (u) = 1
2 [Ω1Y (Ω1u) + Ω2Y (Ω2u)] , (4.59)

where we defined Ωi = ω1−β+α
i for i ∈ {1, 2}. Since 1 − β + α > 0, the solution to this

equation is (Suebcharoen et al., 2011):

Y (u) = C
∞∑
k=0

∞∑
l=0

ck,l exp
[
−Ωk

1Ωl
2u
]

(4.60)

c0,0 = 1 (4.61)

ck,0 = (−1)kΩk
1

2k∏k
j=1(Ωj

1 − 1)
(4.62)

c0,l = (−1)lΩl
2

2l∏l
j=1(Ωj

2 − 1)
(4.63)

ck,l = Ω1ck−1,l + Ω2ck,l−1

2− 2Ωk
1Ωl

2
. (4.64)

Reverting to the original notations gives

φ(x) = C

xβ

∞∑
k=0

∞∑
l=0

ck,l exp
[
−ωk(α−β+1)

1 ω
l(α−β+1)
2

r

ν

xα−β+1

α− β + 1

]
. (4.65)

B Asymptotic lineage distribution for stochastic partitioning
In the following sub-appendices, since only the large-size limit is investigated, for simplic-
ity we drop the subscript∞ for r, ν, α and β, and the limit→∞ is always understood as
→ +∞. Moreover, we make two general comments. First, when the limit k →∞ is con-
sidered, corresponding to the large size behavior, the integrals of the type

∫∞
0 dx xkf(x)

are dominated by the behavior of the function f as x→∞. Therefore, when for example
r(x) ∼

x→∞
rxα, we write

∫∞
0 dx xkr(x)φ(x) ∼

k→∞

∫∞
0 dx xkrxαφ(x) = rNα+k. Second, the

following transformation is used to isolate the moments L of the kernel b (Cheng et al.,
1988):

∫ ∞
0

dx xk
∫ ∞
x

dy b(x/y)yα−1φ(y)

=
∫ ∞

0
dy yα−1φ(y)

∫ y

0
dx xkb(x/y)

=
∫ ∞

0
dy yk+αφ(y)

∫ 1

0
du ukb(u)

= Nα+k Lk , (4.66)

where we went from the second to the third line with the change of variable u = x/y.
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B.1 Deterministic growth

We first consider the case of deterministic growth (D = 0) for an arbitrary growth rate
with power β, and follow the method proposed in Cheng et al., 1988 for fragmentation
processes. We multiply the steady-state version of eq. (4.4) by xk−β+1 and integrate over
x, to recast the PBE as a recursion relation on the moments of the distribution:

Nk+α−β+1 ∼
k→∞

ν

r

k − β + 1
1− Lk−β+1

Nk . (4.67)

For simplicity we define ρ = α− β + 1 > 0, and n such that k = nρ, leading to

N(n+1)ρ ∼
n→∞

ν

r

nρ− β + 1
1− Lnρ−β+1

Nnρ . (4.68)

Iterating this relation leads to the general term:

Nnρ ∼
n→∞

Nρ

(
ν

r

)n−1 n−1∏
j=1

jρ− β + 1
1− Ljρ−β+1

. (4.69)

We compute the numerator as
n−1∏
j=1

(jρ− β + 1) = ρn−1(n− 1)!
n−1∏
j=1

(
1− β − 1

jρ

)
(4.70)

∼
n→∞

ρn−1(n− 1)!(n− 1)
1−β
ρ , (4.71)

where we used that ∏n
j=1

(
1− a

j

)
∼ n−a as n→∞.

We now show that the moments Ljρ−β+1 of the partition kernel can be neglected in
this limit. We consider a power-law partition kernel b(x) = b1(1−x)κ1 in the limit x→ 1,
but the argument can be made more general.

Lk ∼
k→∞

b1

∫ 1

0
dx xk(1− x)κ1 (4.72)

∼
k→∞

k−(κ1+1) , (4.73)

where we recognized the Beta function B(k + 1, κ1 + 1) =
∫ 1

0 dy yk(1 − y)κ1 , whose
asymptotic behavior when only one of the two parameters tends to infinity (here k) is
given by: B(k + 1, κ1 + 1) ∼

k→∞
Γ(κ1 + 1)k−(κ1+1). Then

ln
n−1∏
j=1

(1− Ljρ−β+1) =
n−1∑
j=1

ln(1− Ljρ−β+1) (4.74)

∼
n→∞

−
n−1∑
j=1

(jρ− β + 1)−(κ1+1) , (4.75)

where the second line is obtained by a first-order expansion of the natural logarithm.
Finally, since κ1 > 0, this series is converging when n→∞, and so is the product in the
denominator of eq. (4.69).
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The general term then reads

Nnρ ∼
n→∞

(
ρν

r

)n−1
(n− 1)!(n− 1)

1−β
ρ . (4.76)

We next use Stirling approximation: n! ∼
n→∞

√
2πn(n/e)n, switch back to k = nρ and

replace ρ:

Nk ∼
k→∞

(
νk

re

) k
α−β+1

k
1−β

α−β+1−
1
2 . (4.77)

The inverse Mellin transform of this moment is obtained in appendix C.

B.2 Stochastic growth

We examine the case of exponential growth ν(x) = νx with multiplicative noise D(x) =
Dx2. Following the same steps as for the deterministic growth, we multiply by xk the
steady-state population balance equations at the population and lineage levels obtained
from eq. (4.41), and integrate them over x:

Mk+α ∼
k→∞

1
r

ν(k − 1) +Dk(k − 1)
1−mLk

Mk (4.78)

Nk+α ∼
k→∞

1
r

νk +Dk(k − 1)
1− Lk

Nk . (4.79)

As for the deterministic case, the moments Lk are negligible for large k, so that the
moments Mk+α and Nk+α differ only by their numerators. We conduct the calculations
for the lineage distribution first and then show why the difference in the numerators does
not affect the general moment.

We define n such that k = nα, and iterate the relation to obtain the general term:

Nnα ∼
n→∞

Nα

(1
r

)n−1 n−1∏
j=1

νjα +Djα(jα− 1)
1− Ljα

. (4.80)

The numerator is computed as:
n−1∏
j=1

[νjα +Djα(jα− 1)] = (α2D)n−1(n− 1)!2
n−1∏
j=1

(
1− D − ν

jαD

)
(4.81)

∼
n→∞

(α2D)n−1(n− 1)!2(n− 1) ν−DαD . (4.82)

The Stirling approximation: n!2 ∼
n→∞

2πn(n/e)2n is used to obtain

Nnα ∼
n→∞

(
α2D

r

)n−1 (
n− 1
e

)2(n−1)
(n− 1) ν−DαD +1 . (4.83)

Switching back to k = nα leads to:

Nk ∼
k→∞

√D
r

k

e

 2k
α

k
2
α
ν−D
2D −1 . (4.84)
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The inverse Mellin transform of this moment is obtained in appendix C.
The numerator of the general moments Mnα is given by

n−1∏
j=1

[ν(jα− 1) +Djα(jα− 1)] = (α2D)n−1(n− 1)!2
n−1∏
j=1

(
1− 1

jα

)
n−1∏
j=1

(
1 + ν

jαD

)
(4.85)

∼
n→∞

(α2D)n−1(n− 1)!2(n− 1)− 1
α (n− 1) ν

αD , (4.86)

which is identical to eq. (4.82), so that the moment Mk is equal to Nk given by eq. (4.84),
and leads to the same distribution for large sizes.

C Mellin transform of polynomial-exponential distribution
For a distribution y characterized by its large x behavior:

y(x) ∼
x→+∞

xη−λ(µ−1/2)−1 exp
[
− x

λ

λω

]
, (4.87)

the moments of large order read

Mk ∼
k→+∞

∫ ∞
0

dx xk+η−λ(µ−1/2)−1e−
xλ

λω (4.88)

∼
k→+∞

λ−1(λω)(k+η)/λ−µ+1/2
∫ ∞

0
dt t(k+η)/λ−µ−1/2e−t , (4.89)

where we went from the first to the second line using the change of variable t = xλ/λω. We
recognize the function Γ(z) =

∫∞
0 dt tz−1e−t in the second line with z = (k+η)/λ−µ+1/2,

and we use the Stirling approximation: Γ(z + 1) ∼
z→∞

√
2πz

(
z
e

)z
. Finally, the Mellin

transform reads:

Mk ∼
k→+∞

λ−
3
2 (λω)(k+η)/λ−µ+1/2

√
2π(k + η − λ(µ+ 1/2))

(
k + η − λ(µ+ 1/2)

λe

) k+η
λ
−µ−1/2

(4.90)

∼
k→+∞

(
kω

e

) k
λ

k
η
λ
−µ . (4.91)

D Lineage-population bias for exponentially-growing cells
In this section, we consider the case of exponential growth ν(x) = νx with multiplicative
noise D(x) = Dx2, in steady-state so that Λ = ν, for which eq. (4.5) and eq. (4.4) read:

0 = −ν∂x[xψ(x)] +D∂x2 [x2ψ(x)]− [r(x) + ν]ψ(x) +m
∫ dx′

x′
b(x/x′)r(x′)ψ(x′) (4.92)

0 = −ν∂x[xφ(x)] +D∂x2 [x2φ(x)]− r(x)φ(x) +
∫ dx′

x′
b(x/x′)r(x′)φ(x′) . (4.93)
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We multiply the population equation by x, and recast it for the function q(x) = xψ(x):

0 = −νx∂xq(x) +Dx∂x2 [xq(x)]− [r(x) + ν] q(x) +
∫ dx′

x′
mx

x′
b(x/x′)r(x′)q(x′) . (4.94)

We identify the derivative of a product −νx∂xq(x) − νq(x) = −ν∂x[xq(x)], and show
straightforwardly that Dx∂x2 [xq(x)] = D∂x2 [x2q(x)] − 2D∂x[xq(x)], so that the second
term is absorbed in the first-order derivative describing exponential growth:

0 = −(ν + 2D)∂x[xq(x)] +D∂x2 [x2q(x)]− r(x)q(x) +
∫ dx′

x′
mx

x′
b(x/x′)r(x′)q(x′) . (4.95)

This equation is eq. (4.93), obeyed by the lineage distribution φ with modified growth
rate ν̂ = ν + 2D and partition kernel b̂(x) = mxb(x), therefore q(x)b(x)

ν is proportional to
φ
mxb(x)
ν+2D :

φ
mxb(x)
ν+2D (x) = Kxψb(x)

ν (x) , (4.96)

with K =
(∫∞

0 dx xψb(x)
ν (x)

)−1
a normalization constant. Importantly, b̂ is a proper

kernel, which is normalized as a consequence of the conservation of volume of the original
kernel b:

∫ 1
0 dx b̂(x) = m

∫ 1
0 dx xb(x) = 1. Note however that the modified kernel b̂ need

not ensure itself the conservation of volume. In fact, imposing this property for kernel
b̂ reads: m

∫ 1
0 dx xb̂(x) = m2 ∫ 1

0 dx x2b(x) = 1. Combining the conservation of volume
for both kernels leads to L2

1 = L2, so that the variance of b is null and b̂(x) = b(x) =
δ(x− 1/m). Consequently, the modified kernel conserve the volume only if it is equal to
the original kernel, that is in the case of equal fission in m parts
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1 Introduction

Thermodynamics aims at determining which physical processes are possible or not, and
at giving universal constraints for their speed, accuracy, power and efficiency. A clear
thermodynamic description of cell growth and division would give us clues about the
performances of these processes compared to their thermodynamic bounds: are cell growth
and division optimized? This raises the more fundamental question of the nature of the
output to be optimized in cell colonies. Ultimately, understanding the performance of
these processes could help us compare the different models of cell size control and the
influence of the different parameters of the models.

In this chapter, we take a first step in this direction by proposing a thermodynamic
description of cell growth and division. These two processes are clearly absolutely ir-
reversible, and must be constrained by the laws of thermodynamics. By absolutely ir-
reversible, we mean that a process occurs only in one direction, and its time-reversed
counterpart is never observed. Since in stochastic thermodynamics the notion of total
entropy production quantifies the time-symmetry breaking by comparing the forward to
backward (time-reversed) path probabilities (eq. (1.26)), absolutely irreversible processes
are challenging to address because they lead to infinite productions of entropy. A diver-
gent production of entropy would be associated with a diverging dissipation of heat in the
environment, which we of course never observe, even for absolutely irreversible processes.
This suggests that this definition of entropy production is not adapted to such processes
and should be modified in a meaningful way. Different approaches have been proposed to
tackle this issue, and we give here a brief summary of two of them, which may be relevant
for cell division. A more complete account can be found in Busiello et al., 2020.

A first way to bypass the difficulty is to argue that absolutely irreversible processes are
not actually absolutely non-reversible, but rather very rare and thus never observed. This
idea has been put forward in Zeraati et al., 2012 and in England, 2013. In these works,
lower bounds on the production of entropy were proposed based on physical reasoning.
Of particular interest for us is England, 2013, where the author computed a lower bound
for the production of entropy associated with cell division, based on the probability of
going from two cells to one cell following the breaking of all peptide bonds from one cell,
resulting in its dissolution in the environment. Although of conceptual significance, this
result has limited impact to understand the process of cell division since it only gives a
vanishingly small backward path probability, which could never be observed. A second
way, proposed in Fuchs et al., 2016 in the context of stochastic resetting, is to compute
the contributions of the irreversible parts of the processes to the change in the Shannon
entropy of the system, without using the notion of total entropy production. This is
the approach we pursue here, namely describing cell growth and division in terms of
two subprocesses: branching and resetting, which can then be analyzed separately using
stochastic thermodynamics.

Early works on target search (Coppey et al., 2004; Bénichou et al., 2005), followed by
the seminal article Evans et al., 2011, have laid the foundations of resetting, a stochastic
process involving an instantaneous transition to a pre-defined position or region of space.
In the past ten years, resetting has been a very active field of research, which various
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groups have extensively studied in the context of target search or in the context of non-
equilibrium steady-states (NESS) and first passage times (see Evans et al., 2020 for a
comprehensive review). The first study of resetting from the point of view of stochastic
thermodynamics was carried out in Fuchs et al., 2016, where the first and second laws of
thermodynamics for resetting to a single fixed position were derived. Later, Roldán et al.
developed a path integral approach for resetting (Roldán et al., 2017), which was used by
Pal et al. to derive integral fluctuation relations (Pal et al., 2017; Gupta et al., 2020) and
thermodynamic uncertainty relations (Pal et al., 2021) for systems with resetting.

To our knowledge, the combination of stochastic resetting and branching processes
has only been considered for the purpose of search strategies (Eliazar, 2017; Pal et al.,
2019). In particular, the authors compared first passage times for branching search, a
term coined in Eliazar, 2017 to describe a strategy mixing branching and resetting, and
for resetting alone. However, the thermodynamics of stochastic processes involving both
resetting and branching at the same time has not been studied so far.

Branching processes with resetting are not only useful in the context of target search
but are fundamental in biology, in particular to describe populations of cells that grow
and divide. Indeed, cell division intrinsically features branching, since one mother cell
gives birth to two daughters cells. As a result of division, some traits of daughter cells are
reset to an absolute value, such as the age of the cell which is reset at 0, while others are
reset to a value relative to that of the mother at the moment of the division. For instance,
the size of the daughter cell restarts at a value close to half the size of the mother cell for
organisms undergoing symmetric division. In order to study cell division from the point of
view of stochastic thermodynamics, we extend the analysis of Fuchs et al., 2016 to allow
a restart at a relative position instead of an absolute one, and to incorporate branching
in the formalism.

The population balance equations for the different models of cell size control at the
probability level (see section 4.3 of chapter 1) are very similar in form to Fokker-Planck
equations used in stochastic thermodynamics to describe the motion of overdamped Brow-
nian particles (see section 2.1 of chapter 1). For this reason, this chapter is organized as
follows: in section 2, we first present our results in the general setting of a population
of overdamped Brownian particles undergoing relative resetting and branching in a 1-
dimensional potential. We derive the first and second laws of thermodynamics for this
model and identify the separate contributions of resetting and branching. Moreover, we
propose an alternative version of the second law, which remains valid for athermal systems
which are not in contact with a heat bath, and we show how our results can be generalized
to the case of an n-dimensional problem. In section 3, we apply our results to the three cell
size control models: timer, sizer and adder. We obtain analytical expressions for the work
and entropy terms associated with resetting and branching, whose signs are indicative
of the transfer of energy and entropy between the two sub-processes. Finally, stochastic
thermodynamics has been often used to analyze information processing and efficiency of
small biological systems. In the same spirit, we propose an analogy between cell division
and stochastic heat engines, which leads us to introduce an efficiency quantifying a form
of conversion of entropy production from resetting to branching.
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ResettingBranching

Figure 5.1: Illustration of a particle branching into m = 2 particles, each of which is reset
to a position relative to the branching position x through the transition probability Σ.
The parabolic potential shown here is for illustration only, potentials can be arbitrary in
our model.

2 Thermodynamics of branching processes with
stochastic resetting

2.1 Model
We consider a population of overdamped Brownian particles with mobility µ and diffusion
coefficient D, in contact with a heat bath at temperature T and subject to a potential V .
For simplicity, we treat the case of a 1-dimensional potential V (x) in the main text and
show in appendix A that our results hold in n dimensions. In the following we assume
Einstein relation D = µT , with unit Boltzmann’s constant kB = 1. In addition to their
diffusive motion, particles randomly branch at a space-dependent rate r(x), leading one
particle to give birth to m particles (including the original one) at the same position.
Instantly after branching, all m particles are reset to new positions with the transition
probability Σ(x|x′), for a restart at position x if the original particle branched at position
x′, as illustrated on fig. 5.1. Since the positions of the new particles depend on x′, we call
it relative resetting, as opposed to absolute resetting, where particles either restart at a
fixed position x0 (Σ(x|x′) = δ(x− x0)) or restart at a random position with a probability
distribution Σ(x|x′) = f(x), independently of x′. In this case, an explicit solution of the
NESS is in general no longer available, unlike what happens for absolute resetting. The
dynamics of the number n(x, t) of particles at position x at time t is described by the
following generalized Fokker-Planck equation:

∂tn(x, t) = −∂x [µF (x)n(x, t)−D∂xn(x, t)]− r(x)n(x, t) +m
∫

dx′Σ(x|x′)r(x′)n(x′, t) ,
(5.1)

where F (x) = −∂xV is the conservative force deriving from the potential V . We recast
this equation at the probability level by defining the proportion of particles at position
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x at time t: p(x, t) = n(x, t)/Nt, with Nt =
∫

dx n(x, t) the total number of particles at
time t:

∂tp(x, t) = −∂xj(x, t)− [Λp(t) + r(x)] p(x, t) +m
∫

dx′Σ(x|x′)r(x′)p(x′, t) , (5.2)

where we have defined the current

j(x, t) = µF (x)p(x, t)−D∂xp(x, t) . (5.3)

We take vanishing boundary conditions for probability p and current j at x = 0 and
x→ +∞. Note that p is a backward probability, but since the forward probability is not
used in this chapter, we drop the subscript without ambiguity.

Before going into the details of the thermodynamics of this model, let us make an
important remark. In this first section, we aim to give a general thermodynamic theory
of branching processes with resetting, which is framed in the context of the paradigmatic
system of stochastic thermodynamic: the overdamped Brownian particle. The position of
such a particle follows Gaussian fluctuations resulting from the random collisions with the
medium particles, and is accounted for by the diffusive term D∂x2 [p(x, t)] in the Fokker-
Planck equation. However, in the previous chapter on size distributions, we introduced
noise on cell growth by adding a diffusive term of the form D∂x2 [x2p(x, t)] to the popula-
tion balance equation (section 5 of chapter 4), which corresponds to a Gaussian noise on
the logarithm of the size. Doing so, the size remains positive even for noises of possibly
large amplitude. Therefore, the kind of noise describing Brownian particles is not the
best suited to describe the noise in cell growth. This is however not a problem since we
propose an alternative description for athermal systems in section 2.3 where the diffusion
coefficient is set to zero. This alternative version is the only one applied in section 3 to
cell growth and division, where growth is thus considered deterministic with a rate ν(x).

2.2 First and second laws of thermodynamics
We follow the approach from Fuchs et al., 2016 to derive the first and second laws of
thermodynamics from eq. (5.2). First, we multiply eq. (5.2) by the potential V (x) and
integrate over x to obtain the time evolution of the internal energy U =

∫
dx V (x)p(x, t):

−U̇ =
∫

dx j(x, t)F (x) +m
∫

dx r(x)p(x, t) [V (x)− 〈V 〉ρnb ]

+ Λp(t)U − (m− 1)
∫

dx r(x)p(x, t)V (x) , (5.4)

where we have introduced the newborn position distribution

ρnb(x, t) =
∫

dx′ Σ(x|x′)r(x′)p(x′, t)∫
dx′ r(x′)p(x′, t) , (5.5)

defined as the ratio of the rate of birth of new particles at position x to the rate of
birth of the total number of newborn particles. The notation 〈·〉ρnb indicates the average
value with respect to the distribution ρnb, while by default, averages values, variances and
covariances are implicitly computed with the probability distribution p.
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Like in the introduction to stochastic thermodynamics in section 2 of chapter 1, we
identify the first term as the rate at which heat is transferred from the system to the
thermostat:

Q̇ =
∫

dx j(x, t)F (x) . (5.6)

The second term is the rate at which work is extracted from the system due to the resetting
of particles to their new positions:

Ẇrst = m
∫

dx r(x)p(x, t) [V (x)− 〈V 〉ρnb ] . (5.7)

The last two terms are interpreted as the work extraction rate from the system due the
branching of particles. They can be written more explicitly by using the expression of
the population growth rate as the average value of the division rate: Λp(t) = (m −
1)
∫

dx r(x)p(x, t) (see eq. (1.65), which is still valid for eq. (5.2) involving a diffusive
term, because of the vanishing boundary conditions for current j):

Ẇbrc = Λp(t)U − (m− 1)
∫

dx r(x)p(x, t)V (x) (5.8)

= −(m− 1)Cov(r, V ) . (5.9)

This contribution is null if r(x) and V (x) are independent, which is trivially the case when
at least one of the two functions is constant. Indeed, the average internal energy is not
affected by the apparition of newborn particles at any position if the energy landscape
V (x) is flat; nor if the branching rate is constant, so that branching affects equally all
particles regardless of their positions and thus has no impact on p(x, t).

Finally, the first law for branching processes with relative resetting reads:

− U̇ = Q̇+ Ẇrst + Ẇbrc , (5.10)

where we count positively work extracted from the system and heat dissipated into the
environment. Note that unlike in section 2 of chapter 1, there is no external protocol
λ here, and thus no work associated to it. On the other, the changes in energy due
to branching and resetting are categorized as works because they are not due to the
interactions with the heat bath.

The non-equilibrium entropy of the system is defined by the following Shannon en-
tropy:

Ssys = −
∫

dx p(x, t) ln p(x, t) . (5.11)

To derive the second law, we take the time derivative of this entropy and use eq. (5.2),
which gives:

Ṡsys =−
∫

dx j(x, t)∂xp(x, t)
p(x, t) − Λp(t)Ssys − (m− 1)

∫
dx r(x)p(x, t) ln p(x, t)

+m
∫

dx r(x)p(x, t) [ln p(x, t)− 〈ln p〉ρnb ] , (5.12)
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where the term due to the current j(x, t) can be split into two contributions if the tem-
perature is non-zero (the case T = 0 is discussed in section 2.4):

−
∫

dx j(x, t)∂xp(x, t)
p(x, t) =

∫
dx j2(x, t)

Dp(x, t) −
∫

dx µj(x, t)F (x)
D

. (5.13)

We identify four contributions to the rate of change in the entropy of the system,
respectively the entropy production rate due to the heat exchange with the thermostat Ṡm,
the entropy production rate of non-equilibrium current j(x): Ṡc, the branching entropy
production rate Ṡbrc and the resetting entropy production rate Ṡrst:

Ṡm = Q̇

T
=
∫

dx µj(x, t)F (x)
D

, (5.14)

where we used Einstein’s relation D = µT ,

Ṡc =
∫

dx j2(x, t)
Dp(x, t) ≥ 0 (5.15)

Ṡbrc = −Λp(t)Ssys − (m− 1)
∫

dx r(x)p(x, t) ln p(x, t) (5.16)

= −(m− 1)Cov(r, ln p) (5.17)

Ṡrst = m
∫

dx r(x)p(x, t) [ln p(x, t)− 〈ln p〉ρnb ] . (5.18)

Using the positivity of the entropy production rate of non-equilibrium currents, the second
law for branching processes with relative resetting in steady state (Ṡsys = 0) reads:

Ṡrst + Ṡbrc ≤ Ṡm (5.19)

The first and second laws we derived reduce to the ones obtained in Fuchs et al.,
2016 if there is no branching and if the particle is reset to a fixed position x0. Indeed,
setting m = 1 and thus Λ = 0, leads to Ẇbrc = 0 and Ṡbrc = 0, and therefore eq. (5.10)
and eq. (5.19) read respectively −U̇ = Q̇ + Ẇrst and Ṡrst ≤ Ṡm. In our framework,
absolute resetting to fixed position x0 is obtained by setting Σ(x|x′) = δ(x − x0), then
ρnb(x) = δ(x − x0) and thus 〈V 〉ρnb = V (x0) in eq. (5.7) and 〈ln p〉ρnb = ln p(x0) in
eq. (5.18), in agreement with Fuchs et al., 2016.

Instead, when there is branching but no resetting, i.e. when particles randomly mul-
tiply and then continue to diffuse from the same position, the transition probability is
given by Σ(x|x′) = δ(x − x′), and thus ρnb(x, t) = r(x)p(x, t)/

∫
dx′ r(x′)p(x′, t). In this

case,
∫

dx r(x)p(x, t)V (x) =
∫

dx r(x)p(x, t)〈V 〉ρnb in eq. (5.7), leading to Ẇrst = 0, and
similarly Ṡrst = 0. Without resetting, the first and second laws finally read −U̇ = Q̇+Ẇbrc
and Ṡbrc ≤ Ṡm respectively.
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2.3 Alternative form of the second law
To derive the second law in the previous section, we decomposed eq. (5.13) into two terms:
a rate of change in medium entropy Ṡm due to the heat exchange with surrounding heat
bath, and a positive entropy production rate Ṡc due to non-equilibrium currents.

Alternatively, another decomposition is obtained by replacing the current j(x) by its
definition:

−
∫

dx j(x, t)∂xp(x, t)
p(x, t) = µ

∫
dx p(x, t)∂xF (x) + µT

∫
dx p(x, t) (∂x ln p(x, t))2 , (5.20)

which leads to:

Ṡsys = Ṡbrc + Ṡrst + Ṡfd + µT
∫

dx p(x, t) (∂x ln p(x, t))2 , (5.21)

where we introduced the average force divergence Ṡfd = µ〈∂xF 〉.
To establish a closer connection with the discussion of the athermal case (see next

section), it is useful to combine the last term in eq. (5.21) with Ṡfd by using the notion
of entropic force, Fent(x, t) = −T∂x ln p(x, t). With this, one can introduce a generalized
force F̃ (x, t) = F (x)+Fent(x, t) ≡ F (x)−T∂x ln p(x, t), and the corresponding generalized
average force divergence contribution to the entropy production rate, ˙̃Sfd = µ〈∂xF̃ 〉. Note
that we have:

µT
∫

dx p(x, t) (∂x ln p(x, t))2 = −µ
∫

dx p(x, t)∂x ln p(x, t) Fent(x, t)

= −µ
∫

dx ∂xp(x, t) Fent(x, t)

= µ
∫

dx p(x, t)∂xFent(x, t)

≡ µ〈∂xFent〉, (5.22)

which leads to the result

Ṡfd + µT
∫

dx p(x, t) (∂x ln p(x, t))2 = µ〈∂x[F + Fent]〉 = ˙̃Sfd. (5.23)

We then rewrite eq. (5.21) in the following equivalent form:

Ṡsys = Ṡbrc + Ṡrst + ˙̃Sfd. (5.24)

Using the positivity of the last term in the right hand side of eq. (5.21), we obtain an
alternative version of the second law in steady state:

Ṡbrc + Ṡrst ≤ −Ṡfd . (5.25)

The two versions of the second law eqs. (5.19) and (5.25) provide different bounds for
the entropy production rate due to branching and resetting, and by combining them we
have:

Ṡbrc + Ṡrst ≤ min
(
−Ṡfd, Ṡm

)
. (5.26)
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In the limit of large temperatures, the current j(x, t) = µF (x)p(x, t) − D∂xp(x, t) be-
comes purely diffusive j(x, t) ' −D∂xp(x, t), and as a result, the medium entropy
Ṡm = µ〈∂xF 〉 = Ṡfd. Thus, in this limit the upper bound reads Ṡbrc + Ṡrst ≤ −|Ṡfd|.
The behavior in the opposite limit of vanishing temperature is examined in more details
in the next section.

2.4 Athermal systems
Until now, we considered particles in contact with a heat bath, which allowed us to
use standard stochastic thermodynamics. However, athermal systems where T = 0 are
important to describe situations where particles move deterministically between branching
events. In that case, there is no diffusion, only the deterministic force F (x) is present,
but branching and resetting events are still stochastic. Such situations are biologically
relevant as we discuss in section 3.

The first law is still mathematically valid, even if the current j(x, t) = µF (x)p(x, t) is
only convective. We find Q̇ = µ〈F 2〉, and we call the corresponding quantity Q an ather-
mal heat, although it is important to emphasize that this quantity cannot be interpreted
as an exchange of heat with a thermostat.

The second law in the form of section 2.2 is no longer valid, since Ṡm and Ṡc diverge in
the case T = 0. However, the other decomposition of the Shannon entropy (section 2.3)
remains defined because the last term in eq. (5.21) (entropic contribution) tends to 0 as
T → 0, since the integral is not singular in practice. We propose to call the following
equality

Ṡsys = Ṡbrc + Ṡrst + Ṡfd (5.27)
the second law for athermal systems (despite the absence of a corresponding inequality)
because it corresponds to the T = 0 version (i.e., in absence of entropic forces) of eq. (5.24).

3 Application to models of cell size control
As stated in the introduction, branching processes with resetting appear in biology, for
example in the context of cell division. Indeed, when cells divide they give birth to
m daughter cells (usually 2), and many cell properties are affected by division. Cell
division provides examples of absolute resetting, for instance age which is reset at 0 for
both daughter cells independently of the age of the dividing mother cell, and of relative
resetting, such as for the volume or the number of proteins for example, that are split at
division between the two daughter cells.

In this section, we use the results from section 2 in the context of growing colonies
of cells, focusing in particular on the three most common division strategies discussed in
section 4.1 of chapter 1: the sizer, the timer and the adder.

3.1 Sizer
Size-controlled populations are described by the Fokker-Planck equation eq. (5.2), where
the position x of the Brownian particle is understood as the cell size. In a rich medium,
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most bacteria follow an exponential growth between divisions: ẋ = νx, with ν the single-
cell growth rate which is non-fluctuating in our model and strictly positive. If this single-
cell growth can be noisy as discussed in section 5 of chapter 4, these fluctuations are very
often ignored in the literature. We also ignore them here, as they do not play a role in
the thermodynamics of cell division, which is the main focus of this section. Therefore,
the cell population is considered an athermal system. The above law of exponential
growth is a Langevin equation with unit mobility µ = 1, and a force F (x) = νx deriving
from a potential V (x) = −νx2/2, which is non-confining, unlike the example shown in
fig. 5.1. Let us now comment on immediate consequences of the sizer hypothesis for the
thermodynamics quantities.

First, V (x) is a decreasing function of x while the size regulation imposes that the
division rate r(x) be an increasing function of x. Thus, the covariance between those two
functions is negative, which results in a positive production of work due to branching by eq.
(5.9): Ẇbrc ≥ 0. In contrast, the decrease of V (x) with x leads to a negative production of
work due to resetting. This can be seen easily from eq. (5.7) when replacing the average
value computed with the newborn distribution by its definition:

Ẇrst = m
∫

dx r(x)p(x, t)
[
V (x)−

∫
dx′ Σ(x′|x)V (x′)

]
, (5.28)

where the term in the bracket is the difference between the potential for a cell of given
size x and the average value of the potential for a new cell, born from the division of a cell
of size x. Due to the non-confining shape of potential V (x), the restarting size x has a
higher internal energy than dividing sizes x′, thus this difference is negative for any x and
Ẇrst ≤ 0. Note that with the sign convention chosen in the first law eq. (5.10), Ẇrst ≤ 0
corresponds indeed to an increase of the internal energy of the population because of
resetting.

Second, athermal systems are covered by section 2.4 and the steady-state second law
equality reads

Λ = −Ṡrst − Ṡbrc , (5.29)

where we used that Ṡfd = 〈∂xF 〉 = ν, and the property that in a steady-state, the
population growth rate Λ must be equal to the single cell growth rate ν (eq. (4.18)).
Moreover, the rate of athermal heat introduced in section 2.4 is now given by Q̇ = ν2〈x2〉.

Third, when following a single lineage of cells, for example in a mother machine setup
(Wang et al., 2010), then Ṡbrc = 0. As a result, the second law in steady-state (eq. (5.29))
reduces to Ṡrst = −ν. Interestingly, in this case, the entropy production rate due to
resetting depends only on the single cell growth rate, but not on the division rate r(x)
nor on the kernel Σ.

Finally, the signs of the branching and resetting entropy production rates can be
obtained with reasonable assumptions. We know from the mathematical literature (Hall
et al., 1990) and from chapter 4 that cell size distributions are analytical only in some
simple cases. Even in those cases, they take the form of infinite series and computing the
values of the branching and resetting entropy production rates for these distributions is
out of reach for the moment. To make further progress, we use a log-normal ansatz for the
population size distribution, which, even though it is not rigorously a solution of eq. (5.2),
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Figure 5.2: Time evolution of the entropy production rate due to resetting Ṡrst, in the case
of a size-control mechanism with rate r(x) = xα, deterministic growth between division
at a rate ν = 0.8 and Gaussian kernel Σ(·|x′) = N (x′/2, (σbx′)2) for the partition of
volume between the m = 2 daughter cells at division. Each curve corresponds to a choice
of parameters (α, σb), and is the result of 100000 single lineage simulations (without
branching so Ṡbrc = 0), starting at size x0 = 0.5. All curves converges to the black dashed
line at Ṡrst = −ν in the long time limit.

is known to be a good fit of experimental data as long as the transition probability Σ is
peaked around symmetric division (see Hosoda et al., 2011 for a data collapse of the log
size distributions from various datasets on a Gaussian function). We also assume that
the division rate is well captured by a power law, as discussed in section 4.2 of chapter 1.
Assuming that p = Lognormal(µ, σ2) and r(x) = xα, we show in appendix B that the
covariance in eq. (5.17) is computable and given by:

Ṡbrc = (m− 1)ασ2
(

1 + α

2

)
exp

[
αµ+ α2µ2

2

]
≥ 0 , (5.30)

which is positive regardless of the values of α ≥ 0, µ and σ. Using this inequality, eq. (5.29)
imposes that Ṡrst ≤ 0, meaning that resetting is a way to avoid extremely large cells and
thus to reduce the Shannon entropy of the size distribution at steady-state. However,
this constraint no longer exists in the transient dynamics, where resetting can increase
the Shannon entropy of the size distribution: Ṡrst ≥ 0.

To illustrate the last two points, we show on fig. 5.2 the evolution of Ṡrst with time.
We simulated 105 independent single lineages (Ṡbrc = 0) each starting with a cell of initial
size x0 = 0.5 growing at a rate ν = 0.8. We chose a power law for the division rate
r(x) = xα and a transition probability Σ(x|x′) = b(x/x′)/x′ depending on the ratio of
the daughter to mother volumes through the Gaussian distribution b = N (1/2, σ2

b ), so
that Σ(·|x′) = N (x′/2, (σbx′)2). For three different couples (α, σb), the curves exhibit a
positive region in the transient dynamics (above the red dashed line), corresponding to a
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widening of the distribution of sizes due to resetting events from regions of high to low
probabilities in size space, and a resulting increase of the Shannon entropy. In the long
time limit, they all converge to −ν, independently of α and σb.

3.2 Timer
The timer mechanism is not described by eq. (5.2), but by a similar equation for which the
source term (apparition of new cells) enters as a boundary condition, as detailed in sec-
tion 4.1.1 of chapter 1. We recall the dynamical equation for the (backward/population)
distribution of ages:

∂tp(a, t) = −∂ap(a, t)− [Λp(t) + r(a)] p(a, t) (5.31)

p(0, t) = m
∫

da r(a)p(a, t) = m

m− 1 Λp(t) . (5.32)

The boundary condition appears separated because age is defined on [0,∞[ and the reset-
ting age a = 0 is on the boundary of the domain. This is the first difference with the case
treated in Fuchs et al., 2016, in which the resetting position x0 was inside the domain of
definition of x. The second difference is that age is by definition the time elapsed since
birth and cannot undergo thermal fluctuations, therefore its dynamics between divisions
is deterministic, which corresponds to a temperature T = 0, a mobility µ = 1 and a force
F (a) = 1, deriving from a potential V (a) = −a. The signs of the different contributions
to the first law are the same as those found for the sizer case. Indeed, because the po-
tential V (a) is decreasing with age, Ẇrst ≤ 0, and since r(a) is generally an increasing
function of age for non extreme-ages (Robert et al., 2014), the covariance between V and
r is negative, and so Ẇbrc ≥ 0. We also find that Q̇ = 1 ≥ 0.

Let us now derive the time-evolution of the Shannon entropy of the age distribution.
We multiply eq. (5.31) by − ln p(a, t) and integrate over a:

Ṡsys = p(0, t)− p(0, t) ln p(0, t)− Λp(t)Ssys +
∫

da r(a)p(a, t) ln p(a, t) , (5.33)

where we used an integration by part and the boundary condition lim
a→∞

p(a, t) = 0. We
now use the boundary condition eq. (5.32) to express p(0, t):

Ṡsys =mΛp(t)
m− 1 − Λp(t)Ssys − (m− 1)

∫
da r(a)p(a, t) ln p(a, t)

+m
∫

da r(a)p(a, t) ln
(
p(a, t)
p(0, t)

)
, (5.34)

where we identify

Ṡbrc = −Λp(t)Ssys − (m− 1)
∫

da r(a)p(a, t) ln p(a, t) , (5.35)

= −(m− 1)Cov(r, ln p) , (5.36)

and
Ṡrst = m

∫
da r(a)p(a, t) ln

(
p(a, t)
p(0, t)

)
. (5.37)
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Finally, the steady-state second law for the timer reads:

mΛ
m− 1 = −Ṡrst − Ṡbrc . (5.38)

Note that unlike what happened for the sizer, the term proportional to Λ does not arise
from the force divergence, which is null in this case (since F (a) = 1), but from the
boundary condition eq. (5.32).

Using the analytical steady-state solution to eq. (5.31) given in section 4.5 of chapter 1,
we can compute explicitly the resetting and branching entropy production rates:

Ṡrst = mΛ
[
Ssys + ln

(
mΛ
m− 1

)
− m

m− 1

]
(5.39)

Ṡbrc = −mΛ
[
Ssys + ln

(
mΛ
m− 1

)
− 1

]
, (5.40)

which are functions of Λ and Ssys, themselves only depending on the branching rate r(a).
Moreover, the steady-state age distribution is a decreasing function of age, which implies
that (i) the branching entropy production rate is positive: Ṡbrc ≥ 0 by eq. (5.36), (ii) the
resetting entropy production rate is negative: Ṡrst ≤ 0 by eq. (5.37).

3.3 Adder
In the adder theory, the distribution of added volume between birth and death is inde-
pendent of the volume at birth (see section 4.1.3 of chapter 1). Two variables are required
to model the adder: for example the size x, which undergoes relative resetting, and the
volume added since birth ∆ = x − xb, which undergoes absolute resetting to value 0 at
division, similarly to the age in the timer. In this sense, the increment of volume can be
seen as a physiological age.

Conducting the same analysis as before on eq. (1.54), we derive the equation for
the evolution of the Shannon entropy Ssys = −

∫
dxd∆ p(x,∆, t) ln p(x,∆, t) of the joint

distribution p(x,∆, t) of volume and added volume:

Ṡsys = Ṡrst + Ṡbrc + Ṡfd + mΛp(t)
m− 1 . (5.41)

As for the sizer, if we consider exponential growth: F (x) = νx, then Ṡfd = ν, and in
steady state Λ = ν. Finally, the steady-state second law equality for the adder reads

2m− 1
m− 1 Λ = −Ṡrst − Ṡbrc . (5.42)

The left hand side is the sum of the contributions mΛ/(m − 1) (similar to that of the
timer), coming from the boundary condition at ∆ = 0, and Λ (similar to that of the sizer),
arising from the force-divergence entropy due to the growth of cells at a rate ν (equal to
Λ in steady-state). Note that since the adder is a multivariate model with two variables,
one could expect the force-divergence entropy to be a sum of two terms, as detailed in
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appendix A. However, the force F here is supposed to be a function of the size x only and
independent of the added volume ∆, thus ∂∆F (x) = 0.

In the spirit of the last part of appendix A, one can coarse-grain the variable ∆ by
integrating eq. (4.36) on ∆, leading to an equation of the form of a sizer (eq. (5.2))
with marginal probability p̂(x, t) =

∫
d∆ p(x,∆, t) and coarse-grained branching rate

r̂(x, t) = F (x)
∫

d∆ p(∆, t|x)ζ(∆). Thus, the steady-state second law for the marginal size
distribution obeys eq. (5.29) with the coarse-grained branching rate. Without branching,
this second law reduces to Ṡrst = −ν. In the third remark of section 3.1 we already noted
that for single lineages the entropy production rate due to resetting was independent of
the division rate, we see now that is also independent of the size control mechanism,
namely sizer or adder.

3.4 Analogy with heat engines
For each of the division-control models studied above, we obtained a second law in the
form of βΛ = −Ṡrst − Ṡbrc (eqs. (5.29), (5.38) and (5.42)), with β an integer equals to 1
for the sizer, 2 for the timer, and 3 for the adder for cells obeying binary fission (m = 2).
The form of this common second law suggests the definition of the efficiency

η = −Ṡbrc

Ṡrst
. (5.43)

This definition is inspired by thermodynamic machines, which operate with a driving
process and an output process, respectively associated with the entropy production rates
σ1 ≥ 0 and σ2 ≤ 0. In that case, the thermodynamic efficiency reads η = −σ2/σ1 ≥ 0.
The second law σtot = σ1 +σ2 ≥ 0, where σtot is the total entropy production rate, further
implies that η ≤ 1. In our case, despite the absence of a thermostat and therefore the
absence of a first law, by analogy, βΛ ≥ 0, −Ṡrst and −Ṡbrc play the roles of σtot, σ1 and σ2,
respectively. Indeed, we proved for the sizer and the timer that −Ṡrst and −Ṡbrc have the
same sign as σ1 and σ2, respectively. This analogy in which resetting is the driving process
that enables branching, which is the output process, can also be understood intuitively
at the level of energies. Populations of cells thrive by dividing, a process for which the
creation of a new cell is made possible by the size reduction of both the mother cell and
the newborn cell. Indeed, we proved for both the sizer and timer that Ẇrst ≤ 0 and
Ẇbrc ≥ 0, which fundamentally comes from the non-confining shapes of the potentials
V (x) and V (a). This implies that branching has an energetic cost for the colony, which
is covered by the energetic gain due to resetting.

For the timer, we proved that Ṡrst and Ṡbrc are only functions of the branching rate
r(a), which we describe by a power law r(a) = aα. Thus the strength α of the age control
is the only parameter in the model. On fig. 5.3 (left), we plot the evolution of the Shannon
entropy of the age distribution, the population growth rate and the efficiency against α.
The population growth rate Λ is obtained by plugging the steady-state solution eq. (1.75)
into the boundary condition eq. (5.32) and solving numerically for Λ. Knowing Λ, the
Shannon entropy of the age distribution is numerically evaluated, and so is the efficiency
using eqs. (5.39) and (5.40). The efficiency is an increasing function of α, and converges
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Figure 5.3: Numerical evaluation of the efficiency η when varying parameters of the models
for the timer (left) and sizer (right) when m = 2. Left: When increasing the strength α of
the age control, abnormally old cells disappear and the age distribution narrows around
young cells, leading to a decrease in the Shannon entropy (orange). The efficiency (green)
monotonously increases with α, up to the limit ln 2/(1 + ln 2) (black dashed line). Right:
For any ν (= Λ), the efficiency is a monotonously increasing function of the size control
α, up to the maximum value 1. For any α, the efficiency tends to 1 in both the ν → 0
(Carnot) and ν →∞ limits, with a single minimum in between.

to the asymptotic value computed in appendix C:

lim
α→+∞

η = ln 2
1 + ln 2 ≈ 0.41 , (5.44)

as the strength of the control increases, leading to a synchronized population where all
cells deterministically divide at age 1.

More parameters are required to describe the sizer: the strength α of the control in the
branching rate r(x) = xα, and also the single cell growth rate ν and the parameters of the
kernel Σ. Here, we illustrate our result in the case of symmetric division, thus our model
has two parameters: α and ν. We plot on fig. 5.3 (right) the efficiency against α (x-axis)
and ν (y-axis). We compute the branching entropy production rate using eq. (5.30) and
the approximate parameters µ = ln ν/α − ln 2/4 and σ2 = ln 2/2α, that can be obtained
following the method proposed in Hosoda et al., 2011 as detailed in appendix D. For any
ν, the efficiency is an increasing function of α, and converges to 1, the maximal efficiency.
This comes from the fact that Λ is independent of α, and Ṡbrc → ∞ as α → ∞ from
eq. (5.30). For any α, the efficiency starts at 1 when ν = 0 (analogous to Carnot efficiency
when the entropy production is null), decreases until reaching a minimum and then tends
to 1 (obtained from the rate of increase of Ṡbrc with ν) as ν is varied from 0 to ∞.

For both the timer (fig. 5.3 left) and the sizer (not shown here), the Shannon entropy
decreases as the strength of control measured by α is increased in the region where α is
large. This means that the diversity in the controlled trait is reduced across the popu-
lation. We suspect that such a lack of diversity might be harmful for the population at
some level, which could be one of the reasons why cells need not implement such a strong
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and efficient (in the sense of η) control.
We remind the reader that the two plots cannot be compared directly, in order to find

the most efficient control strategy for example, since the efficiencies plotted are related to
different distributions. Indeed, the efficiency for the timer is the ratio of the branching
to resetting entropy production rates associated with the age distribution, versus the size
distribution for the sizer.

4 Conclusion
The stochasticity in the thermodynamics of small systems usually comes from thermal
fluctuations, which are suppressed when considering macroscopic systems. Such systems
are described by classical thermodynamics instead, where observables are equal to their
average values. We show however that using the framework of stochastic thermodynamics
for macroscopic systems with stochastic events, such as division, can shed a new light
on the thermodynamic constraints of the systems. In our case, the stochasticity of the
thermal fluctuations is replaced by that of the divisions.

By describing cell growth and division in terms of two subprocesses, branching and
resetting, we find that resetting is a process which rises the internal energy of the system,
thereby allowing the system to pay the energy cost associated with branching. Branching
is required by cells to self-replicate, and in doing so, to maintain certain traits within
lineages, an essential feature for the survival of the cell colony. In exponentially growing
colonies, the population growth rate emerges from a carefully controlled balance between
resetting and branching. We introduce an efficiency, akin to the thermodynamic efficiency
of thermal machines, which quantifies the entropy conversion between these two processes.

With recent progresses on calorimetric measurements at the level of the single cell
(Rodenfels et al., 2019; Song et al., 2019; Hong et al., 2020), it is natural to ask if
the thermodynamic quantities we defined in this chapter are linked to those obtained in
experiments. Trying to map the two lines of work would be a fascinating project in the
future, but we can already give some comments. First, the models of cell size control
we considered are coarse-grained and described by one or two variables only, therefore
we do not expect them to offer a good description of the true thermodynamics of the
cell a priori. As explained in the introduction on stochastic thermodynamics in section 2
of chapter 1, the mesoscopic description of a system results from the coarse-graining
of equilibrium degrees of freedom that do not participate in the production of entropy.
This is the reason why we extended our formalism to the case of n-variable models in
appendix A. Our formulas are thus applicable to much more complex models than the
three cell size control models we used as illustrations. The challenge is then to determine
which non-equilibrium bio-molecular mechanisms and variables are relevant and sufficient
to describe the thermodynamic state of a cell. Moreover, the fact that the signs of the
works and entropies associated with branching and resetting are identical for the timer
and the sizer may suggest a conversion mechanism between resetting and branching that
is general beyond these two simple models. Second, the discussion on the efficiency of cell
division is based on an athermal description, and is essentially an information-theoretic
result. It tells us how expanded or compressed are the age and size distributions because
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of cell division, and should therefore remain relevant regardless of any consideration on
the correspondence between our model and thermal measurements.

The present work could be extended in several future directions. The assumption that
the colony is in an exponentially growing phase could be relaxed, and additional sources
of stochasticity affecting single-cell growth rate could be included (Thomas et al., 2018).
To improve the description of the adder model, it would be interesting to obtain analytical
solutions for simple choices of the resetting rate. Recently, several experimental works
have suggested that the adder model can be justified microscopically using incremental
threshold models (Pandey et al., 2020). Along the same line, some recent works inspired
by Nieto et al., 2020 proposed a unified model for cell size distributions accounting for the
sizer, timer and adder behaviors, using an N -stages description of the cell cycle, which
is applicable to bacterial exponential growth (Jia et al., 2021) and to yeast growth (Jia
et al., 2022). We note that the incremental model and the N -stages model both fall into
the class of resetting models studied here, and for that reason it would be interesting to
adapt our approach to these more recent models.

In the three mechanisms of cell size control we studied, the opposite of the sum of the
resetting and branching entropy production rates equals the population growth rate times
a prefactor which seems to depend on the number of key variables of the model. Indeed,
this factor is one for the sizer, two for the timer and three for the adder. In principle, the
prefactor could take other values depending on the number of variables entering in the
growth function. Interestingly, this prefactor might therefore give insight into a particular
mechanism of control and possibly be related to the latent variables, which are detected
in Bayesian approaches of lineage data (Nakashima et al., 2020).



5. Appendices 151

5 Appendices

A Multi-dimensional systems

For simplicity, in the main text we presented our results in one dimension, but we show
in this appendix that they hold in n dimensions. Let x = (x1, ..., xn) be a n-dimensional
vector, and let the branching rate r(x) and the resetting kernel Σ(x|x’) depend on these n
variables. The bold notation is used in this appendix for vectors in order to highlight the
differences with scalar quantities from the main text, unlike in the rest of the thesis where
bold symbols indicate trajectories. For more generality, and regarding the discussion of
section 2.4, we consider that k variables (x1, ..., xk) are in contact with different heat
baths {Ti}i=1,...,k, and that n − k variables (xk+1, ..., xn) are not linked to any heat bath
and thus do not undergo thermal fluctuations. Among those n − k athermal degrees of
freedom, some are subjected to deterministic forces F , while others stay constant between
resetting events (F = 0). We label (xk+1, ..., xk+l) the l variables for which F 6= 0, and
(xk+l+1, ..., xn) the n − k − l variables for which F = 0. In this setting, the potential
V (x) only depends on the k + l first variables, which defines the same number of forces:
Fi(x) = −∂xiV (x). For these degrees of freedom, we define the mobilities µi and the
currents ji(x) = µiFi(x)p(x) − µiTi∂xip(x) for i = 1, ..., k, and ji(x) = µiFi(x)p(x) for
i = k + 1, ..., k + l, and recall that for the variables (xk+l+1, ..., xn) there is current. For
better legibility, we drop the time-dependence of the probabilities in this section, and we
define the vectors of currents j(x), forces F(x), and mobilities µ, whose components are
respectively ji(x), Fi(x) and µi for i = 1, ..., k + l.

Finally the equation for the evolution of p(x) reads:

∂tp(x) = −∇ · j(x)− [Λ + r(x)] p(x) +m
∫

dx′Σ(x|x′)r(x′)p(x′) . (5.45)

The first law of thermodynamics is obtained following the same steps as in the 1d
case, and when replacing x by x, the expressions of Ẇrst (eq. (5.7)) and Ẇbrc (eq. (5.9))
are unchanged. The heat is replaced by a sum of heats associated with each degree of
freedom:

Q̇ =
∫

dx j(x) · F(x) (5.46)

=
k∑
i=1

∫
dx ji(x)Fi(x) +

k+l∑
i=k+1

∫
dx µip(x)F 2

i (x) , (5.47)

where for i = 1, ..., k, Q̇i =
∫

dx ji(x)Fi(x) is the heat exchange rate with the ith thermo-
stat, and for i = k+1, ..., k+ l, µi〈F 2

i 〉 is the rate of change of the athermal heat discussed
in section 2.4, associated with the ith degree of freedom.

The second law also follows from the same calculation and the entropy production
rates due to branching (eq. (5.17)) and resetting (eq. (5.18)) are unchanged as compared
to the 1d case. The term due to currents can be split into two contributions corresponding
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to the thermal and athermal degrees of freedom:

−
∫

dx ∇(p(x)) · j(x)
p(x)

= −
∫

dx
 k∑
i=1

(
Fi(x)p(x)− µ−1

i ji(x)
)
ji(x)

Tip(x) −
k+l∑

i=k+1
µiFi(x)∂xip(x)


=

k∑
i=1

[∫
dx

(
j2
i (x)

µiTip(x) −
Fi(x)ji(x)

Ti

)]
+

k+l∑
i=k+1

µi

∫
dx p(x)∂xiFi(x) , (5.48)

where Ṡ(i)
c =

∫
dx j2

i (x)/µiTip(x) ≥ 0 is the entropy production rate due to the non-
equilibrium current associated with the degree of freedom i, Ṡ(i)

m =
∫

dx Fi(x)ji(x)/Ti =
Q̇i/Ti is the entropy exchange rate with thermostat i, and Ṡ

(i)
fd = µi

∫
dx p(x)∂xiFi(x)

is the force-divergence entropy production rate associated with the athermal degree of
freedom i. Finally the second law for n-dimensional systems reads:

Ṡsys = Ṡbrc + Ṡrst +
k∑
i=1

(
Ṡ(i)

c − Ṡ(i)
m

)
+

k+l∑
i=k+1

Ṡ
(i)
fd . (5.49)

Note that with the unification of deterministic and entropic forces, we obtain again
eq. (5.24), now with the identification

˙̃Sfd = −
k∑
i=1

µiTi〈∂2
xi

ln p〉+
k+l∑
i=1

µi〈∂xiFi〉 , (5.50)

encompassing the entropic contribution of the degrees of freedom which are in contact
with a thermal reservoir. We note that the contribution of the deterministic forces (last
term in the right hand side of eq. (5.50)) takes the form ∑k+l

i=1 µi〈∂xiFi〉 = 〈div(µ ◦ F)〉,
which is the average value of the divergence of the Hadamard product µ ◦ F , defined by
the components (µ ◦ F)i = µiFi.

The multivariate model is particularly interesting when the dynamics of resetting and
branching is controlled by a set of hidden variables, while we have access to only one
observable, let us say x1. In this case, the natural quantity to look at is the Shannon
entropy of the marginal distribution of x1: p̂(x1) =

∫
dx2...dxn p(x1, ..., xn), and we

show that the computation of Ṡbrc and Ṡrst reduces to a 1d problem with coarse-grained
branching rate and resetting kernel. To obtain the evolution of the Shannon entropy
associated with p̂(x1), we integrate eq. (5.45) over x2, ..., xn, multiply it by ln p̂(x1) and
integrate it over x1. The contribution of resetting it given by:

Ṡrst = m
∫

dx r(x)p(x) [ln p̂(x1)− 〈ln p̂〉ρnb ] (5.51)

= m
∫

dx1 r̂(x1)p̂(x1) [ln p̂(x1)− 〈ln p̂〉ρ̂nb ] , (5.52)

where we defined the coarse-grained branching rate

r̂(x1) =
∫

dx2...dxn p(x2, ..., xn|x1)r(x1, ..., xn) , (5.53)
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and where the newborn distribution is also marginalized:

ρ̂nb(x1) =
∫

dx′ Σ̂(x1|x′)r(x′)p(x′)∫
dx1 r̂(x1)p̂(x1) , (5.54)

with the coarse-grained kernel Σ̂(x1|x′) =
∫

dx2...dxn Σ(x1, ..., xn|x′). Similarly, the
branching entropy production rate reduces to

Ṡbrc = −(m− 1)Covp̂(r̂, ln p̂) . (5.55)

Before closing the present discussion on multi-dimensional systems, it is worth men-
tioning a subtlety of the coarse-grained description introduced above. Note that when
reducing a multivariate problem by eliminating degrees of freedom, the dynamics associ-
ated to the remaining variables is non-Markovian in general. Thus, as far one is concerned
with one-time observables, the above description is correct because the Markovian dynam-
ics that is obtained when integrating out the unobserved degrees of freedom corresponds
to a substitute Markov process having the same one-time statistics as the underlying
marginal non-Markov dynamics (Hänggi et al., 1977; Hänggi et al., 1982; García-García,
2012). However, multi-time observables (e.g., correlation functions) are not well captured
by such effective Markov dynamics unless some sort of Markov approximation makes
sense. In particular, using the path integral representation of the substitute process to
compute generating functionals of the marginal non-Markovian degrees of freedom would
be misleading, typically yielding incorrect results.

B Branching entropy production rate for the sizer in steady-
state

In this appendix, we show that if the steady state size distribution is log-normal:

p(x) = 1
xσ
√

2π
exp

[
−(ln x− µ)2

2σ2

]
, (5.56)

with parameters µ, σ > 0, and that the division rate is a power law r(x) = xα, where α ≥ 0
is the strength of the size control, then the entropy production rate due to branching, given
by eq. (5.17), is positive. To do so, one needs to compute the covariance between the
division rate and the logarithm of the size distribution:

Cov(r, ln p) = 〈r ln p〉 − 〈r〉〈ln p〉 , (5.57)

where the moments of the log-normal distribution are known:

〈xα〉 = exp
[
αµ+ α2µ2

2

]
, (5.58)

as well as its entropy:
〈ln p〉 = −1

2 − µ− ln(σ
√

2π) . (5.59)
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Therefore, one only needs to compute the term:

〈r ln p〉 =−
∫ ∞

0
dx xα

xσ
√

2π

[
(ln x− µ)2

2σ2 + ln x+ ln(σ
√

2π)
]

exp
[
−(ln x− µ)2

2σ2

]

=
exp

[
−µ2

2σ2

]
σ
√

2π

∫ +∞

−∞
du
[
−u2

2σ2 + u
(
µ

σ2 − 1
)]

exp
[
−u2

2σ2 + u
(
µ

σ2 + α
)]

−
(

ln(σ
√

2π) + µ2

2σ2

)
〈xα〉

=− 〈xα〉
[
ln(σ
√

2π) + µ+ 1
2 + ασ2 + α2σ2

2

]
, (5.60)

where the second line is obtained with the change of variable u = ln x. The third line comes
from the resolution of the integral, which is given by the following Gaussian formulas:

∫ +∞

−∞
du u exp

[
−au2 + bu

]
=
√
πb

2a3/2 exp
(
b2

4a

)
(5.61)

∫ +∞

−∞
du u2 exp

[
−au2 + bu

]
=
√
π(2a+ b2)

4a5/2 exp
(
b2

4a

)
. (5.62)

Finally, combining eq. (5.17) and eqs. (5.57) to (5.60) leads to

Ṡbrc = (m− 1)ασ2
(

1 + α

2

)
exp

[
αµ+ α2µ2

2

]
≥ 0 , (5.63)

which is positive regardless of the actual values of µ, σ and α ≥ 0.

C Asymptotic efficiency for the timer

In this appendix, we demonstrate eq. (5.44) which gives the value of the timer efficiency
in the limit of strong age-control (α→∞), and when m = 2. Note that for α = +∞, no
steady-state is reached since cells divide deterministically when reaching age 1, so that
the age distribution is given the delta function p(a, t) = δ(a − (t − btc)) where btc is
the integer part of t. Therefore, we consider that α is large enough so that the power-
law branching rate r(a) = aα can be approximated by a step, taking value 0 between
0 and 1 and diverging for a > 1, and the population grows as N(t) = N02btc, but not
infinite so that the steady-state age distribution exists and the population growth rate
Λt = 1/t ln (N(t)/N0) tends to the steady-state growth rate Λ. Thus,

Λ = lim
t→∞

btc
t

ln 2

= ln 2 . (5.64)
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Using this result, we can compute the Shannon entropy of the steady-state age distribution
(eq. (1.75)):

Ssys = −
∫ ∞

0
da p(a) ln p(a)

= − ln(2Λ)
∫ ∞

0
da p(a) + 2Λ

∫ ∞
0

da
(

Λa+
∫ a

0
da′ r(a′)

)
exp

[
−Λa−

∫ a

0
da′ r(a′)

]
= − ln(2Λ) + 2Λ

∫ 1

0
da Λa exp [−Λa]

= 1− 2 ln 2− ln(ln 2) . (5.65)

We went from line 2 to line 3 using the normalization of p for the first integral, and we
decomposed the second integral into two parts: from 0 to 1 and from 1 to ∞. Between 1
and ∞, the contribution of the branching rate diverges and thus the integral is nullified
by the exponential function, and only the integral from 0 to 1 remains, for which r(a) ≈ 0.

Finally, we plug eqs. (5.64) and (5.65) into eqs. (5.39) and (5.40), and plug them into
the definition of the efficiency eq. (5.43) to obtain:

η = ln 2
1 + ln 2 ≈ 0.41 . (5.66)

D Parameters of the log-normal steady-state size distribution
We follow in this appendix the analysis conducted in Hosoda et al., 2011 to determine
the parameters (µ, σ) of the log-normal ansatz for the steady-state size distribution.

We consider the steady-state sizer model with deterministic exponential growth, cor-
responding to eq. (5.2) with F (x) = νx, µ = 1 and D = 0. Moreover, we focus on the
class of homogeneous kernels for which the probability for a daughter cell to inherit a
certain volume at birth depends only on the ratio of daughter to mother volumes. In
this case, Σ(x|y) = b(x/y)/y, and we choose a Gaussian distribution b = N (1/2, σ2

b )
so that the transition probability is Gaussian and centered around symmetric division:
Σ(·|y) = N (y/2, (yσb)2). Note that this makes sense only for small values of σb such that
negative ratios of volume have negligible probability. In the main text, simulations are
done for deterministic and symmetric partitioning of volume: b(x) = δ(x − 1/2). We
recast this equation into an equation on the moments of the distribution by multiplying
it by xk and integrating over x:

νk〈xk〉 − 〈xk+α〉 − 〈xk〉〈xα〉+ 2〈xk+α〉mk = 0 , (5.67)

where the integral term corresponding to cell births has been transformed like in eq. (4.66),
and where mk are the non-central moments of the Normal law.

Evaluating this expression for k = 1, knowing that mk = 1/2 gives:

〈xα〉 = ν , (5.68)

which is independent of the actual distribution p. Indeed, this result is the combination
of two results: the equality between the population growth rate and the mean division
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rate eq. (1.65), and the equality between population growth rate and single cell growth
rate for exponentially-growing cells eq. (4.18), in steady-state.

Experimental data are well accounted for by log-normal distributions, so we plug the
ansatz p = Lognormal(µ, σ2) in eq. (5.67), in order to deduce the values of the parameters
µ and σ. The moments of p are given by eq. (5.58), and we use eq. (5.68) to re-write
eq. (5.67) as

(2mk − 1) ekασ2 + k − 1 = 0 . (5.69)
Then, we evaluate this expression for k = 2, given that m2 = 1/4 + σ2

b :

σ2 = 1
2α ln

(
2

1− 4σ2
b

)
. (5.70)

Reporting this in eq. (5.68), we finally obtain

µ = ln ν
α
− 1

4 ln
(

2
1− 4σ2

b

)
. (5.71)

We emphasize the fact that the log-normal distribution is not a solution to the pop-
ulation balance equation, but only a good fit in some ranges of parameters. This can
be seen by evaluating eq. (5.69) for higher moments: for example when k = 3 and
m3 = 1/8 + 3σ2

b/2, this relation gives σ2 = ln [8/(3− 12σ2
b )] /(3α), which is inconsis-

tent with eq. (5.70).
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General conclusion

In a perfectly balanced population tree where all lineages are equivalent, for example
because of a very strong control on division, the behavior of any lineage is represen-
tative of that of the population. However, such a tree is never observed since all the
bio-molecular mechanisms involved in the cell cycle are stochastic, which results in fluc-
tuations between the lineages. The relation between the single cell stochasticity and the
deterministic growth of the population is thus in general non trivial. While biologists
would seek a complete description of the molecular mechanisms controlling a biological
process, physicists often try to reduce the complexity of the problem by proposing meso-
scopic descriptions in terms of few coarse-grained variables that capture the main features
of the process. In the context of bacterial cells, these variables are typically the size and
age of the cell, or the quantity of a key protein; and the cell cycle is reduced to a few pro-
cesses like cell elongation and aging, and the partition of resources and volume between
the daughter cells at division. Mapping the microscopic and mesoscopic descriptions is
an exciting research program, which we did not pursue in this thesis.

Starting from the existence of the fluctuations between lineages, the main focuses of
this thesis were to relate the scales of the single cell and the population, to understand
the role of the fluctuations in this relation, and to show how lineage data can be used in
practice. Since new experiments on finite populations in confined geometries have greatly
enhanced our capacity to probe cell colonies for long times in well controlled environment,
we also address the question of the treatment of data from these experiments, where
lineages are continuously flushed away.

In the first two chapters of the thesis, we sought universal principles and we hope to
have passed on the following messages:
• There is a statistical bias between the experiments carried out in bulk and in mother-

machine. For example, it takes less time for the population to double than for
an isolated cell in a single-lineage to divide on average, which may seem counter-
intuitive at first.
• This bias can be used to our advantage and provides possible uses of single-lineage

data, like the inference of the population growth rate from mother-machine data.
• There is an extra ‘survivor bias’ in finite populations, where early-ending lineages

have to be carefully taken into account when sampling the population tree.
• The phenotypic variability in freely-growing populations is the result of the selection

of the fittest lineages, while no such selection is present in single-lineage experiments.
Therefore, the lineage-population bias lies at the heart of the strength of selection,
which is limited by the variability of fitness in the population.
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Importantly, these results are universal in the sense that they only rely on the structure
of the branching tree and not on a particular model or dynamics. As such, they could be
used in other areas of biophysics where similar trees are present, like species trees or stem
cell differentiation trees. It remains open to determine in what way they could be useful in
these contexts, but we hope that the formalism of selection will find applications outside
bacterial evolution. In the context of cell colonies, universality implies that the results
are independent of the dynamics, namely the model of cell size control, the presence of
mutations, the fluctuations of environment, ... Instead, they are implied by the topology
of the population tree, where one cell asexually reproduces to give birth to two daughter
cells. In particular, lineages that do not make it to the end of the experiment can be the
result not only of dilution but also of cellular death or any other phenomenon.

A significant limitation of our approach is that the history of the tree with the number
of divisions along each lineage is necessary, although in a lot of situations this information
is not available. In ecology or for in-vivo experiments for example, available data are
mostly snapshot data. Showing how to use these snapshot data to infer the history of the
tree would be a major step in the understanding of evolution for more realistic systems.

In the last two chapters, we shifted the perspective and adopted a model-based ap-
proach. The modeling approach is complementary to the search for universal principles: it
provides testable predictions that can help validate or invalidate hypotheses and proposes
precise and quantitative descriptions of specific systems. The works from these two chap-
ters have been designed to join the effort in the understanding of cell size homeostasis,
and in the discrimination between the different models of cell size control, even though
they represent only a first step un that direction.

We derived steady-state cell size distributions for lineages of size-regulated cells, which
were successfully compared to experimental data. This comparison can be seen as a test
of the sizer model, or as a way to use single lineage data to infer the parameters of the cell
cycle. We showed how fluctuations in volume at division, single cell growth and volume
partitioning shape the size distribution, and thus directly impact the lineage-population
bias.

Independently, we proposed a simple thermodynamic description of cell growth and
division for both age and size-regulated populations. Although we did not compare the
different mechanisms of size regulation, we hope this formalism could give arguments in
favor of certain models against others regarding their thermodynamic efficiencies. We
extended our formalism from simple coarse grained models to general n-variable models,
and it would be interesting to identify the set of relevant variables necessary to describe the
thermodynamic state of a cell, so that the theory matches recent calorimetric experiments
at the scale of the single cell.





MOTS CLÉS

Populations de cellules, lignées de cellules, sélection naturelle, distribution de taille des cellules, thermody-
namique stochastique, théorèmes de fluctuation.

RÉSUMÉ

Les expériences sur les cellules en croissance peuvent être menées soit en croissance libre, soit dans des géométries
qui confinent la colonie et limitent sa croissance. Comment échantillonner les arbres généalogiques de ces populations
pour chaque configuration ? Y a-t-il des biais statistiques entre eux ? Comment quantifier la sélection naturelle pour
ces populations ? Ce sont les principales questions que nous abordons dans cette thèse. Dans une première partie,
nous étudions le biais statistique entre le niveau lignée unique et le niveau population, qui présente des similitudes avec
les théorèmes de fluctuation en thermodynamique stochastique. Pour cela, nous développons un formalisme basé sur
les histoires des lignées d’une même population, et nous obtenons des contraintes universelles qui sont exploitées dans
deux directions. Premièrement, ce biais nous renseigne sur la force de la sélection, qui quantifie les corrélations entre
les valeurs d’un trait cellulaire et le succès reproductif de la lignée. Cette sélection résulte de la variabilité des lignées
dans la population, que nous analysons en utilisant la théorie de la réponse linéaire. Nous généralisons le formalisme
pour autoriser les situations où les lignées se terminent avant la fin de l’expérience, en raison de la mort cellulaire et de la
dilution. Nous montrons comment les lignées mortes doivent être prises en compte dans les différents échantillonnages,
et comment la mort affecte la variabilité phénotypique et donc la force de la sélection. Deuxièmement, nous montrons
comment les données de lignées uniques peuvent être utilisées pour inférer des propriétés au niveau de la population,
comme le taux de croissance de la population, ou paramètre de Malthus. En nous concentrant sur les populations de
cellules régulées en taille, nous obtenons les distributions de taille à l’équilibre pour les expériences de lignées uniques,
qui peuvent aussi être utilisées pour inférer les paramètres du cycle cellulaire tels que le taux d’élongation des cellules
et l’asymétrie de la division. En outre, nous montrons comment différentes sources de stochasticité peuvent modifier
le biais lignée-population pour les statistiques de taille. Dans une deuxième partie indépendante, nous proposons une
description thermodynamique de la croissance et de la division cellulaire à l’aide de modèles macroscopiques simples de
contrôle de la taille. Cette question est importante pour comprendre comment les colonies de cellules sont contraintes
par la thermodynamique. En décomposant la division cellulaire en deux sous-processus : le branchement (création
d’une nouvelle cellule identique), et la réinitialisation, ou resetting (modification des propriétés des deux cellules), nous
dérivons les deux lois de la thermodynamique pour une colonie de cellules, et nous identifions la contribution de chaque
processus au changement d’énergie moyenne et d’entropie de Shannon. Cela nous permet de comprendre comment les
distributions d’âge et de taille sont affectées par la division cellulaire du point de vue de la théorie de l’information.

ABSTRACT

Experiments on growing cells can be carried out either in bulk or in confined geometries that constrain the growth of the
colony. How should the population trees be sampled in each setup? Are there statistical biases between them? How to
quantify natural selection in these trees? These are the main questions we address in this thesis. In a first part, we study
the statistical bias between the single-lineage and population levels, which has similarities with fluctuation theorems in
stochastic thermodynamics. To do so, we develop a theoretical framework based on lineage histories within population
trees, and obtain universal constraints that are exploited in two directions. First, this bias informs on the strength of
selection, that quantifies the correlations between the value of a cell trait and the reproductive success of the lineage.
This selection results from the variability of lineages in the population, which we analyze using linear response theory.
We also extend our framework to allow situations where lineages end before the end of the experiment, due to cell
death or dilution. We show how dead lineages should be taken into account in the statistics, and how death impacts the
phenotypic variability and therefore the strength of selection. Second, we show how single-lineage data can be used to
infer population-level quantities like the population growth rate, also called Malthus parameter. Focusing on size-regulated
populations, we derive steady-state cell size distributions for single-lineage experiments, that can also be used to infer cell
cycle parameters such as the single cell elongation rate and the asymmetry of division. In addition, we explore how the
lineage-population bias for size statistics is affected by different sources of stochasticity. In a second independent part, we
propose a thermodynamic description of cell growth and division using simple coarse-grained models of cell size control.
This question is important to understand how cell colonies are constrained by thermodynamics. Using a decomposition of
cell division in two sub-processes: branching (creation of an identical new cell), and resetting (restart of the properties of
the two cells), we derive the first and second laws of thermodynamics for a colony of cells, and identify the contribution of
each process to the change in average energy and Shannon entropy. This allows us to understand how the distributions
of age and size are affected by cell division from an information-theoretic point of view.
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