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Abstract

Images captured by cameras have become ubiquitous. Being able to reconstruct 3D scenes
only using these images would be a highly desirable capability. However, this is very
challenging, as images are 2D snapshots of the world, therefore generating ambiguities
when lifting them from 2D back to 3D. In this thesis, we focus on two methods for 3D
scene reconstruction: single-image depth estimation, and primitive decomposition.

Single-image depth estimation (SIDE) refers to the ability to reconstruct the visible
3D surface of a scene given only a single image as input. This is an ill-posed problem,
since many 3D scenes can explain the observed image. In order to solve this problem,
modern works rely on data-driven methods and are mainly deep-learning based. These
methods therefore use large training datasets of RGB-D pairs, i.e. aligned color and
depth images, along with deep neural networks, in order to learn a good prior to predict
depth from a single image.

Primitive decompositions can be used to represent a scene as an arrangement of
elementary shapes. In the 1960s, Lawrence G. Roberts proposed to represent the 3D world
as an arrangement of cuboids. This representation is particularly useful for its simplicity
and compactness, which downstream applications such as robotics could leverage.

The first contribution of this thesis introduces a solution to a notorious problem in
single-image depth estimation; most methods suffer from smooth edges around occlusion
boundaries, while they are supposed to be sharp. Our method, called SharpNet, introduces
geometric constraints with synthetic data during training in order to predict sharp depth
maps, guided by occlusion boundaries and surface normals.

Our second contribution extends our pursuit of sharper depth edges in SIDE. Neural
networks are notoriously biased towards low frequencies, implying that sharp edges,
which correspond to high frequency details, will often be overlooked by deep-learning
based methods. In this work we introduce a new depth refinement method that sharpens
predicted depth maps, and that is able to estimate crisp high frequency details. This
method predicts displacement fields, which are used to sharpen depth edges by moving
pixels in 2D space. When put on top of baseline single-image depth estimation methods,
our method consistently improves the sharpness of depth maps without sacrificing their
accuracy.

Our third contribution also aims to improve existing SIDE methods with a simple
extension. Most of these previous work rely on U-shaped Encoder-Decoder architectures,
often referred to as UNets. While our two first contributions focus on accuracy along
occlusion boundaries, this third contribution focuses on efficiency. These occlusion
boundaries are indeed usually sparse in natural scenes, which creates an imbalance



that results in smooth predicted depth edges. In WaveletMonoDepth, we instead take
advantage of this sparsity. Because depth edges are sparse, we can compute convolutions
only in places with large depth variations i.e. occlusion boundaries. Using wavelet
decomposition as an intermediate representation for depth maps, we obtain large gains
in efficiency while suffering only a minimal loss in accuracy.

Our final contribution explores primitive decompositions as a representation for 3D
scenes. RGB-D cameras can be used to scan scenes and store them as 3D point clouds.
However, this process is often noisy, and 3D point clouds are expensive to store. With
MonteBoxFinder, we propose to represent noisy 3D point clouds with 3D cuboids, by
first detecting many 3D cuboids candidates, then finding an arrangement that best fits
the scene. This search problem is highly combinatorial, and an exhaustive search is often
prohibitive. MonteBoxFinder therefore draws inspiration from Monte Carlo Tree Search
methods, in order to efficiently find a good set of cuboids. These cuboids can then be
used as ground truth to train single-image cuboid decomposition method.
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Résumé

Les images sont aujourd’hui omniprésentes. Pouvoir reconstruire des scènes en 3D à
partir d’images est un important défi. Cependant, les images sont une projection en
2D du monde, rendant ambigüe la projection inverse vers la 3D. Dans cette thèse, nous
nous intéressons principalement à deux méthodes de reconstruction 3D: l’estimation de
profondeur à partir d’une seule image, et la décomposition en primitives.

L’estimation monoculaire de profondeur (SIDE) définit la capacité à reconstruire la
surface 3D visible d’une scène étant donnée une seule image entrée. Ce problème est
ambigü, étant donné que plusieurs scènes 3D peuvent produire la même image. Les travaux
récents utilisent reposent alors sur des méthodes orientées-données, et principalement
des méthodes de d’apprentissage profond, utilisant de grands jeux de données composés
de paires d’images couleur et de carte de profondeur, ainsi que des réseaux de neurones
profonds afin d’apprendre un bon à-priori pour la prédiction monoculaire.

Les décompositions en primitives peuvent être utilisées pour représenter une scène
comme un arrangement de formes élementaires. Dans les années 60, Lawrence G. Roberts
propose de décrire le monde comme un arrangement de cuboïdes. Cette représentation est
simple et compacte, ce qui peut s’avérer utile pour des applications comme la robotique.

En première contribution de cette thèse, nous proposons une solution à un problème
récurrent en SIDE: la plupart des méthodes produisent des contours d’occultation flous,
alors que ceux-cis devraient être nets. Notre méthode SharpNet introduit des contraintes
géométriques ainsi que l’utilisation de données synthétiques pour prédire des cartes de
profondeur plus nettes.

Notre deuxième contribution poursuit notre quête de netteté pour les contours
d’occultation. Les réseaux de neurones sont connus pour être biaisés vers les basses
fréquences, ce qui explique que les contours, étant des détails à haute fréquence, sont
souvent ignorés par les méthodes utilisant l’apprentissage profond. Notre nouvelle
méthode de correction de carte de profondeur permet d’estimer des cartes plus nettes.
Nous prédisons des champs de déplacements afin de déplacer les pixels dans ces cartes.
Cette méthode génère des contours nets, sans sacrifier la précision des méthodes qu’elle
corrige.

Notre troisième contribution est aussi une simple extension améliorative des méthodes
de SIDE. La plupart de ces méthodes utilisent une architecture de type UNet. Alors que
les deux premières contributions améliorent la précision des méthodes de SIDE autour
des contours d’occultation, cette troisième améliore leur efficacité. Ces contours étant
généralement parcimonieux, cela génère un déséquilibre qui résulte le plus souvent en des
contours de profondeur flous. Avec WaveletMonoDepth, nous utilisons cette parcimonie



à notre avantage: nous pouvons alors calculer les convolutions uniquement dans les zones
à forte variation de profondeur, principalement autour des contours d’occultation. La
décomposition en ondelettes est utilisée comme représentation intermédiaire, et permet
de générer de forts gains en efficacité, au prix d’une faible perte en précision.

Notre dernière contribution explore la décomposition de scène en primitives 3D. Les
caméras RGB-D peuvent être utilisées pour scanner des scènes et les stocker sous forme
de nuages de points 3D. Cependant, ce procédé est souvent bruité, et couteux en stockage.
Grâce à MonteBoxFinder, nous représentons ces nuages des points bruités sous forme
d’arrangement de cuboïdes. Nous détectons d’abord un large nombre de cuboïdes, avant
d’en extraire un arrangement qui représente convenablement la scène. Nous nous inspirons
de l’algorithme Monte Carlo Tree Search pour résoudre ce problème combinatoire et
obtenir de bonnes décompositions en cuboïdes. Les cuboïdes ainsi obtenus peuvent alors
servir d’annotations pour entrainer des algorithmes de décomposition en cuboïdes à partir
d’une image.
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Chapter 1

Introduction

1.1 Goals

The goal of this thesis is to develop methods that improve the performance of algorithms
that perform 3D reconstruction from images. In particular, we will focus on two
3D computer vision tasks: (i) monocular depth estimation and (ii) primitive-based
decomposition of complex 3D scenes.

Estimating sharp monocular depth maps is a very challenging task. As we will
see later, monocular depth estimation (MDE), i.e. the task of estimating the visible 3D
structure of a scene given a single color image, is already an ill-posed problem unless
tackled under strongly constrained scenarios. Most MDE methods employ deep neural
networks along with large datasets to learn a prior that allows them to infer reasonable
depth maps. However as we show in Chapter 3 learning a good monocular depth estimator
is very difficult due to a strong imbalance between regions with strong discontinuities and
smooth regions, resulting is smooth depth edges. We therefore propose a two-step method
to solve the aforementioned problem and enforce sharp depth predictions around occlusion
boundaries. Secondly, we observe that most methods for monocular depth estimation
employ deep convolutional networks, which have limited capacity. This results in a
limited bandwidth in output depth maps. This frequency bias or “spectral bias” in fully
connected / multi-layer perceptron (MLP) (Rosenblatt (1958)) and convolutional neural
networks (CNN) (Fukushima (1988)) has been studied by various previous work (Basri
et al. (2020); Geifman et al. (2022); Rahaman et al. (2019); Tancik et al. (2020)), and in
our case results in smoother depth edges than the ones captured by sensors. In Chapter 4
we propose a method that circumvents this problem by enabling neural networks to
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predict 2D displacements, which can in turn transform smooth input depth maps into
sharp ones after applying the displacements.

Improving efficiency of convolutional neural networks for monocular depth
estimation can be useful for low power applications, for example estimating depth on
portable devices. Typical monocular depth estimation methods employ U-Net by Ron-
neberger et al. (2015) neural network architectures, a class of CNNs. Although these
have been long-standing go-to architectures, they are also inefficient, as they treat every
pixel in the image the same way, i.e. computing convolutions at every location in the
image. U-Nets however encode information at multiple scales. We therefore propose in
Chapter 5 a method that explicitely combines the multi-scale aspect of U-Net with the
efficiency of wavelet decomposition, resulting in an efficient architecture that exploits the
sparsity of information in depth maps.

Primitive-based decomposition of complex 3D point clouds is a challenging task,
but can prove beneficial for a wide range of applications such as robotics, compression,
and real or virtual interaction with an environment represented by a 3D point cloud of
a scene. The goal of this task is to explain a 3D point cloud, which was reconstructed
using a sequence of images from the ScanNet dataset (Dai et al. (2017a)), as a set of
primitives that best fit the 3D points. This is particularly challenging in cases where
the point cloud is very noisy. In Chapter 6, we propose a two-step method that first
detects many proposal primitives, then efficiently filters them such that the output set
of primitives satisfies a simple set of constraints. The filtering is done using an efficient
MCTS-inspired algorithm, that enables tackling this high-complexity problem.

1.2 Motivations

Augmented Reality (AR) aims to blend computer-generated virtual content into
a real environment. Different technologies have been used to perform AR. Consumer
products perform AR by adding content on frames acquired by cameras, such that
its real-time video feed is enhanced with virtual content. Snap Inc’s Snapchat filters
allows its users to add content to themselves using their phone’s front-facing (selfie)
camera. Niantic’s Pokémon Go (see Figure 1.1) uses smart-phones’ back-facing camera
to render 3D-aware content to the camera’s video feed in real-time. Meta’s Quest 2
uses a similar system to achieve AR, using rear-facing cameras mounted on the headset.
With the advances in holographic displays development (Xiong et al. (2021)), multiple

2

https://www.snap.com/
https://www.snapchat.com/
https://nianticlabs.com/
https://pokemongolive.com/


1.2 Motivations

Fig. 1.1 3D-aware object insertion in Pokémon Go. In this demo, Niantic Inc. applied
Monodepth2 (Godard et al. (2019)) to enable occlusion aware 3D object insertion.
https://www.youtube.com/watch?v=7ZrmPTPgY3I&ab_channel=Niantic

.

see-through AR devices have been built. These devices use holographic displays to project
3D content in front of the eyes, while letting light from real world pass through as regular
glasses. Microsoft’s Hololens therefore enables operators to receive real-time 3D-aware
instructions while interacting with the real world, with applications such as construction,
manufacturing, surgery or education. While both headsets Quest 2 and Hololens have
built-in sensors that can provide 3D information, applications such as Pokemon Go
or Snapchat filter require 3D estimation from color images, as most smart-phones are
not equipped with 3D sensors. More critically, both stereo-based and time-of-flight
sensors provide incomplete or noisy information around objects boundaries. Being able to
estimate sharp depth maps around object can therefore prove beneficial for more realistic
3D-aware object insertion.

Virtual Reality (VR). Contrary to AR, VR puts its user in a fully immersive
environment, where the only visual information visible to the user is rendered with
computer graphics. While many VR applications are developed for static user experiences,
i.e. when the user can only move their head, experiences with user in motion require
performing 3D reconstruction to avoid collision with obstacles. While headsets usually
have embedded depth sensors, these are often noisy and can sometimes fail when
reconstructing texture-less or specular surfaces. Being able to estimate depth from color
images generates another depth sensor for “free” for VR headsets.

Robotics. Performing 3D scene understanding from images is useful for several robotics
applications. For robot navigation, being able to estimate the distance to objects is
critical for obstacle avoidance and path planning. For automated manufacturing, being
able to estimate 3D in real time is also useful for tasks such as grasping.

3
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Fig. 1.2 Monocular depth estimation for autonomous driving. Brightest regions are
closer to the camera, while darkest ones are further. Figure from AdaBins by Bhat
et al. (2021).

Autonomous Driving. When driving a car, a human must always estimate its distance
to other road users such as other vehicles and pedestrians, but also its distance to potential
obstacles such as trees, traffic lights, etc. This estimation is critical, both for navigation
and avoiding accidents. While sonar sensors are widely used in cars to evaluate distance
to objects, they are often limited to a few meters range. RADAR and LiDAR sensors
are used in Advanced Driver Assistance Systems (ADAS) however they are relatively
expensive or bulky compared to color cameras. Estimating reliable depth from images
such as the example in Figure 1.2 is therefore a low-cost yet key component to enable
safer driving, and even more so for fully autonomous driving.

3D photography and image editing are two applications that can benefit from
monocular depth estimation. 3D photography aims to generate appealing 3D effects such
as motion parallax which changes the 3D viewpoint of the camera, or virtual dolly zoom
which changes its focal length (see Figure 1.3). These effects require estimating the 3D
scene given only a single photograph. It also requires inpainting regions in the image that
are disoccluded by the generated 3D motion. Kopf et al. (2020) perform one-shot 3D
photography by leveraging depth estimation and color inpainting to generate novel views
of the input image. Similar to augmented reality, 3D photography requires estimating
sharp occlusion boundaries with depth estimation for realistic effects.

1.3 Approach and context

Most of earlier works focused on depth perception from stereo pairs (Scharstein and
Szeliski (2002)), as triangulation techniques can yield unambiguous 3D reconstructions
from matching pairs of points from both images. Another line of works, known as
Structure-from-Motion (SfM) (Schönberger and Frahm (2016); Seitz et al. (2006)) focuses
on exploiting correspondences in frames taken from video sequences or even multiple
cameras to perform 3D reconstruction. However both stereo vision and SfM require
multiple images as input to infer 3D geometry. While humans can leverage monocular
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(a) Motion parallax results from Shih
et al. (2020). More here.

(b) Dolly zoom effect results from Shih et al.
(2020). More here.

(c) One-shot 3D photography (Kopf et al. (2020)) pipeline

Fig. 1.3 Application of depth estimation to 3D photography effects. Animations best
viewed with Acrobat Reader

5
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visual cues to infer depth even with a single eye (Howard (2012)), performing monocular
depth estimation with computers has been a long-standing problem, and performing
depth estimation from a single still image obtained from a single camera is even more
challenging. This task, called Single Image Depth Estimation (SIDE) aims to predict
depth at all pixels in a single input image. It is an ill-posed problem because multiple 3D
scenes can be projected to the same 2D image, implying many ambiguities as discussed
in Section 1.4.

Single Image vs Monocular Depth Estimation. In this section and the rest of
the manuscript, we interchangeably use Monocular Depth Estimation (MDE) and Single
Image Depth Estimation (SIDE) to refer to inference of depth given a single image as
input. However, MDE is more general, since monocular means single camera, which
means multiple frames of the same camera could potentially be used for inference; this is
for example a reasonable assumption in methods performing Shape-from-X, such as Shape
from Shading (Horn and Brooks (1989); Horn (1975)) or Shape from Defocus (Favaro
and Soatto (2005); Subbarao and Surya (1994)). However, in modern litterature, MDE
now mainly refers to scenarii with a single frame for inference. Therefore, unless specified
otherwise, we use MDE to refer to single-frame-single-camera depth estimation.

Our approach to MDE. Deep-learning based methods have enabled breakthroughs
in MDE such as the seminal works of Eigen et al. (2014), Laina et al. (2016) and Zhou
et al. (2017). We therefore chose to also leverage deep-learning based methods to perform
MDE and aimed to improve the sharpness of their predicted depth edges, as most state-
of-the-art methods were then predicting globally accurate depth maps but often with
smooth depth edges. This progress was made possible thanks to:

• large scale datasets such as the NYUv2-Depth dataset by Silberman et al. (2012)
and PBRS by Zhang et al. (2017),

• efficient hardware such as high-end Graphics Processing Units (GPU),

• widely available open-source research code, such as the popular deep-learning library
Pytorch Paszke et al. (2019).

Generating ground truth data for single-view 3D reconstruction by primitive
decomposition. Finally, we explore another primitives decomposition as another
representation to perform 3D reconstruction from images. In order to generate ground
truth cuboids to supervise single-image primitive decomposition algorithms for 3D
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reconstruction, we first leverage the RGB-D sequences of ScanNet (Dai et al. (2017a)),
which are used to reconstruct a 3D mesh using BundleFusion( Dai et al. (2017b))1. The
next task is then to fit this mesh with 3D primitives, which we chose to limit to cuboids.
This task proved to be very challenging due to the high noise in ScanNet, and we therefore
designed a method discussed in Chapter 6 to extract 3D cuboids from the noisy 3D
reconstructions. In future work, the generated data could be used to supervise deep
learning methods for single-image 3D reconstruction using cuboids.

1.4 Challenges

In this section, we discuss the main challenges that arise in 3D reconstruction from
images. We first discuss ambiguities that arise in single-image depth estimation (SIDE),
before discussing different types of noise in data that we encountered.

1.4.1 Ambiguities in 3D reconstruction from a single color
image

Scale ambiguity can arise in two cases, shown in Figure 1.4: (i) doubling the focal
length and distance results in similar appearance, as shown in Figure 1.4a, and (ii)
doubling the object’s size and distance to the camera also results in similar appearance.
In the context of reconstructing a 3D scene given a single image as input, such ambiguities
cannot be solved at test time. Learning-based approaches however allow monocular depth
estimation methods to learn plausible 3D shapes from training data where the camera
intrinsics are known and fixed, such that an object would rarely appear at an abnormal
scale. They can also leverage context, such that depth maps are inferred not only from
each single object separately, but rather such that the scene is globally consistent. Finally,
if multiple images can be used, as is the case for building the ScanNet dataset (Dai et al.
(2017a)), the scale ambiguity can be solved with multi-view consistency and the variation
in camera intrinsics can be taken into account.

Contextual ambiguity is also a challenge for predicting depth. In the iBims evaluation
benchmark, Koch et al. (2020) build adversarial situations, where for example in Figure 1.5
a printed picture of a scene is put on a wall. Because usually a neural network is trained
to decode perspective images into 3D geometry through visual cues, a picture containing
the same cues will generate the same depth map. Therefore, instead of predicting a flat

1This step is performed in the ScanNet original work.
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(a) Focal length ambiguity Example from Grabner et al. (2019).

(b) Size ambiguity Ex-
ample from Sterzer
and Rees (2006), scale
ambiguity arises from
.

Fig. 1.4 Scale ambiguity. In (a) scale ambiguity arises from varying focal length and distance
at the same time, while in (b) the object size and distance are changed simultaneously.
In both cases the object appears at the same scale in 2D but is captured from very
different distances.

surface, the network is fooled and predicts an actual 3D scene. While being an interesting
topic, all methods trained using a single image as input still fail to solve such kind of
ambiguity, which arises from a lack of context given to the network.

(a) RGB (b) Laina et al. (2016) (c) Liu et al. (2015) (d) Eigen and Fergus
(2015)

Fig. 1.5 Example of a visual ambiguity. Deep-learning based methods trained on datasets
with RGB-D pairs of indoor scenes decode visual cues into 3D geometry. When a
neural network is tasked to predict the depth of (a) a printed image of a scene set
on a planar surface such as a wall, it predicts the depth (b-c-d) of the original scene
rather than the wall, resulting in a large error. Images from Koch et al. (2018)

1.4.2 Noisy data

Noise is a common challenge in data science. When it comes to 3D reconstruction, noise
can come from two main sources: sensors and computation errors. In this section we
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(a) Kinect noise (b) BundleFusion noise

Fig. 1.6 Inaccuracy in 3D reconstructions. Kinect sensors exhibit noise that creates
creases on walls, as shown in Figure 1.6a. When performing 3D reconstruction based
on RGB-D sequences and BundleFusion (Dai et al. (2017b)) in ScanNet (Dai et al.
(2017a)), reconstruction errors such as for the set of tables in Figure 1.6b can also
come from algorithm errors.

cover two types of noise in 3D data that we encountered: inaccurate data and missing
data. We summarize these challenges in Figures 1.6 and 1.8.

1.4.2.1 Inaccurate data

Sensor noise. Depth sensors such as Kinect are, as any other real-world sensor, noisy.
This noise comes from multiple sources: the structured light emitter, the receiver that
reads reflected light, and the matching algorithm which performs disparity -and ultimately
depth- measurement.

3D reconstructions performed using noisy RGB-D sequences acquired with Kinect,
such as the ScanNet dataset, will then directly inherit the noise from sensors, as shown
in Figure 1.6a. Finally, another source of inaccuracies in such 3D reconstructions would
be the reconstruction algorithm itself, i.e. BundleFusion (Dai et al. (2017b)) in the case
of ScanNet, as shown in Figure 1.6b.

1.4.2.2 Missing data

Structured-light matching. In the case of depth sensing, missing data can also
come from multiple factors. For depth acquired using a Kinect sensor, which uses
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Fig. 1.7 Depth estimation using structured light is performed by triangulation between
a sensor (camera) and a projector. A known pattern is projected onto a 3D scene,
and the sensor observes a deformed pattern. By performing matching, the 3D surface
can be reconstructed via triangulation (the baseline distance B between the projector
and the camera is known and calibrated). However, when the object occludes the
pattern, matching cannot be performed, resulting in missing depth values. Figure
from Sarbolandi et al. (2015).

matching-based disparity measurement with structured light (see Figure 1.7), missing
data occurs in two major cases: (i) shadows by occlusion, i.e. when part of the projected
structured light used for matching becomes occluded by the scene and cannot therefore
be recovered, and (ii) when structured light is projected on a specular (i.e. reflective)
surface such as the marble table. In the latter case, no light is reflected back towards the
receiver sensor, making it impossible to perform matching. We show an example of such
missing data in Figure 1.8a.

3D reconstructions that are performed by scanning scenes with RGB-D sensors, as
done in ScanNet, also inherit from these issues. However the most common source of
missing data in this case is human: some parts of a 3D scene are either not scanned
because of inaccessibility, or by mistake. An example of such incomplete data is shown
in Figure 1.8b. In the case depth estimation, there are two main causes of noise: (i) the
sensor noise, which varies depending on the sensor but translates in noisy measurements
of depth for each pixel, (ii) missing data due to disocclusions, i.e. the situation where part
of a scene is hidden in one view of the multi-view sensor . 3D point clouds inherit directly
from the noise of the acquisition system. Such noise can come from sensor imperfection
(e.g. in the case of time-of-flight sensors, noise on time measurements), or occlusions.
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(a) NYUv2 (b) ScanNet

Fig. 1.8 Incompletion in 3D reconstruction with RGB-D data. (Left.) In NYUv2 (Sil-
berman et al. (2012)), missing depth data (bottom, in black) comes from the Kinect
sensors relying on structured-light and matching, which is impossible to perform if the
projected pattern is occluded by objects or if the pattern is projected on a specular
surface. (Right.) In ScanNet (Dai et al. (2017a)), missing data can also come from
human error, i.e. the human not fully scanning the 3D scene.

1.5 Outline

The outline of this thesis is organized as follows:

Chapter 2 Related work We first present an overview of related previous work in
3D reconstruction from images, with a particular focus on learning-based single image
depth estimation. We also cover popular representations for 3D data that were used in
several of the aforementioned related works, along datasets that are commonly used for
3D reconstruction, before covering single-image depth estimation related works in detail.

Chapter 3 Predicting Sharp Occlusion Boundaries in Monocular Depth Esti-
mation with Geometry Guidance This chapter introduces the first contribution of
this thesis, which set a new state-of-the-art on sharpness in monocular depth estimation,
using synthetic data and geometric constraints.

Chapter 4 Estimating Sharper Depth Maps with Displacement Fields This
chapter introduces a new class of network for monocular depth estimation, which is able
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to circumvent the low-frequency bias of neural networks using displacement fields to
sharpen depth estimates.

Chapter 5 Improving the Efficiency of Monocular Depth Estimation using
Wavelets Transforms This chapter introduces a method that exploits the structure of
depth maps to improve the efficiency of U-Net (Ronneberger et al. (2015)) architectures
for monocular depth estimation. We show that pairing wavelet decompositions with this
architecture yields improves efficiency of state-of-the-art methods without sacrificing
accuracy.

Chapter 6 Reconstructing 3D Scenes as Complex Sets of Primitives In this
chapter, we propose a method that first extracts a large set of cuboids from a noisy 3D
point cloud that was obtained a sequence of RGB-D images, then efficiently filters them
to return a set of cuboid that best fits the point cloud.

Chapter 7 Conclusion In this final chapter, we reflect on our contributions and
summarize this thesis takeaways. We then propose some future research perspectives
which could build upon our contributions.

1.6 List of Publications

In this thesis, we cover four papers:

• Michaël Ramamonjisoa, and Vincent Lepetit, (2019) SharpNet: Fast and
Accurate Recovery of Occluding Contours in Monocular Depth Estimation, In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)
Workshops,

• Michaël Ramamonjisoa, Yuming Du, and Vincent Lepetit, (2020) Predicting
Sharp and Accurate Occlusion Boundaries in Monocular Depth Estimation Using
Displacement Fields, In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR),

• Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit, Dani-
yar Turmukhambetov (2021) Single Image Depth Prediction with Wavelet Decom-
position, In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR),
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• Michaël Ramamonjisoa, Sinisa Stekovic, Vincent Lepetit, (2022) MonteBoxFinder:
Detecting and Filtering Primitives to Fit a Noisy Point Cloud, In European Con-
ference on Computer Vision (ECCV).

We made the code for all projects open-source2345. We also created explanatory videos
for DisplacementFields6 and WaveletMonodepth on their respective webpages. Our
research also led to the release of open-source datasets. We released the NYUv2-OC
dataset alongside the publication of SharpNet. Later upon publication of Displacement-
Fields, we released NYUv2-OC++ as an extension to NYUv2-OC. Finally, in the context
of a collaborative project with Dr. Giorgia Pitteri, we released the Synthe-TLess dataset7.

I was fortunate to be given the opportunity to present my work in various research
groups such as LaBRI (Université de Bordeaux), Niantic, Meta Reality Labs, Microsoft
Cognition and Google Zurich. I also presented these works during poster sessions at
ICCV 2019, CVPR 2020, CVPR 2021, and at the International Computer Vision Summer
School (ICVSS) 2022.

During my PhD, I also participated to the following collaborative works, which are
not discussed in this manuscript:

• Giorgia Pitteri, Michaël Ramamonjisoa, and Vincent Lepetit, (2019) On Object
Symmetries and 6D Pose Estimation from Images, In International Conference on
3D Vision (3DV),

• Van Nguyen Nguyen, Yuming Du, Yang Xiao, Michaël Ramamonjisoa, and
Vincent Lepetit, (2022) PIZZA: A Powerful Image-only Zero-Shot Zero-CAD
Approach to 6DoF Tracking, In International Conference on 3D Vision (3DV),

• Frederik Warburg, Michaël Ramamonjisoa, and Manuel López Antequera, (2022)
SparseFormer: Attention-based Depth Completion Network, In Proceedings of the

2https://github.com/MichaelRamamonjisoa/SharpNet
3https://github.com/dulucas/Displacement_Field
4https://github.com/nianticlabs/wavelet-monodepth
5https://github.com/MichaelRamamonjisoa/MonteBoxFinder
6https://michaelramamonjisoa.github.io/projects/DisplacementFields
7https://github.com/MichaelRamamonjisoa/SyntheT-Less
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IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops.
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Chapter 2

Literature review

In this chapter, we review existing work related to the two tasks studied in this thesis:
(i) monocular depth estimation, and (ii) fitting 3D point cloud with primitives. In
Section 2.1, we first start with a brief overview of deep learning and its main components,
as methods described in Chapters 3-4-5 are deep learning based. In Section 2.2, we
then describe popular representations 3D scenes, among which are depth maps which we
use extensively, and primitives decompositions which we use in Chapter 6. Finally, in
Section 2.3 we review previous work on learning-based single image depth estimation.

2.1 Deep Learning

The first three contributions of this thesis, presented in Chapter 3, Chapter 4 and
Chapter 5 rely on deep learning to perform various tasks related to monocular depth
estimation. We therefore review important aspects of deep learning in the following
section. We first cover a brief history of deep learning in computer vision, then discuss
its key components, and finally discuss in more detail the U-Net (Ronneberger et al.
(2015)) neural network architecture, which we use throughout the thesis.

2.1.1 The rise of Deep Learning in computer vision

As many other fields of The vast majority of computer vision tasks today are tackled using
deep-learning-based techniques. For most computer vision tasks, deep-learning-based
methods have at least improved performances over classical methods. In a large and
growing number of instances, deep-learning-based methods enabled breakthroughs, and
are often the only way to solve notoriously hard computer vision problems. Although it
had originally been studied in early years of computer vision (Rosenblatt (1958)), the
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recent surge of deep learning for computer vision can be attributed to two main factors:
(i) the collection and public release of large scale datasets such as ImageNet (Deng et al.
(2009)), (ii) the steady increase in development of Graphics Processing Units (GPU) and
(iii) the development of breakthrough GPU-trained convolutional neural networks (CNN)
(Fukushima (1988)) architectures such as AlexNet (Krizhevsky et al. (2012)) and ResNet
(He et al. (2016a)), which set the path to many more breakthroughs across different
sub-fields of computer vision.

2.1.2 Components

For a detailed introduction to deep learning and its components, we refer the reader to
Goodfellow et al. (2016). In this section, we only review the key components required to
build a deep-learning-based method in order to solve a particular task.

Dataset. A large dataset is necessary to train a deep neural network. This dataset is
made of a set of training samples X which in the case of labeled datasets, consist in pairs
{xi, yi} where xi is the data, typically an image in computer vision applications, and yi

is a label, which can be a single value, or a vector, array, or volume of values, depending
on the application. For classification, yi is a single value that indicates the ground truth
class of an image xi. For dense regression or classification tasks such as depth estimation
or semantic segmentation respectively, the label yi is an array of values corresponding to
per pixel ground truth value for depth or class. These labels, also known as annotations,
are notoriously hard and expensive to obtain, and often come with noise that usually
originates from human error or sensor noise.

Neural network architecture. A neural network architecture Fθ is a parametric
family of differentiable functions. This differentiability is essential in order to allow
the network to update its parameters θ, also known as weights, over training based on
an measured loss function and a chosen optimization method through backpropagation
(Rumelhart et al. (1986)). Popular neural network architectures for vision include
convolutional neural networks (CNNs) (Fukushima (1988)), multi-layer-perceptrons
(MLP) by (Rosenblatt (1958)), and more recently transformers (Vaswani et al. (2017))
which have been introduced to vision with works such as Vision Transformer (ViT)
(Dosovitskiy et al. (2020)) or DETR (Carion et al. (2020)).

Loss function. In order to train a neural network, it is necessary to define a function
ℓ that evaluates the deviation between the neural network’s outputs and its target
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outputs. In the case of supervised learning, i.e. when ground truth annotations yi are
provided, the target outputs are the annotations themselves. As we will see later, it is
also possible to define loss functions for self-supervised learning, i.e. when no ground
truth annotations yi are provided, such that by optimizing this loss function, the network
learns to produce better outputs for the task at hand. In all cases, the loss function
should also be differentiable, such gradient descent methods can be applied to optimize
the neural network’s parameters.

Optimization method. Optimizing a loss function F across all samples of a training
set is generally intractable, both due to computational limits and in general non-convexity
of the loss function. Instead, most deep-learning-based method rely on Stochastic Gradient
Descent (SGD) optimization techniques. SGD methods for deep learning usually follow
four steps:

• a mini-batch XB = {xi, ..., xi+n}, which consists of a subset of the N training
samples, is randomly sampled from the training data,

• the network Fθ performs predictions on all input data in XB,

• the loss function ℓ is evaluated to measure the deviation between the outputs
{Fθ(xi), ...,Fθ(xi+n)} and the target outputs YB = {yi, ..., yi+n},

• the gradient of the loss function for all samples in the mini-batch w.r.t the networks
parameter θ are aggregated in ∇θℓ – usually by taking the average of the individual
gradients – and ∇θℓ is back-propagated to update the networks weights θ. Since
all components in the neural network are differentiable, the chain-rule is applied to
obtain the gradient of ℓ w.r.t. θ.

Several variants have been developed to improve the stability and performance of
SGD, for example the use of momentum (Nesterov (1983)), RMSProp (Tieleman et al.
(2012)), or the most popular Adam optimizer (Kingma and Ba (2015)), which we use
extensively in this thesis.

2.1.3 U-Net

Since its introduction by Ronneberger et al. (2015), the U-Net architecture, shown in
Figure 2.1 has been the standard basic structure for dense prediction applications in
computer vision. In this section briefly explain the task of dense prediction with neural
networks, and cover the key components of the U-Net architecture, as well as its variants.
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Fig. 2.1 Overview of the U-Net architecture introduced by Ronneberger et al. (2015)

Dense prediction with neural networks. Contrary to classification or detection,
dense prediction tasks require the network to predict outputs at the size of the input
data. In the most common case of an image as input, the network is also tasked to
predict an image at its output, where each pixel of the output image must correspond to
a value in the output space. A few example tasks are shown in Figure 2.2.

Encoder-Decoder. The U-Net has an encoder-decoder structure. The encoder first
extracts a multi-resolution representation through a cascade of convolutions and down-
sampling operations. Such class of encoders include the seminal ResNet (He et al.
(2016a)), VGG (Simonyan and Zisserman (2015)), or AlexNet (Krizhevsky et al. (2012))
works. The decoder then performs decoding and upsampling operations, where the
multi-resolution feature maps extracted by the encoder are run through a sequence of
convolutions, non-linearities, and upsampling operations.

Skip-connections. Residual connections, also known as skip-connections are usually
employed in U-Net-based architectures. While in ResNet (He et al. (2016a)), skip
connections are short range, the skip connections in U-Net are long range. This ensures
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(a) Denoising from RIDNet (Anwar and Barnes (2019))

(b) Semantic segmentation from PSPNet (Zhao et al. (2017))

(c) Style transfer from Gatys et al. (2015) (d) Depth estimation with MiDaS (Ranftl
et al. (2020))

Fig. 2.2 Examples of dense prediction tasks.
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high-resolution content is maintained during the decoding process, which starts from the
low-resolution bottleneck and progressively upsamples the feature maps.

Alternatives to U-Net. While U-Net are still the primary choice for dense prediction
tasks using neural networks, some alternatives have also been developed. For example,
two-stage architectures such as Mask-RCNN (He et al. (2017a)) first detect object
bounding boxes then segments individual object before merging them into a dense
segmentation of the full image. Very recently, transformers architectures have been
leveraged by Ranftl et al. (2021) for dense predictions based on ViT (Dosovitskiy et al.
(2020)).

2.2 Representing 3D Scenes

In this section we present several ways to represent 3D scenes. We first present explicit
representations such as point clouds, depth maps, voxels, and primitive decompositions,
which we present an overview in Figure 2.3. We then discuss implicit scene representations
formed by neural fields.

(a) Depth Map (b) Surface Normals (c) Point Clouds

(d) Mesh (e) Primitives (f) Distance Field (g) Voxels

Fig. 2.3 Overview of some popular 3D representations. This figure presents the popular
3D representations that we cover in this paper. The depth maps and surface normals
are 2.5D representations (single-view surfaces), while point clouds, meshes, primitive
decompositions and distance fields are used to represent full 3D shapes. Mots images
were taken from Thomas Funkhouser’s presentation at the 3DGV 2020 seminar.
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2.2.1 Point Clouds

Point clouds are arguably the most straight-forward 3D representation. They encode
geometry as a set of points sampled in 3D space. A point cloud S can be therefore
written as S = {Xi ∈ R3}i=1..N where N is the number of points. These points can also
have an associated normal, especially when representing 3D surfaces from which they are
sampled. Due to their simplicity, point clouds are a popular representation for a large
number of works in 3D computer vision, such as 3D semantic segmentation, following the
seminal works PointNet and PointNet++ (Qi et al. (2017a,b)) for permutation invariant
processing of point clouds with MLPs. Given their success for processing images, several
works focused on adapting popular operators used in deep learning architectures to work
with point clouds, including convolutions (Boulch (2020); Li et al. (2018); Thomas et al.
(2019); Xu et al. (2018b)) and more recently transformers (Guo et al. (2021); Zhao et al.
(2021)).

2.2.2 Depth Maps

Depth maps are a common 3D representation, which we use extensively in our works. In
this section we first define depth maps, then explain how they can be used to produce 3D
point clouds, and finally present common ways to visualize them. We dedicate a more
complete section to cover state-of-the-art in depth estimation in Section. 2.3.

Definition. Depth maps are 2D projections of 3D scenes onto a camera’s image plane.
Assuming a pinhole camera model, with intrinsic matrix K, the 3D projection model is
as follows:


x

y

1

 = (1/Z)KP = K


X/Z

Y/Z

1

 , (2.1)

where P = (X, Y, Z)T is a 3D point in camera coordinates frame. Z is then the depth
value at pixel (x, y) in the resulting depth map. In Figure 2.4, we show a visualization of
this projection. Two points P1 and P2 reproject in different pixels, the depth map value
at these pixels corresponds to their coordinate projection along the camera optical axis.

Back-projection Recovering a 3D point cloud from a depth map is also possible
using back-projection. Given a depth map (x, y) 7→ Z(x,y), which we will write as Z for
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Fig. 2.4 Formation of depth maps. Two
3D points P1 and P2 project onto two
different pixels, which take as depth
values the distance along the camera’s
optical axis. jet color map is used
in this visualization, where closest re-
gions appear more red.

simplicity, we can obtain a 3D point P = (X, Y, Z) from a pixel (x, y) and its associated
depth value Z(x,y) using:


X

Y

Z

 = Z(x,y)


X/Z(x,y)

Y/Z(x,y)

1

 = Z(x,y) ·K−1


x

y

1

 . (2.2)

This operation is useful for example for re-projection of a depth map or its associated
color image onto another camera image plane by applying a transform [R|T ] ∈ SE(3) to
P then Equation (2.1), which is for example the case in Godard et al. (2019, 2017).

(a) (b) (c) (d)

Fig. 2.5 Colormaps for depth maps. Different color maps are used to draw depth maps in
the litterature as well as in this manuscript. (b-c-d) are the same depth map obtained
using a Kinect sensor, and are paired with the RGB image (a) in the NYUv2-Depth
dataset (Silberman et al. (2012)). For the jet (b) and viridis (c) colormaps, the
right-most part of the colormap indicates the farthest regions. For the inferno
colormap (d), we represent inverse-depth, so brightest regions are the closest to the
camera.
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Visualization Since depth maps are represented as a 2D arrays of scalar values, they
can be visualized as an images. While grayscale 2D images are an option to visualize
depth maps, the community has opted to convert these grayscale images to pseudo-color
images, i.e. mapping one dimensional values to RGB colors. These type of mappings
are known as color mappings, and are used to improve the perception of information.
Different color maps are used for different applications, and depend on the field. A
popular example of color map is the mapping of temperature, where hot temperatures are
usually mapped to red colors, and cold temperatures are mapped to blue colors. Different
color maps have been used for visualizing depth maps, for example jet, viridis, plasma
or inferno. As shown in Figure 2.5 we use jet, viridis and inferno respectively in
Chapter 3, Chapter 4 and Chapter 5.

2.2.3 Surface Normals

Similar to depth maps, surface normals maps encode visible surface geometry. Normal
maps are projections of 3D surface normals on an object’s surface (see Figure 2.6). Surface
normals and depth maps are also strongly related, as the former are the 3D derivative
of the latter. This relationship between depth and normals has been used extensively
in a number of previous work to perform joint constrained predictions (Qi et al. (2018);
Ramamonjisoa and Lepetit (2019); Yang et al. (2018b)). Surface normals are also useful
for 2.5D processing, such as image inverse rendering (Li et al. (2020b); Sengupta et al.
(2019); Wang et al. (2021); Yu and Smith (2019); Zhu et al. (2022)). Visualizing normal
maps is usually done using normal mapping, which maps the 2D angular coordinate
(elevation/yaw, azimuth/pitch) of normal vectors to RGB values. In Figure 2.7, the
normal mapping convention is shown on the projection of a sphere, along with examples
of normal maps.

Fig. 2.6 Formation of normal maps. Nor-
mal maps are the projection of the
values of 3D surface normals (red ar-
rows), from the 3D camera coordinate
frame, onto the camera image plane.
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Fig. 2.7 Examples of normal maps. The normal mapping of yaw and pitch angles (spherical
coordinates) is shown at the top.

2.2.4 Meshes

Meshes introduce connectivity between points in point clouds. Points are commonly
renamed as vertices V , and are connected by edges E. Edges can be constructed to form
a graph (V,E) from which cliques can be used to define faces F . The most common
3D meshes usually use triangle or quadrilaterals, i.e. 3- or 4-point cliques respectively,
in order to represent 3D surfaces. Normals can also be computed for faces and vertices
to produce a more complete 3D surface representation, which is for example needed to
produce appealing renderings of a mesh, as shown in Figure 2.8. Compared to point
clouds, meshes have a topology that can be exploited for 3D reconstruction using deep
learning. Wang et al. (2018b) designed a method that reconstructs an object from an
input image by deforming a spherical mesh, using graph convolutions. One downside of
mesh deformation to reconstruct a 3D shape is that it does not allow topology changes.
Groueix et al. (2018) formulated 3D shape reconstruction as deformations of a set of
patches therefore enabling reconstruction of shapes with any topology. Pan et al. (2019)
tackled the topology adaptation problem in template deformation by allowing face
removal in the template mesh.

2.2.5 Primitive Decompositions

3D scenes can also be decomposed into simple primitives to enable higher-level under-
standing of the scene, but also compact representations for efficient computer graphics,
3D CAD model design, or robotics. As shown in Figure 2.9, such primitives can include
for example planes, cylinders, spheres, cuboids, or ellipsoids, but these primitives can
also be learned (Deprelle et al. (2019)). While planes (Li et al. (2011); Liu et al. (2019,
2018); Monszpart et al. (2015); Schnabel et al. (2007)) and cuboids (Niu et al. (2018);
Tulsiani et al. (2017); Zou et al. (2017)) decompositions dominated 3D computer vision,
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(a) (b) (c) (d)

Fig. 2.8 From point clouds to textured meshes. Starting from a point cloud (a), edges
can be added to connect the points in order to form triangles (b). Normals can be
computed for these triangles in order to produce shaded renderings (c). Finally, the
mesh triangles can be textured, in order to produce shaded and textured renderings
(d).

(a) GlobFit (Li et al. (2011)) (b) SuperQuadrics (Paschalidou et al. (2019, 2020))

(c) AtlasNetv2 (Deprelle et al. (2019))

Fig. 2.9 Primitive decompositions for 3D point cloud fitting. Examples of primitive
decompositions using different types of primitives. GlobFit uses planes, while Paschali-
dou et al. (2019, 2020) uses superquadrics and AtlasNetv2 uses learned primitives.
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superquadrics were also explored by Paschalidou et al. (2019, 2020) to reconstruct 3D
scenes as sets of primitives.

2.2.6 Voxels

Similarly to pixels being a 2D grid discretization of an image, voxels are a 3D grid
discretization of a volume. The most commonly used voxels are occupancy voxels shown
in Figure 2.10, which encode the presence or absence of geometry, e.g. points from a
point cloud or triangles from a mesh, with 0 or 1 respectively. However, voxels can
be used to encode more general discretization of data in a volume. Other examples
include signed distance fields (SDF), which is used to encode the signed distance to
the nearest geometry, where the sign is defined based on the relative position with
respect to an oriented surface. Voxelised SDFs were for example used in seminal works
KinectFusion (Newcombe et al. (2011)) or ScanNet dataset (Dai et al. (2017a)). Voxels
also gained popularity for deep-learning-based 3D computer vision with 3D CNNs, where
voxels can now encode general features in a 3D volume used for 3D-aware generative
models (Nguyen-Phuoc et al. (2019, 2020)), 3D reconstruction (Liu et al. (2020a); Murez
et al. (2020); Peng et al. (2020); Wu et al. (2017, 2018b)), 3D object detection and
classification Brock et al. (2016); Maturana and Scherer (2015); Qi et al. (2016); Riegler
et al. (2017); Zhou and Tuzel (2018), or novel view synthesis (Henzler et al. (2019);
Schwarz et al. (2020); Sitzmann et al. (2019)).

Fig. 2.10 Occupancy voxels at different resolutions. The resolution of the voxel grid
increases from left to right, i.e. the voxel size decreases in 3D.

2.2.7 Neural Fields

Although we do not make use of neural fields in this thesis, these have become increasingly
popular and set new state-of-the-art on multiple 3D benchmarks. In this section we only
briefly describe the concept of a neural field, and give a few examples of popular neural
fields for 3D computer vision, shown in Figure 2.11. For a comprehensive list of neural
fields works see https://neuralfields.cs.brown.edu/.

26

https://neuralfields.cs.brown.edu/


2.2 Representing 3D Scenes

Point Occupancy
(a) Occupancy Networks

Decision 
boundary
of implicit 
surface

(a)

(b) (c)

(b) DeepSDF

(x,y,z,θ,ϕ)

FΘ

(RGBσ)

5D Input
Position + Direction

Output
Color + Density

Volume 
Rendering

Ray 1σ

σ

Rendering
Loss

g.t.

g.t.

2

2

2

2

Ray 2

Ray 1

Ray Distance

(b)(a) (c) (d)

Ray 2

(c) NeRF

Fig. 2.11 Overview of popular neural fields in 3D computer vision. Occupancy
Network, DeepSDF, and NeRF visualizations were taken from Mescheder et al.
(2019), Park et al. (2019), and Mildenhall et al. (2020) respectively.
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Definition. Neural fields are fields that are parameterized by neural networks fθ, which
are used to map a spatial and/or temporal coordinate x to a quantity:

fθ : x 7→ fθ(x). (2.3)

Occupancy and Signed Distance Fields. Occupancy Networks Mescheder et al.
(2019) learn to represent occupancy fields (OF), as they learn to map a 3D coordinate
p = (x, y, z) to an occupancy fθ(p) = o ∈ {0, 1}. Peng et al. (2020) added local 3D
features to the Occupancy Networks decoding. Similarly DeepSDF (Park et al. (2019))
learns Signed Distance Fields (SDF), where fθ maps 3D coordinates to the signed distance
fθ(p) = s to a 3D surface; if one considers the inside of a 3D shape to have negative
s, then occupancy fields are equivalent to (minus-)sign of SDFs. Both occupancy and
signed distance fields are used as implicit representations for 3D surfaces, where for
the former the implicit surface lies on the 3D decision boundary between occupied and
non-occupied volume (see Figure 2.11a) and for the latter it lies on the SDF zero-level-set
(see Figure 2.11b).

Neural Radiance Fields (NeRF). encode radiance fields, and learn to map 5D
coordinates (x, y, z, θ, ϕ), i.e. 3D coordinates and viewing angles, to a color c and
geometry density σ. To train NeRFs, Mildenhall et al. (2020) used differentiable volume
rendering (Kajiya and Von Herzen (1984)) with ray sampling, such that the weights
of the neural network parameterizing the radiance field are optimized to reconstruct
a set of posed 2D images (see Figure 2.11c). Using this method, they achieved a new
state-of-the-art in novel view synthesis, especially due to the use of high-dimensional
embedding of the input spatial coordinates using Fourier Features (Tancik et al. (2020)).

2.3 Learning-Based Single Image Depth Estimation

Single Image Depth Estimation (SIDE) aims to predict depth at all pixels in a single input
image. Compared to multi-image scenarios such as multi-view stereo and many Shape-
from-X methods, SIDE is highly ill-posed, as no mechanism can solve the ambiguities
that arise when interpreting a single-image as a projection of a 3D scene (see Section 1.4).
For that reason, most modern methods are data-driven and learning-based, in order to
learn a useful prior for depth map inference from a single image.

Therefore, in this section, we only briefly discuss classical Shape-from-X methods in
Section 2.3.1. Then, starting from Section 2.3.2, we focus on learning-based SIDE by
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covering RGB-D datasets that enabled these works. In Section 2.3.3 we discuss methods
that use full depth supervision, and finally in Section 2.3.4 we cover methods that do not
require full depth supervision.

2.3.1 Shape-from-X

The term Shape-from-X broadly encompasses methods that reconstruct 3D shapes given
a only single image of a scene, or multiple images captured under different conditions.
Many visual cues can be exploited to extract 3D shape from sets of images. Photometric
Stereo (Woodham (1980)) exploits shading cues from multiple observations of a scene
under varying illumination conditions in order to reconstruct a 3D surface. Shape-from-
Shading (Horn and Brooks (1989); Horn (1975)) also exploits shading cues (Barron and
Malik (2012a,b, 2015); Frankot and Chellappa (1988); Zhang et al. (1999)) to reconstruct
a 3D surface, and can work with a single input image by exploiting geometric priors.
Shape-from-Texture (Lobay and Forsyth (2006); Witkin (1981)) exploits deformation of a
texture pattern to recover the shape of objects. Shape-from-Defocus (Favaro and Soatto
(2005); Subbarao and Surya (1994); Xiong and Shafer (1993)) exploits the relationship
between spatial resolution and depth in order to perform depth estimation. While all the
above cited methods operate using images of a scene with a static viewpoint, another
important family of methods is Structure-from-Motion (SfM). Used alongside Multi-View-
Stereo (MVS), these methods can reconstruct 3D scenes by extracting discriminative
points and matching them in order to triangulate the 3D scene. We discuss them in more
detail in the following.

Structure-from-Motion (SfM) (Schönberger and Frahm (2016); Seitz et al. (2006))
first extracts discriminative keypoints in images using for example classical feature
detectors SIFT (Lowe (1999)) or BRIEF (Calonder et al. (2012)), or learned ones Yi et al.
(2016). 2D-to-2D keypoint matching is then performed between pairs of images, and
these keypoints are then used to estimate the camera poses of each image, and a sparse
3D reconstruction. The SfM pipeline used in the seminal work COLMAP (Schönberger
and Frahm (2016); Schönberger et al. (2016)) is shown in Figure 2.12.

Multi-view-Stereo (MVS) relies on multi-image matching to perform multi-view 3D
reconstruction. Given a collection of input posed images {Ik, Tk}k=1..N , the goal of MVS is
to match pixels of a reference image Ir to pixels from other images; 3D points can then be
obtained from these matches using relative poses between cameras. These poses Tk must
be computed before-hand, therefore most MVS-based reconstructions systems, such as
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Fig. 2.12 Structure-from-Motion pipeline from COLMAP by Schönberger and
Frahm (2016)

the seminal work COLMAP by Schönberger and Frahm (2016); Schönberger et al. (2016)
rely on a SfM algorithm. Finally, MVS systems are able to provide semi-dense depth maps
aligned with each input image, as well as a metric and semi-dense 3D reconstructions.
For a tutorial on classical MVS, see Furukawa et al. (2015). Several deep learning based
methods have also emerged to perform MVS (Huang et al. (2018a); Yao et al. (2018)),
and became state-of-the-art for the task, however classical methods such as COLMAP
still remain competitive, as studied by Darmon et al. (2021). NeRF-based (Mildenhall
et al. (2020)) methods, discussed in Section 2.2 have also gained increasing popularity to
perform MVS 3D reconstruction (Wei et al. (2021)).

2.3.2 RGB-D Datasets

As discussed in Section 2.1, datasets are a key component to enable deep learning based
methods to work, as they require large amounts of training data. In this section we cover
some of the most popular RGB-D datasets used in the litterature for deep learning based
monocular depth estimation. Although we separate these datasets into four categories,
time-of-flight (Section 2.3.2.1), structured-light (Section 2.3.2.2), structure-from-motion
(Section 2.3.2.3) and synthetic (Section 2.3.2.4), all RGB-D datasets are treated as sample
pairs of aligned RGB and depth images. While section covers some of the most popular
RGB-D datasets used depth estimation litterature, it is not an exhaustive list. We refer
the reader to Firman (2016) and Lopes et al. (2022) for surveys on RGB-D datasets.

2.3.2.1 Time-of-flight

Time-of-flight based sensors acquire depth based on a simple principle: the measurement
of time required for a laser or radar wave pulse/burst to travel from the sensor to the
scene then back, after reflection onto the scene.
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Make3D The Make3D dataset (Saxena et al. (2006); Saxena et al. (2009)) contains
534 outdoor high-resolution images, 400 for training, and 134 for testing, and are paired
with small resolution ground truth. Depth is acquired using a custom laser-based 3D
scanner mounted on a robot.

KITTI The KITTI Vision Benchmark Suite Geiger et al. (2013, 2012) has been designed
to train and evaluate computer vision methods with autonomous driving applications.
While this dataset is used for multiple tasks such as optical or scene flow estimation,
visual odometry, 3D object detection or semantic segmentation, we focus on the depth
estimation benchmark. The dataset consists of 22,600 calibrated stereo video pairs
captured by a car around a Karlsruhe, a city in Germany. In order to acquire ground
truth depth, this car is also equipped with a 360 degrees LIDAR, which produces a
sparse 3D point cloud reconstruction. We use the KITTI dataset both for training and
evaluation of WaveletMonoDepth as described in Chapter 5.

iBims The iBims dataset is a moderate-size but high-quality RGB-D dataset used for
evaluation of single-image depth estimation methods. Compared to its other datasets,
iBims uses a custom laser-based acquisition setup that has very low depth noise, sharp
depth edges, and no occlusions. We used iBims to evaluate our first two monocular depth
estimation methods described in Chapters 3-4.

Other notable time-of-flight datasets used in the litterature but not used in this thesis
include the Matterport dataset (Chang et al. (2017)) or the DIODE dataset (Vasiljevic
et al. (2019)).

2.3.2.2 Structured-light

Structured-light sensors rely on projection of a 2D pattern on the 3D scene, and measuring
disparity by matching known parts of this pattern after they are deformed by the 3D
scene (see Figure 1.7). They are usually performed using infrared projectors and receivers.
For a tutorial on structured-light for 3D reconstruction, we refer to Geng (2011).

NYUv2 Depth Introduced by Silberman et al. (2012), the NYUv2-Depth dataset
contains 464 indoor video scenes captured with a Microsoft Kinect sensor, a structured-
light sensor that enables depth sensing at moderate ranges with aligned RGB images.
From the 249 training scenes, 120K pairs of RGB and depth images can be used for
training. This dataset has arguably been a cornerstone to enable tremendous progress in
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deep learning based monocular depth estimation, pioneered by Eigen and Fergus (2015);
Eigen et al. (2014). NYUv2 Depth is used both for training and evaluation in all our
monocular depth estimation works, described in Chapters 3-4-5.

ScanNet (Dai et al. (2017a)) Similarly to NYUv2, ScanNet is an indoor dataset
collected using a Microsoft Kinect sensor. In addition to RGB-D sequences of 2.5 million
images obtained from more than 1500 scenes, ScanNet provides a 3D scene reconstruction
for each scene, using a 3D mesh representation that we use in Chapter 6.

2.3.2.3 Multi-View Stereo

As discussed in Section 2.3.1, Multi-View Stereo (MVS) consists in performing dense 3D
reconstruction via triangulation using multiple cameras viewing the same scene from
different viewpoints by matching pixels between views. Contrary to structured-light or
time-of-flight sensors, MVS can perform passive reconstruction, as the 3D reconstruction
system does not rely on projecting waves onto the 3D scene. Such passive reconstructions
systems can be particularly suitable for surveillance or military applications, where it is
desirable to perform remote reconstruction while remaining undetected. As mentioned in
Section 2.3.1, 3D reconstruction using MVS requires knowledge of relative camera poses,
which usually performed comes from a first Structure-from-Motion step. In this section
we only cover two large scale “in the wild” photogrammetry RGB-D datasets, shown in
Figure 2.13 but refer the reader to Lopes et al. (2022) for a survey on MVS datasets.

MegaDepth (Li and Snavely (2018)) is a popular large scale outdoor RGB-D dataset,
which comprises 130,000 samples generated using COLMAP Schönberger and Frahm
(2016); Schönberger et al. (2016), an method that combines SfM and MVS to generate
semi-dense depth maps.

Mapillary Planet Scale Dataset (MPSD) (Antequera et al. (2020)) MPSD
contains 750,000 RGB-D image pairs, collected from 50,000 scenes. These images were
also collected in a broader set of countries and environments than its predecessors, as
MegaDepth for example collected images from 200 scenes.

2.3.2.4 Synthetic datasets

Synthetic datasets for 3D scene understanding have become popular after deep learning
breakthroughs in depth estimation (Eigen et al. (2014); Laina et al. (2016)), semantic
segmentation (He et al. (2017a); Zhao et al. (2017)) and object detection (Redmon
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(a) Megadepth (b) MPSD

Fig. 2.13 Large scale multi-view stereo datasets.

et al. (2016); Ren et al. (2015)). Since they are generated by rendering 3D scenes using
computer graphics, their geometry annotations are noise free. However, synthetically
generated datasets often exhibit a large domain gap with datasets acquired with real
cameras. To solve this issue, two types of methods are used when generating synthetic
datasets: (i) photo-realistic rendering, which use the latest advances in physically-based
rendering (PBR), but often result in either noisy or abnormally perfect images, or (ii)
domain randomization, which generates fuzzy datasets with random textures, object
and camera poses, etc. While the first aims to reduce simulation-to-reality domain gap,
the latter rather aims to improve generalization capabilities of neural networks. While
other synthetic datasets are listed in the survey by Lopes et al. (2022), we present three
datasets, shown in Figure 2.14.

SUNCG (Song et al. (2017)) The SUNCG dataset was the first to introduce computer
graphics to generate a dataset of indoor scenes suitable for 3D scene understanding
purposes, as it contained 45,622 3D models of indoor scenes. Photorealistic renderings
have later been used to generate image datasets, such as PBRS Zhang et al. (2017) which
we use in our work SharpNet, described in Chapter 3. However, although it was widely
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(a) SUNCG (PBRS
rendering by Zhang et al.

(2017))
(b) Scene-RGBD (c) Hypersim

Fig. 2.14 RGB-D pairs of popular synthetic datasets.

used by the computer vision community, the SUNCG dataset became unavailable for
research, and its derivative datasets such as PBRS also suffered the same fate.1

Scene-RGBD (McCormac et al. (2017)) is a dataset of 5 million rendered RGB-D
images from over 15K trajectories in synthetic layouts with random but physically
simulated object poses. Compared to SUNCG which provides a discrete set of poses,
Scene-RGBD uses realistic camera trajectories, enabling sequential applications such as
SLAM.

Hypersim (Roberts et al. (2021)) is a photorealistic synthetic dataset for holistic
indoor scene understanding. Hypersim leverages a large repository of synthetic scenes
created by professional artists, and comprises of 77,400 rendered images of 461 indoor
scenes with detailed per-pixel labels and corresponding ground truth geometry.

2.3.3 Fully Supervised Methods

Saxena et al. (2009) pioneered supervised learning for SIDE. They used a Markov
Random Field (MRF) model that incorporates multi-scale local and global image features
using super-pixels. Shortly after the first breakthroughs in deep learning for computer
vision (Krizhevsky et al. (2012)) and the release of the NYUv2-Depth (Silberman et al.
(2012)) dataset, deep learning based methods took over the state-of-the-art in monocular
depth estimation. In this section we cover several of these deep learning based methods;
there also exist many surveys aiming to provide comprehensive reviews of the field (Ming
et al. (2021); Zhao et al. (2020)).

1https://github.com/DLR-RM/BlenderProc/issues/11
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Fig. 2.15 Deep Neural Network architecture from Eigen et al. (2014).

Multi-scale architectures have been employed since the seminal work by Eigen
et al. (2014). They typically use a cascade of convolutions and down-sampling operations
such as pooling or strided convolutions to provide a low-resolution representation at the
bottleneck which aggregates global features from the input image. This low-resolution
representation, is then progressively upsampled using convolutions which locally refine
the initial low-resolution representation, and ultimately produce a depth map at the
original image resolution. As seen in Figure 2.15, while in Eigen et al. (2014) this
low-resolution representation is directly a depth map, Laina et al. (2016) introduced
deeper architecture where the bottleneck representation is high-dimensional. Because of
its success for many other computer vision tasks, the U-Net (Ronneberger et al. (2015))
architecture has also been used as a basis in many MDE works (Godard et al. (2019);
Ramamonjisoa and Lepetit (2019); Yin et al. (2019)). Recently, Ranftl et al. (2021) used
Vision Transformers (ViT) (Dosovitskiy et al. (2020)) as an encoder in an encoder-decoder
architecture with bottleneck, similarly to U-Net. As shown in Figure 2.16 it also performs
down-sampling down to a 1/32 scale, then progressively refines and up-samples feature
maps up to the initial resolution using a residual convolutional up-sampling decoder with
skip connections.

Regression with classification has become a common paradigm for MDE after
the seminal work DORN by Fu et al. (2018) was first introduced. Fu et al. (2018)
reformulate regression-based MDE as a classification problem, by first dividing the full
continuous range of depths into discrete bins, then training the network as a pixel-wise
classifier that learns to classify a pixel into one of these bins. AdaBins (Bhat et al. (2021))
extends DORN by adding adaptivity in bins; they design a hybrid regression-classification
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Fig. 2.16 Architecture of DPT by Ranftl et al. (2021).

Fig. 2.17 Deep Neural Network architecture from Fu et al. (2018).

network that predicts the depth bins from the input image, then classify each pixel into
these bins. However, contrary to DORN, they combine per-bin scores using softmax to
produce depth predictions as a weighted sum over bins, enabling the use of regular depth
estimation losses.

Pair-wise ranking losses have also been explored after their introduction to MDE by
Chen et al. (2016). The core idea of the work is presented in Figure 2.18. While their
network predicts dense metric depth maps, the loss is computed using sparse pair-wise
relative depth annotations. Pairs of pixels are annotated with +1 if the first point is the
closest, -1 if it is furthest, and 0 if they are at similar depth. The network is then trained
using an objective function that favors large depth differences between annotated points
if pairs have different depth (-1 or +1), and small differences if they have similar depth
(0). This objective function, used alongside their large scale Depth In the Wild (DIW)
dataset proved sufficient to achieve monocular depth estimation without dense depth
supervision. Xian et al. (2020) improve the ranking loss proposed by Chen et al. (2016)
with structure-guided sampling, such that pairs of points close to depth edges are more
frequently sampled when computing the ranking loss.
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Fig. 2.18 Overview of Depth In the Wild by Chen et al. (2016).

Scale-invariant losses were first designed by Eigen et al. (2014) to train MDE
networks on RGB-D datasets which have large depth ranges. Their loss, in Equation (2.4)
ensures predictions are penalized equally regardless of the ground truth scene scale s:

ℓ( ˆbD,D, s) = log(s · D̂)− log(s ·D) = log(D̂)− log(D), (2.4)

where D̂ and D are the predicted and ground truth depth respectively. When computed
in log-scale, the loss no longer depends on the scale s.

Furthermore, generalization is a highly desirable feature for MDE systems; training
using diverse datasets is a sensible option to produce more robust depth estimation
systems. However, training with multiple datasets presents some challenge, because
ground truth can come in many forms, such as dense or sparse depth maps, scale-less data
from SfM, or disparity maps. To this end, Ranftl et al. (2020) designed scale and shift
invariant losses, and showed that training with diverse datasets using their losses exhibit
superior zero-shot generalization capabilities on new test datasets than state-of-the-art.
Yin et al. (2021) also propose to learn affine-invariant depth using an heterogeneous loss
training strategy based on undistorting the 3D point clouds generated from the predicted
depth maps (see Figure 2.19) using scale and shift prediction.

Auxiliary tasks have been exploited for MDE in order to incorporate extra supervision
to the main task of depth estimation. Most of these methods originate from the availability
of labels for other tasks on the same RGB-D dataset.

Surface normal estimation has been widely explored jointly with depth estimation,
since as surface normals represent local surface orientations, they can be computed from
depth maps, which also represent a 3D surface. Qi et al. (2018) performs joint depth
and surface normal estimation from a single image in two steps, shown in Figure 2.20.
They first predict initial depth and normal estimates, then refine both using closed-form
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Fig. 2.19 3D distortion induced by scale and shift errors. Predicting depth maps
with wrong scale and shift produces distorted 3D reconstructions. Yin et al. (2021)
propose to separately predict affine-invariant then depth and scale and shift to
improve monocular depth estimation methods. Figure from Wei Yin’s PhD thesis.
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Fig. 2.20 GeoNet (Qi et al. (2018)) pipeline overview.

Fig. 2.21 VNL (Yin et al. (2019)) pipeline overview.

geometric relationships between the two modalities. Yin et al. (2019) also exploit the
relationship between depth and normals to enforce constraints on depth estimates in 3D
space, as shown in Figure 2.21. Finally our method SharpNet, detailed in Chapter 3 also
exploits geometry constraints between depth and normals but also occlusion boundaries.

Semantic segmentation has also been used extensively, largely due to the availability
of semantic labels in some popular RGB-D datasets, such as NYUv2 (Silberman et al.
(2012)). Eigen and Fergus (2015) pioneered joint semantic segmentation and depth
estimation on NYUv2. Wang et al. (2015) aimed to build a unified framework for
joint semantic segmentation and depth estimation by grouping semantic classes. Jiao
et al. (2018) (see Figure 2.22) leverage semantic annotations to use semantically-guided
attention in depth estimation. Wang et al. (2020) explored a three step depth estimation
pipeline shown in Figure 2.23, which first performs instance and semantic segmentation,
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Fig. 2.22 Look Deeper into Depth (Jiao et al. (2018)) pipeline overview.

Fig. 2.23 SDC-Depth (Wang et al. (2020)) pipeline overview.

then performs separate category-based and instance-based depth estimation, then finally
aggregates all depth estimates into a unified depth output.

2.3.4 Self-Supervised Methods

While fully supervised MDE methods remain the most accurate ones, another line of
works aims to alleviate the need for full depth supervision by exploiting consistency
between consecutive temporal frames or stereo frames.

Depth estimation as view synthesis by Zhou et al. (2017). Zhou et al. (2017)
introduced the first monocular self-supervised approach presented in Figure 2.24, which
trains a single-image depth estimation network jointly with a relative pose estimation
network. Their training loss is formulated as a cross-view photometric reconstruction loss,
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Fig. 2.24 Overview of
the depth
estimation as
view synthesis
framework pro-
posed by Zhou
et al. (2017).

a loss commonly use in view-synthesis. Let It and Is be two nearby frames, where It is a
target view and Is a source view. Given a predicted depth D̂t from It and a predicted
4x4 transformation matrix T̂t→s, the goal is to perform inverse warping using Spatial
Transformer Networks (STN) (Jaderberg et al. (2015)), by sampling the source frame Is

in order to reconstruct the input target image It. Let Is→t denote the synthesized target
image from sampling Is. The loss then becomes:

ℓp = pe(It, Is→t), (2.5)

where pe() is a photometric error loss that measures the deviation between the target
image and its reconstruction via inverse warping. Most of the works in the litterature
use a combination of L1 and Structural Similarity (SSIM) losses to compute photometric
error.

In order to compute Is→t, the grid sampling coordinates pt of the target must be
transformed into the source’s Is coordinates ps:

p̂s = proj(D̂t, T̂t→s, pt)
∼ KT̂t→sD̂t(pt)K−1pt,

(2.6)

where K is the known intrinsics matrix. Note that this equation uses the back-
projection Equation (2.2) described in Section 2.2.2, where (X, Y, Z)T = D̂t(pt)K−1pt

are the 3D coordinates of a point obtained from the depth value at camera coordinate
pt = (x, y, 1)T . Because p̂s in Equation (2.6) is continuous, the sampling from Is is
performed using bilinear interpolation, such that:

Is→t(pt) = Is⟨p̂s⟩, (2.7)

where ⟨⟩ is the bilinear interpolation sampling operator.
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Note that while most self-supervised use the inverse warping, few works have performed
soft forward warping to warp the target (input) image onto the source (nearby view)
image (GonzalezBello and Kim (2020); Xie et al. (2016)).

Loss masking. The loss in Equation (2.5) can finally be computed. Zhou et al. (2017)
use a weighted L1 loss, where the weight is obtained by a network trained to predict
explanability masks in order to solve cases which violate view synthesis assumptions:

• the scene is static, and motion is only explained by ego-motion,

• there are no occlusion/disocclusion between target and source views,

• the surface of objects is lambertian, such that photometric reconstruction losses
are meaningful

Fig. 2.25 Overview of Monodepth2 (Godard et al. (2019)) architecture.

To solve the occlusion/disocclusion issue, in Monodepth2 Godard et al. (2019) refor-
mulate the reprojection error as a minimum reprojection loss. As shown in Figure 2.25,
they alleviate the problem of sampling nearby source images where pixels of the target
image are not visible, which mostly happens due to occlusion and ego-motion. The
minimum reprojection loss effectively selects the best nearby view to sample from for each
pixel. Doing so, they obtain more sharp and accurate depth maps than state-of-the-art.
Previous work (Luo et al. (2019); Vijayanarasimhan et al. (2017)) also used predicted
masks to handle static scenes, moving objects, and occlusion issues. While Monodepth2
also uses a mask, they use simple binary automatic mask to compute the loss, which is
only activated for pixels where inverse-warping leads to better (lower) photometric error
pe than when not applying warping.

Exploiting Stereo Several previous work extended the view-synthesis based unsuper-
vised depth estimation method by Zhou et al. (2017) by adding multi-view consistency.
Monodepth (Godard et al. (2017)) exploits left-right consistency at training time since
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the KITTI dataset (Geiger et al. (2013)) contains stereo videos. MonoResMatch (Tosi
et al. (2019)) extends this approach by distilling stereo knowledge to the monocular
approach, adding a proxy loss that leverages labels obtained via Semi-Global-Matching
(SGM) (Hirschmuller (2005, 2007)). Watson et al. (2019) further extend MonoResMatch
with Depth Hints, shown in Figure 2.26 in order to better exploit SGM labels by leverag-
ing a hybrid reprojection loss which selects the best reprojection between SGM-based
reprojection and the standard reprojection using Equation (2.6). Poggi et al. (2018b)
exploits trinocular assumptions. We recommend the survey by Poggi et al. (2021) for a
study on synergies between binocular stereo and monocular depth estimation.

Fig. 2.26 Overview of
Depth Hints
by Watson et al.
(2019). This figure
is taken from Jamie
Watson’s slides at
the CVPR2020
tutorial on MDE,
which we highly
recommend.

Discriminative losses were also explored (Aleotti et al. (2018); CS Kumar et al.
(2018); Groenendijk et al. (2020)) to improve the quality of images during inverse warping,
and thus improve the depth maps. The general frame work is shown in Figure 2.27.

Auxiliary tasks were used extensively to guide depth estimation. Geometry estimation
tasks such as edge and normal estimation (Yang et al. (2018b,c)), or optical flow (Chen
et al. (2019c); Mahjourian et al. (2018); Ranjan et al. (2019); Yin and Shi (2018)).
Semantic segmentation was also explored as a auxiliary task for depth estimation to
obtain better depth edges (Zama Ramirez et al. (2018); Zhu et al. (2020)), solve moving
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Fig. 2.27 General architecture of self-supervised monocular depth estimation ar-
chitectures with GANs (Figure by Groenendijk et al. (2020)).

Fig. 2.28 Architecture overview of ΩNet by Tosi et al. (2020).

objects that lead to ambiguities in self-supervised depth estimation (Klingner et al. (2020)),
or complement other geometry estimation tasks Tosi et al. (2020) (see Figure 2.28).
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Chapter 3

Predicting Sharp Occlusion
Boundaries in Monocular Depth
Estimation with Geometry Guidance

The work described in this chapter is based on the following publication:
SharpNet: Fast and Accurate Recovery of Occluding Contours in Monocular Depth Esti-
mation, Michaël Ramamonjisoa and Vincent Lepetit, published in the 3D Reconstruction
in the Wild workshop at ICCV 2019.

Abstract

We introduce SharpNet, a method that predicts an accurate depth map for an input color
image, with a particular attention to the reconstruction of occluding contours: Occluding
contours are an important cue for object recognition, and for realistic integration of
virtual objects in Augmented Reality, but they are also notoriously difficult to reconstruct
accurately. For example, they are a challenge for stereo-based reconstruction methods,
as points around an occluding contour are visible in only one image. Inspired by recent
methods that introduce normal estimation to improve depth prediction, we introduce
a novel term that constrains depth and occluding contours predictions. Since ground
truth depth is difficult to obtain with pixel-perfect accuracy along occluding contours, we
use synthetic images for training, followed by fine-tuning on real data. We demonstrate
our approach on the challenging NYUv2-Depth dataset, and show that our method
outperforms the state-of-the-art along occluding contours, while performing on par with
the best recent methods for the rest of the images. Its accuracy along the occluding
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contours is actually better than the ‘ground truth’ acquired by a depth camera based
on structured light. We show this by introducing a new benchmark based on NYUv2-
Depth for evaluating occluding contours in monocular reconstruction, which is our
second contribution. Project Code is available at https://michaelramamonjisoa.github.
io/projects/SharpNet

Jiao et al. (2018) NYUv2-Depth
Ground Truth Ours Manual insertion

Fig. 3.1 Our SharpNet method shows significant improvement over state-of-the-art monocular
depth estimation methods in terms of occluding contours accuracy, and even produces
sharper edges along these contours than structured-light depth cameras. In this figure
we augment an RGB image from NYUv2 (Silberman et al. (2012)) with a virtual
Stanford rabbit using different depth maps for occlusion-aware integration. The first
three rows show the depth map used for occlusion-aware insertion (top) and resulting
augmentation (bottom). An error of only a few pixels along occluding contours can
significantly degrade the realism of the integration, comparatively to manual insertion
(last column) using a binary mask.
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3.1 Introduction

3.1 Introduction

As discussed in Section 2.3, Monocular Depth Estimation (MDE) is highly ill-posed,
therefore most methods rely on data-driven approaches, most specifically employing deep
neural networks.

Despite recent advances in monocular depth estimation, occluding contours remain
difficult to reconstruct correctly from depth, while they are still an important cue for
object recognition, and for augmented reality or path planning, for example. This
has several causes: First, the depth annotations of training images are likely to be
inaccurate along the occluding contours, if the depth annotations are obtained with
a stereo reconstruction method or a structured light camera. This is for example the
case for the NYUv2-Depth dataset (Silberman et al. (2012)), which is an important
benchmark used by many recent works for evaluation. This is because on one or both
sides of the occluding contours lie 3D points that are visible in only one image, which
challenges the 3D reconstruction (Szeliski (2011)). Structured light cameras essentially
rely on stereo reconstruction, where one image is replaced by a known pattern (Han
et al. (2013)), and therefore suffer from the same problem. Secondly, occluding contours,
despite their importance, represent a small part of the images, and may not influence
the loss function used during training if they are not handled with special care.

In this paper, we show that it is possible to learn to reconstruct occluding contours
more accurately by adding a simple term that constrains the depth predictions together
with the occluding contours during learning. This approach is inspired by recent works
that predict the depths and normals for an input image, and enforce constraints between
them (Qi et al. (2018); Wang et al. (2016); Yang et al. (2018b)). A similar constraint
between depth and occluding contours can be introduced, and we show that this results
in better reconstructions along the occluding contours, without degrading the accuracy
of the rest of the reconstruction.

Specifically, we train a network to predict depths, normals, and occluding contours
for an input image, by minimizing a loss function that integrates constraints between the
depths and the occluding contours, and also between depths and normals. We show that
these two constraints can be integrated in a very similar way with simple terms in the
loss function. At run-time, we can predict only the depth values, making our method
suitable for real-time applications since it runs at 150 fps on 640× 480 images.

We show that each aspect of our training procedure improves the depth output. In
particular, our experiments show that the constraint between depths and occluding
contours is important, and that the improvement is not only due to multi-task learning.
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Learning to predict the normals in addition to the depths and the occluding contours
helps the convergence of training towards good depth predictions.

We demonstrate our approach on the NYUv2-Depth dataset, in order to compare
it against previous methods. Since we need training data with pixel perfect depth
annotation along the occluding contours, we use synthetic images to pretrain the network
before fine-tuning on NYUv2-Depth. We simply use the object instance boundaries given
by the synthetic dataset as training annotations of the occluding contours. However, we
only use the depth ground truth as training data when finetuning on the NYUv2-Depth
dataset.

A proper evaluation of the accuracy of the occluding contours is difficult. Since the
“ground truth” depth data is typically noisy along occluding contours, as in NYUv2-Depth,
an evaluation based on this data would not be representative of the actual quality. Even
with better depth data, identifying occluding contours automatically as ground truth
depth discontinuities would be sensitive to the parameters used by the identification
method (Canny (1986)) (see Fig. 3.4).

We therefore decided to annotate manually the occluding contours in a subset of
100 images randomly sampled from the NYUv2-Depth validation set, which we call the
NYUv2-OC dataset. Our annotations and our code for the evaluation of the occluding
contours are publicly available for comparison. We evaluate our method on this data in
terms of 2D localization, in addition to evaluating depth estimation on the NYUv2-Depth
validation set using more standard depth estimation metrics (Eigen and Fergus (2015);
Eigen et al. (2014); Laina et al. (2016)). Our experiments show that while achieving
competitive results on the NYUv2-Depth benchmark by placing second on all of them, we
outperform all previous methods in terms of occluding contours 2D localization, especially
the current leading method on monocular depth estimation (Jiao et al. (2018)).

3.2 Related Work

Monocular depth estimation (MDE) from images made significant progress recently.
Most works now employ deep neural network and large datasets in order to solve the
ill-posedness of MDE. While we discussed general related work in Section 2.3, in the
following, we focus the discussion on the quality of depth edges.

Supervised Monocular Depth Estimation With the development of large datasets
of images annotated with depth data (Chang et al. (2017); Geiger et al. (2013); Mc-
Cormac et al. (2017); Silberman et al. (2012); Song et al. (2015); Zhang et al. (2017)),
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many supervised methods have been proposed. Eigen and Fergus (2015); Eigen et al.
(2014) used multi-scale depth estimation to capture global and local information to help
depth prediction. Given the remarkable performances they achieved on both popular
benchmarks NYUv2-Depth (Silberman et al. (2012)) and KITTI (Geiger et al. (2013)),
more work extended this multi-scale approach (Li et al. (2017); Xu et al. (2017)). Pre-
vious work also considered ordinal depth classification Fu et al. (2018) or pair-wise
depth-map comparisons (Cao et al. (2018)) to add local and non-local constraints. Our
approach relies on a simpler mono-scale architecture, making it efficient at run-time.
Our constraints between depths, normals, and occluding contours guide learning towards
good depth prediction for the whole image.

Laina et al. (2016) exploited the power of deep residual neural networks (He et al.
(2016b)) and showed that using the more appropriate BerHu (Owen (2007); Zwald
and Lambert-Lacroix (2012)) reconstruction loss yields better performances. However,
their end results are quite smooth around occluding contours, making their method
inappropriate for realistic occlusion-aware augmented reality.

Jiao et al. (2018) noticed that the depth distribution of the NYUv2 dataset is
heavy-tailed. The authors therefore proposed an attention-driven loss for the network
supervision, and paired the depth estimation task with semantic segmentation to improve
performances on the dataset. However, while they currently achieve the best performance
on the NYUv2-Depth dataset, their approach suffers from a bias towards high-depth
areas such as windows, corridors or mirrors. While this translates into a significant
decrease of the final error, it also produces blurry depth maps, as one can see in Fig. 3.1.
By contrast, our reconstructions tend to be much sharper along the occluding boundaries
as desired, and our method is much faster, making it suitable for real-time applications.

Edge- and Occlusion-Aware Depth Estimation (Wang et al. (2016)) introduced
their SURGE method to improve scene reconstruction on planar and edge regions by
learning to jointly predict depth and normal maps, as well as edges and planar regions.
They then refine the depth prediction by solving an optimization problem using a Dense
Conditional Random Field (DCRF). While their method yields appealing reconstruction
results on planar regions, it still underperforms state-of-the-art methods on global
metrics, and the use of DCRF makes it unsuited for real-time applications. Furthermore,
SURGE (Wang et al. (2016) ) is evaluated on the reconstruction quality around edges
using standard depth error metrics, but not on the 2D localization of their occluding
contours.
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Many self-supervised methods (Godard et al. (2017); Teng et al. (2018); Yang et al.
(2018b,c); Yin and Shi (2018)) have incorporated edge- or occlusion-aware geometry
constraints which exist when working with stereo pairs or sequences of images as provided
in the very popular KITTI depth estimation benchmark (Geiger et al. (2013)). However,
although these methods can perform monocular depth estimation at test time, they
require multiple calibrated views at training time. They are therefore unable to work
on monocular RGB-D datasets such as NYUv2-Depth (Silberman et al. (2012)) or
SUN-RGBD (Song et al. (2015)).

Wang et al. (2016) and Jiang et al. (2018) worked on occlusion-aware depth estimation
to improve reconstruction for augmented reality applications. While achieving spectacular
results, they however require one or multiple light-field images, which are more costly to
obtain than ubiquitous RGB images.

Conscious of the lack of evaluation metrics and benchmarks for quality of edge and
planes reconstruction from monocular depth estimates, Koch et al. (2018) introduced
the iBims-v1 benchmark, discussed in Section 2.3.2 which introduces annotations and
metrics for occluding contours and planarity of planar regions. Our evaluation method
of occluding contours reconstruction quality is based on their work.

3.3 Method

As shown in Fig. 3.2, we train a network f(I; Θ) to predict, for a training color image
I, a depth map D̂, a map of occluding contours probabilities Ĉ, and a map N̂ of
surface normals. Although we focus on high quality depth-maps prediction, our occluding
contours and normals map can also be used for other applications. Our approach
generalizes well to various indoor datasets in terms of geometry estimation as can be
seen in Fig. 3.3.

3.3.1 Training Overview

We first train f on the synthetic dataset PBRS (Zhang et al. (2017)), which provides the
ground truth for the depth map D, the normals map N , and the binary map of object
instance contours C for each training image I. Since occluding contours are not directly
provided in the PBRS dataset, we choose to use the object instance contours C as a
proxy. We argue that on a macroscopic scale, a large proportion of occluding contours
in an image are due to objects occluding one another. However, we show that we can
also enable our network to learn internal occluding contours within objects even without
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Fig. 3.2 The architecture of our “U-net”-shape (Ronneberger et al. (2015)) multi-task encoder-
decoder network. We use a single ResNet50 encoder which learns an intermediate
representation that is shared by all decoders. With this setting, the representation
generalizes better for all tasks. We use skip connections between features of the
encoder and of the decoder at corresponding scales.

“pure” occluding contours supervision. Indeed, we make use of constraints on depth map
and occluding contour predictions D̂ and Ĉ respectively (see Section. 3.3.4 for more
details) to enforce the contour estimation task to also predict intra-object occluding
boundaries.

We then finetune f on the NYUv2-Depth dataset without direct supervision on the
occluding contours or normals (Lc and Ln described below): Even though Ladicky et al.
(2014) and Silberman et al. (2012) produce ground truth normals map with different
estimation methods operating on the Kinect-v1 depth maps, their output results are
generally noisy. Occluding contours are not given in the original NYUv2-Depth dataset.
Although one could automatically extract them using edge detectors (Canny (1986);
Dollár and Zitnick (2015)) on depth maps, such extraction is very sensitive to the
detector’s parameters (see Figure 3.4). Instead, we introduce consensus terms that
explicitly constrain the predicted contours, normals and depth maps together (Ldc and
Ldn described below) at training time.

At test-time, we can choose to use only the depth stream of f if we are not interested
in the normals nor the boundaries, making inference very fast.
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RGB
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Depth
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Fig. 3.3 Several predictions on single RGB images from multiple real RGB-D datasets. “MP”
stands for Matterport3D, “GT” stands for ground truth and “Pred” for prediction. We
highlight areas where we successfully reconstructed geometry while Kinect depth maps
were inaccurate (the chair should be closer than the lamp in first image). Ground
truth normals are computed using code from Silberman et al. (2012) for NYUv2
and McCormac et al. (2017) for SUN-RGBD. Normal maps are already provided in
Matterport3D.

3.3.2 Loss Function

We estimate the parameters Θ of network f by minimizing the following loss function
over all the training images:

L = λdLd(D, D̂) + λcLc(C, Ĉ) + λnLn(N , N̂ ) +
Ldc(D̂, Ĉ) + Ldn(D̂, N̂ ) , (3.1)

where

• Ld, Lc, and Ln are supervision terms for the depth, the occluding contours, and
the normals respectively. We adjust weights λd, λc, and λn during training so that
we focus first on learning local geometry (normals and boundaries) then on depth.
See Section 3.4.1 for more details.

• Ldc and Ldn introduce constraints between the predicted depth map and the
predicted contours, and between the predicted depth map and the predicted
normals respectively.

52



3.3 Method

RGB σ− = 0.15, σ+ = 0.3

Depth σ− = 0.01, σ+ = 0.1

Fig. 3.4 A RGB-D sample of NYUv2-Depth for which we manually annotated occluding
contours in NYUv2-OC, (in red lines). We show in black the edges detected on ground
truth Kinect-v1 depth map using different Canny detector parameters (σ− and σ+

denote low and high threshold respectively). Highly permissive detectors often yield
many spurious contours, whereas restrictive ones miss many true contours. Automatic
occluding contours extraction from Kinect depth maps is therefore unreliable for
extraction of ground truth occluding contours, motivating our manually annotated
NYUv2-OC dataset.

We detail these losses below. All losses are computed using only valid pixel locations.
The PBRS synthetic dataset provides such a mask. When finetuning on NYUv2-Depth,
we mask out the white pixels on the images border.

3.3.3 Supervision Terms Ld, Lc, and Ln

The supervision terms on the predicted depth and normal maps are drawn from previous
works on monocular depth prediction. For our term on occluding contours prediction, we
rely on previous work for edge prediction.

Depth prediction loss Ld. As in recent works, our loss on depth prediction applies to
log-distances. We use the BerHu loss function (Owen (2007); Zwald and Lambert-Lacroix
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(2012)), as it was shown in Laina et al. (2016) to result in faster converging and better
solutions:

Ld(D, D̂) = 1
N

∑
i

BerHu(log(D̂i)− log(Di))

+ 1
N

∑
i

∥∇ log(D̂i)−∇ log(Di))∥2 .
(3.2)

The sum is over all the N valid pixel locations. The BerHu (also known as reverse
Huber) function is defined as a L2 loss for large deviations, and a L1 loss for small
ones. As in Laina et al. (2016), we take the c parameter of the BerHu function as
c = 1

5 maxi(| log(D̂i)− log(Di)|).

Occluding contours prediction loss Lc. We use the recent attention loss from
Wang et al. (2018a), which was developed for 2d edge detection, to learn to predict the
occluding contours. This attention loss helps dealing with the imbalance of edge pixels
compared to non-edge pixels:

AL(p̂, p) =

−αβ
(1−p̂)γ log(p̂) if p = 1

−(1− α)β p̂γ log(1− p̂) else
(3.3)

where (β, γ) are hyper-parameters which we set to the authors values (4, 0.5), and α is
computed image per image as the proportion of contour pixels. We use this pixel-wise
attention loss to define the occluding contours prediction loss:

Lc(C, Ĉ) = 1
N

∑
i

AL(Ĉi, Ci) . (3.4)

As mentioned above, this loss is disabled when finetuning on the NYUv2-Depth dataset.

Normals prediction loss Ln. For normals prediction, we use a common method
introduced by Eigen and Fergus (2015) which is to minimize, for all valid pixels i, the
angle between the predicted normals N̂ i and their ground truth counterpart N i. This
angle minimization is performed by maximizing their dot-product. We therefore used
the following loss:

Ln(N , N̂ ) = 1
N

∑
i

(
1− < N̂ i,N i >

∥N̂ i∥∥N i∥

)
. (3.5)

This loss slightly differs from the one of Eigen and Fergus (2015) as we limit it
to positive values. As mentioned earlier, this loss is disabled when finetuning on the
NYUv2-Depth dataset.
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3.3.4 Consensus Terms Ldc and Ldn

Depth-contours consensus term. In order to force the network to predict sharp
depth edges at occluding contours where strong depth discontinuities occur, we propose
the following loss between the predicted occluding contours probability map Ĉ and the
predicted depth map D̂:

Ldc(D̂, Ĉ) = − 1
N

∑
i

log(Ĉi) · ∥∇(D̂i)∥2∥∆(D̂i)∥

+ µ

(
∥Ĉ∥ − 1

N

∑
i

log(1− Ĉi) · e−∥∆(D̂i)∥
)
.

(3.6)

This encourages the network to associate pixels with large depth gradients with occluding
contours: High-gradient areas will lead to a large loss unless the occluding contour
probability is close to one. Godard et al. (2017) and Heise et al. (2013) also used this
type of edge-aware gradient-loss, although they used it to impose consensus between
photometric gradients and depth gradients. However, relying on photometric gradients
can be dangerous: textured areas can exhibit strong image gradients without strong
depth gradients.

Depth-normals consensus loss. Depth and normals are two highly correlated entities.
Thus, to impose geometric consistency during prediction between the normal and depth
predictions D̂ and N̂ , we use the following loss:

Ldn(D̂, N̂ ) = 1
N

∑
i

(
1− < ûi, n̂i >

∥ûi∥∥n̂i∥

)
, (3.7)

where n̂i = (n̂i
x, n̂

i
y)T is extracted from the 3D vector N̂ i = (n̂i

x, n̂
i
y, n̂

i
z)T , and

ûi = (∂xD̂i, ∂yD̂i) is computed as the 2D gradient of the depth map estimate using finite
differences. This term enforces consistency between the normals and depth predictions in
a similar fashion as in Fei et al. (2018); Wang et al. (2016); Yang et al. (2018b). However,
our formulation of depth-normals consensus is much simpler than those proposed in
previous works as they express their constraint in 3D world coordinates, thus requiring
the camera calibration matrix. Instead, we only assume that orthographic projection
holds, which is a good first order assumption (Wu and Li (1988)).

Imposing this constraint during finetuning allows us to constrain normals, and depth,
even when the ground truth normals N are not available (or accurate enough for our
application).
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3.4 Experiments

We evaluate our method and compare it to previous work using standard metrics, as well
as the depth boundary edge (DBE) accuracy metric introduced by Koch et al. (2018)
(see following Section 3.4.2 and Eq. (3.8) for more details). We show that our method
achieves the best trade-off between global reconstruction error and DBE.

3.4.1 Implementation Details

We implement our work in Pytorch and make our pretrained weight, training and
evaluation code publicly available.1 Both training and evaluation are done on a single
high-end NVIDIA GTX 1080 Ti GPU.

Datasets. We first train our network on the synthetic PBRS (Zhang et al. (2017))
dataset, using depth and normals maps annotations, along with object instance boundaries
maps which we use as a proxy to occluding contours annotations. We split the PBRS
dataset in training/validation/test sets using a 80%/10%/10% ratio. We then finetune
our network on the NYUv2-Depth training set using only depth data. Finally, we use the
NYUv2-Depth validation set for depth evaluation and our new NYUv2-OC for occluding
contours accuracy evaluation.

Training. Training a multi-task network requires some caution: Since several loss
terms are involved, and in particular one for each task, one should pay special attention
to any suboptimal solution for one task due to ‘over-learning’ another. To monitor each
task individually, we monitor each individual loss along with the global training loss and
make sure that all of them decrease during training. When setting all loss coefficients
equal to one, we noticed that the normals loss Lnormals decreased faster than others.
Similarly, we found that learning boundaries was much faster than learning depth. As
Zhang and Funkhouser (2018), we also argue that this is because local features such as
contours or local planes, i.e. where normals are constant, are easier to learn since they
appear in almost all training examples. Training depth, however, requires the network to
exploit context data such as room layout in order to regress a globally consistent depth
map.

Based on those observations, we chose to learn the easier tasks first, then use them as
guidance to the more complex task of depth estimation through our novel consensus loss
terms of Eqs. (3.7) and (3.6). For finetuning on real data with the NYUv2 dataset, we

1 www.github.com/MichaelRamamonjisoa/SharpNet
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first disabled the consensus terms and froze the contours and normals decoders in order
to first bridge the depth domain gap between PBRS and NYUv2. After convergence,
we finetuned the network again with consensus terms back on, which helped enhancing
predictions by ensuring consistency between geometric entities. We found that it was
necessary to freeze the normals and contours decoders during finetuning to prevent their
predictions Ĉ and N̂ from degrading until being unable to play their geometry guidance
role. We argue that this is due to (1) a larger synthetic-to-real domain gap for depth
than for contours and normals, and (2) noisy depth ground truth with some inaccuracies
along occluding contours and crease along walls. We therefore relied on the ResNet50
encoder to learn a representation which produces geometrically consistent predictions Ĉ,
N̂ and D̂.

3.4.2 Evaluation Method

We evaluate our method on the benchmark dataset NYUv2 Depth (Silberman et al.
(2012)). The most common metrics are: Thresholded accuracies (δ1, δ2, δ3), linear and
logarithmic Root Mean Squared Error RMSElin and RMSElog, Absolute Relative difference
rel, and logarithmic error log10.

Evaluated on full NYUv2-Depth Evaluated on our NYUv2-OC
Method Accuracy ↑ (δi = 1.25i) Error ↓ ϵacc

DBE ↓(px) {σ−, σ+}
δ1 δ2 δ3 rel log10 RMSE (lin) RMSE (log) {0.1, 0.2} {0.01, 0.1} {0.005, 0.06} {0.03, 0.05}

Eigen and Fergus (2015) (VGG) 0.766 0.949 0.988 0.195 0.068 0.660 0.217 2.895 3.065 3.199 3.203
Eigen and Fergus (2015) (AlexNet) 0.690∗ 0.911∗ 0.977∗ 0.250∗ 0.082∗ 0.755∗ 0.259∗ 2.840 3.029 3.202 3.242

Laina et al. (2016) 0.818 0.955 0.988 0.170 0.059 0.602 0.200 3.901 4.033 4.116 4.133
Fu et al. (2018) 0.850 0.957 0.985 0.150 0.052 0.578 0.194 3.714 3.754 4.040 4.062

Jiao et al. (2018) 0.909 0.981 0.995 0.133 0.042 0.401 0.146 6.389∗ 4.073∗ 4.179∗ 4.190∗

Ours 0.888 0.979 0.995 0.139 0.047 0.495 0.157 2.272 2.629 3.066 3.152

Table 3.1 Our final evaluation results. Bold and underlined results indicate first and second
place respectively. Asterisks indicate the last place. Numerical results might vary
from the original papers, as we evaluated all methods with the same code, using only
the authors depth map predictions. Results are evaluated in the center crop proposed
by Eigen and Fergus (2015) and clipped depth predictions to range [0.7m, 10m].

NYUv2-Depth benchmark evaluation. We have run a comparative study between
our method and previous ones, summarized in Table 3.1. Since authors evaluating on
the NYUv2-Depth benchmark often apply different evaluation methods, fair comparison
is difficult to perform. For instance, Xu et al. (2017) and Fu et al. (2018) evaluate on
crops with regions provided by Eigen and Fergus (2015). Some authors also clip resulting
depth-maps to the valid depth sensor range [0.7m; 10m]. Most importantly, not all the
authors make their prediction and/or evaluation code publicly available. The authors
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of Jiao et al. (2018) kindly shared their predictions on the NYUv2-Depth dataset with
us, and the following evaluation of their method was obtained based on the depth map
predictions they provided us with. All other mentioned methods have released their
predictions online.

Fair comparison is ensured by performing evaluation of each method solely using its
associated depth map predictions and one single evaluation code.

Occluding contours location accuracy. To evaluate occluding contours location
accuracy, we follow the work of Koch et al. (2018) as they proposed an experimental
method for such evaluation. Since it is fundamental to examine whether predicted depths
maps are able to represent all occluding contours as depth discontinuities in an accurate
way, they analyzed occluding contours accuracy performances by detecting edges in
predicted and ground truth depth maps and comparing those edges.

Since acquired depth maps in the NYUv2-Depth dataset are especially noisy around
occluding boundaries, we manually annotated a subset of the dataset with occluding
contours, building our NYUv2-OC dataset, which we used for evaluation. Several samples
of our NYU-OC dataset are shown in Fig. 3.4 and Fig. A.4. In order to evaluate the
predicted depth maps’ D quality in terms of occluding contours reconstruction, binary
edges Ŷ are first extracted from D̂ with a Canny detector.2 They are then compared to
the ground truth annotated binary edges Y from our NYU-OC dataset by measuring the
a Truncated Chamfer Distance (TCD). Specifically, for each pixel Ŷi of Ŷ we compute
its euclidean distance Ei to the closest edge pixel Ŷj = 1. If the distance between Ŷi

and Ŷj is bigger than 10 pixels we set ei to 0 in order to evaluate predicted edges only
around the ground truth edges as seen in Fig. 3.5. This is done efficiently using Euclidean
Distance Transform on Y . The depth boundary edge (DBE) accuracy is then computed
as the mean TCD over detected edges Ŷi = 1:

ϵacc
DBE = 1∑

i
Ŷi

∑
i

Ei · Ŷi, (3.8)

We compare our method against state-of-the-art depth estimation methods using this
metric and different Canny parameters. Evaluation results are shown in Table 3.1: We
outperform all state-of-the-art methods on occluding contours accuracy, while being a
competitive second best on standard depth estimation evaluation metrics.

Since the detected edges in Ŷ are highly sensitive to the edge detector’s parameters
(see Fig.3.4), we evaluate the DBE accuracy ϵacc

DBE using many random combinations of
2Edges are extracted from depth maps with normalized dynamic range.
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Fig. 3.5 The truncated chamfer distance is computed as the sum Euclidean distances Ei (in
green) between the detected edge Ŷi (in black) and the ground truth edge Yi (in red).
The Ei above 10 pixels (above the blue dashed line) are ignored.

threshold parameters σ+ and σ− of the Canny edge detector. The results are shown in
Fig. 3.6.

Fig. 3.6 Our method outper-
forms state-of-the-art in
terms of trade-off be-
tween global depth re-
construction error and
occluding boundary ac-
curacy.

3.4.3 Ablation Study

To prove the impact of our geometry consensus terms, we performed an ablation study
to analyze the contribution of training with synthetic and real data, as well as our novel
geometry consensus terms. Evaluation of different models on our NYUv2-OC dataset are
shown in Table 3.2, confirming their contribution to both improved depth reconstruction
results over the whole NYUv2-Depth dataset and occluding contours accuracy.
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Method Training Dataset RMSElog ϵacc
DBE ↓(px) {σ−, σ+}

{0.1, 0.2}{0.01, 0.1}{0.005, 0.06}{0.03, 0.05}
w/o consensus PBRS 0.304∗ 2.321 2.751∗ 3.298∗ 3.380∗

w/ consensus PBRS 0.262 2.046 2.332 2.574 2.645
w/o consensus PBRS + NYUv2 0.163 2.600∗ 2.638 3.127 3.182
w/ consensus PBRS + NYUv2 0.157 2.272 2.629 3.066 3.152

Table 3.2 Our added geometry consensus terms brings a significant performance boost by
guiding the depth towards learning accurate occluding contours and it also helps
keeping a good trade-off between occluding contours accuracy and depth reconstruc-
tion during the necessary fine-tuning on real RGB-D data. RMSElog is computed
over the full NYUv2-Depth dataset. Notations of Table. 3.1 are used here.

3.5 Conclusion

In this chapter, we show that our SharpNet method is able to achieve competitive depth
reconstruction from a single RGB image with particular attention to occluding contours
thanks to geometry consensus terms introduced during multi-task training. Our high-
quality depth estimation which yields high accuracy occluding contours reconstruction
allows for realistic integration of virtual objects in real-time augmented reality as we
achieve 150 fps inference speed. We show the superiority of our SharpNet over state-of-
the-art by introducing a first version of our new NYUv2-OC occluding contours dataset,
which we plan to extend in future work. As by-products of our approach, high-quality
normals and contours predictions can also be a useful representation for other computer
vision tasks. More results can be found in Appendix A.

While this first step towards sharper depth edges achieves higher quality results than
state-of-the-art, we build upon its success by exploring another class of neural networks,
Spatial Transformer Networks (Jaderberg et al. (2015)), which is used to develop our
Displacement Fields, which we discuss in the next chapter.
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RGB Laina et al. (2016)Fu et al. (2018)Jiao et al. (2018)GT (NYUv2) SharpNet

Fig. 3.7 Several examples of images from our NYUv2-OC dataset and their associated depth
map estimate for different methods. The second row for each image shows the in black
the detected edges on those estimates using a Canny edge detector (in black) with
σ− = 0.03 and σ+ = 0.05, overlaid on our manually annotated ground truth in red.
Our SharpNet method not only creates sharper occluding contours, leading to less
spurious and erroneous contours than with Fu et al. (2018) the Kinect-v1 depth-map;
it also leads to much better located edges than other methods.
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Chapter 4

Estimating Sharper Depth Maps
with Displacement Fields

The work described in this chapter is based on the following publication:
Predicting Sharp and Accurate Occlusion Boundaries in Monocular Depth Estimation
Using Displacement Fields, Michaël Ramamonjisoa, Yuming Du and Vincent Lepetit
published at CVPR 2020.

(a) (b)

(c) (d)

Fig. 4.1 (a) Input image, (b) Ground truth depth from NYUv2-Depth, (c) Predicted depth
using SharpNet (Ramamonjisoa and Lepetit (2019)), (d) Refined depth using our
pixel displacement method.
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Abstract

Current methods for depth map prediction from monocular images tend to predict
smooth, poorly localized contours for the occlusion boundaries in the input image. This
is unfortunate as occlusion boundaries are important cues to recognize objects, and
as we show, may lead to a way to discover new objects from scene reconstruction. To
improve predicted depth maps, recent methods rely on various forms of filtering or predict
an additive residual depth map to refine a first estimate. We instead learn to predict,
given a depth map predicted by some reconstruction method, a 2D displacement field
able to re-sample pixels around the occlusion boundaries into sharper reconstructions.
Our method can be applied to the output of any depth estimation method and is fully
differentiable, enabling end-to-end training. For evaluation, we manually annotated the
occlusion boundaries in all the images in the test split of popular NYUv2-Depth dataset.
We show that our approach improves the localization of occlusion boundaries for all
state-of-the-art monocular depth estimation methods that we could evaluate (Eigen and
Fergus (2015); Fu et al. (2018); Jiao et al. (2018); Laina et al. (2016)), without degrading
the depth accuracy for the rest of the images.
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(a) (b)

(c) (d)

Fig. 4.2 Application of our depth map refinement to 3D object extraction. (a-b) and (c-d) are
two point cloud views of our extracted object. The left column shows point clouds
extracted from the initially predicted depth map (by Ramamonjisoa and Lepetit
(2019)), while the right one shows the result after using our depth refinement method.
Our method suppresses long tails around object boundaries, as we achieve sharper
occlusion boundaries.

4.1 Introduction

As discussed in Chapter 3 obtaining sharp and accurate occlusion boundaries in depth
maps predicted from a single image is an important and challenging task.

As demonstrated in Figure 4.1, despite the recent advances presented in Chapter 3,
the occlusion boundaries in the predicted depth maps still remain poorly reconstructed.
However we believe that this direction is particularly important: Depth prediction
generalizes well to unseen objects and even to unseen object categories, and being able
to reconstruct well the occlusion boundaries could be a promising line of research for
unsupervised object discovery. In Figure 4.2 we show how our work allows for better
object extraction from background.

In this chapter, we introduce a simple method to overcome smooth occlusion bound-
aries. Our method improves their sharpness as well as their localization in the images.
It relies on a differentiable module that takes an initial depth map provided by some
depth prediction method, and re-sample it to obtain more accurate occlusion boundaries.
Optionally, it can also take the color image as additional input for guidance information
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and obtain even better contour localization. This is done by training a deep network
to predict a 2D displacement field, applied to the initial depth map. This contrasts
with previous methods that try to improve depth maps by predicting residual offsets
for depth values (Jeon and Lee (2018); Zhang et al. (2019)). We show that predicting
displacements instead of such a residual helps reaching sharper occluding boundaries. We
believe this is because our module enlarges the family of functions that can be represented
by a deep network. As our experiments show, this solution is complementary with all
previous solutions as it systematically improves the localization and reconstruction of
the occlusion boundaries.

Fig. 4.3 Samples of our NYUv2-OC++ dataset, which extends NYUv2-OC from Ramamonjisoa
and Lepetit (2019). The selected highlighted regions in red rectangles emphasize the
high-quality and fine-grained annotations.

In order to improve the evaluation of occlusion boundary reconstruction performance
of existing MDE methods and of our proposed method, we extended the NYUv2-OC
dataset introduced in Chapter 3, and manually annotated the occlusion boundaries in
all the images of the NYUv2 test set. Some annotations are shown in Fig. 4.3 and in
the supplementary material. Based on the evaluation process and metrics introduced in
Koch et al. (2018) and discussed in Chapter 3, we show that our method quantitatively
improves the performance of all state-of-the-art MDE methods in terms of localization
accuracy while maintaining or improving the global performance in depth reconstruction
on two benchmark datasets.

In the rest of the chapter, we first discuss related work. We then present our approach
to sharpen occlusion boundaries in depth maps. Finally, we describe our experiments
and results to prove how our method improves state-of-the-art MDE methods.
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4.2 Related Work

Occlusion boundaries are a notorious and important challenge in dense reconstruction
from images, for multiple reasons. For example, it is well known that in the case of stereo
reconstruction, some pixels in the neighborhood of occluding boundaries are hidden in one
image but visible in the other image, making the task of pixel matching difficult. In this
context, numerous solutions have already been proposed to alleviate this problem (Fua
(1991); Geiger et al. (1995); Intille and Bobick (1994); Kanade and Okutomi (1994)).
We focus here on recent techniques used in monocular depth estimation to improve the
reconstruction of occlusion boundaries.

In Chapter 3, we discussed previous works that focuses on improving depth estimation
with edge-aware constraints. In this section, we cover related work that aims to refine
initial depth maps predictions, as well as datasets that were previously released to
evaluate image contours detection methods.

Depth Refinement Methods In this section we discuss two main approaches that
can be used to refine depth maps predictions: We first discuss the formerly popular
Conditional Random Fields (CRFs), then classical filtering methods and their newest
versions.

Several previous work used CRFs post-processing potential to refine depth maps
predictions. These works typically define pixel-wise and pair-wise loss terms between
pixels and their neighbors using an intermediate predicted guidance signal such as
geometric features (Wang et al. (2016)) or reliability maps (Heo et al. (2018)). An
initially predicted depth map is then refined by performing inference with the CRF,
sometimes iteratively or using cascades of CRFs (Xu et al. (2017, 2018a)). While most of
these methods help improving the initial depth predictions and yield qualitatively more
appealing results, those methods still under-perform state-of-the-art non-CRF MDE
methods while being more computationally expensive.

Another option for depth refinement is to use image enhancement methods. Even
though these methods do not necessarily explicitly target occlusion boundaries, they can
be potential alternative solutions to ours and we compare with them in Section 4.4.5.

Bilateral filtering is a popular and currently state-of-the-art method for image en-
hancement, in particular as a denoising method preserving image contours. Although
historically, it was limited for post-processing due to its computational complexity, recent
work have successfully made bilateral filters reasonably efficient and fully differentiable (Li
et al. (2016); Wu et al. (2018a)). These recent methods have been successful when applied
in downsampling-upsampling schemes, but have not been used yet in the context of MDE.
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Guided filters (He et al. (2013)) have been proposed as an alternative simpler version of
the bilateral filter. We show in our experiments that both guided and bilateral filters
sharpen occlusion boundaries thanks to their usage of the image for guidance. They
however sometime produce false depth gradients artifacts. The bilateral solver (Barron
and Poole (2016)) formulates the bilateral filtering problem as a regularized least-squares
optimization problem, allowing fully differentiable and much faster computation. However,
we show in our experiments that our end-to-end trainable method compares favorably
against this method, both in speed and accuracy.

Datasets with Image Contours Several datasets of image contours or occlusion
boundaries already exist. Popular datasets for edge detection training and evaluation
were focused on perceptual (Arbelaez et al. (2011); Martin et al. (2004, 2001)) or object
instance (Everingham et al. (2010)) boundaries. However, those datasets often lack
annotation of the occlusion relationship between two regions separated by the boundaries.
Other datasets (Hoiem et al. (2011, 2007); Ren et al. (2006); Wang and Yuille (2016))
annotated occlusion relationship between objects, however they do not contain ground
truth depth.

The NYUv2-Depth dataset (Silberman et al. (2012)) is a popular MDE benchmark
which provides such depth ground truth. Several methods for instance boundary detection
have benefited from this depth information (Deng et al. (2018); Dollár and Zitnick (2013);
Gupta et al. (2013); Gupta et al. (2014); Ren and Bo (2012)) to improve their performances
on object instance boundaries detection.

The above cited datasets all lack object self-occlusion boundaries and are sometimes
inaccurately annotated. Our NYUv2-OC++ dataset provides manual annotations for
the occlusion boundaries on top of NYUv2-Depth for all of its 654 test images. As
discussed in Chapter 3, even though it is a tedious task, manual annotation is much
more reliable than automated annotation that could be obtained from depth maps.
Figure 4.3 illustrates the extensive and accurate coverage of the occlusion boundaries
of our annotations. This dataset enables simultaneous evaluation of depth estimation
methods and occlusion boundary reconstruction as the 100 images iBims dataset (Koch
et al. (2018)), but is larger and has been widely used for MDE evaluation.

4.3 Method

In this section, we introduce our occlusion boundary refinement method as follows.
Firstly, we present our hypothesis on the typical structure of predicted depth maps
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around occlusion boundaries and derive a model to transform this structure into the
expected one. We then prove our hypothesis using an hand-crafted method. Based on
this model, we propose an end-to-end trainable module which can resample pixels of an
input depth image to restore its sharp occlusion boundaries.

4.3.1 Prior Hypothesis

Occlusion boundaries correspond to regions in the image where depth exhibits large and
sharp variations, while the other regions tend to vary much smoother. Due to the small
proportion of such sharp regions, neural networks tend to predict over-smoothed depths
in the vicinity of occlusion boundaries.

We show in this work that sharp and accurately located boundaries can be recovered
by resampling pixels in the depth map. This resampling can be formalized as:

∀p ∈ Ω, D(p)← D(p + δp(p)) , (4.1)

where D is a depth map, p denotes an image location in domain Ω, and δp(p) a 2D
displacement that depends on p. This formulation allows the depth values on the two
sides of occlusion boundaries to be “stitched” together and replace the over-smoothed
depth values. While this method shares some insights with Deformable CNNs J. Dai
et al. (2017) where the convolutional kernels are deformed to adapt to different shapes,
our method is fundamentally different as we displace depth values using a predicted 2D
vector for each image location.

Another option to improve depth values would be to predict an additive residual
depth, which can be formalized as, for comparison:

∀p ∈ Ω, D(p)← D(p) + ∆D(p) . (4.2)

We argue that updating the predicted depth D̂ using predicted pixel shifts to recover
sharp occlusion boundaries in depth images works better than predicting the residual
depth. We validate this claim with the experiments presented below on toy problems,
and on real predicted depth maps in Section 4.4.

4.3.2 Testing the Optimal Displacements

To first validate our assumption that a displacement field δp(p) can improve the recon-
structions of occlusion boundaries, we estimate the optimal displacements using ground
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truth depth for several predicted depth maps as:

∀p ∈ Ω, δp∗ = arg min
δp: p+δp ∈ N (p)

(D(p)− D̂(p + δp))2 . (4.3)

In words, solving this problem is equivalent to finding for each pixel the optimal
displacement δp∗ that reconstructs the ground truth depth map D from a predicted
depth map D̂. We solve Eq. (4.3) by performing for all pixels p an exhaustive search of
δp within a neighborhood N (p) of size 50× 50. Qualitative results are shown in Fig. 4.4.
The depth map obtained by applying this optimal displacement field is clearly much
better.

In practice, we will have to predict the displacement field to apply this idea. This is
done by training a deep network, which is detailed in the next subsection. We then check
on a toy problem that this yields better performance than predicting residual depth with
a deep network of similar capacity.

4.3.3 Method Overview

Based on our model, we propose to learn the displacements of pixels in predicted depth
images using CNNs. Our approach is illustrated in Fig. 4.6: Given a predicted depth
image D̂, our network predicts a displacement field δp to resample the image locations
in depth map D̂ according to Eq. (4.1). This approach can be implemented as a Spatial
Transformer Network (Jaderberg et al. (2015)).

Image guidance can be helpful to improve the occlusion boundary precision in refined
depth maps and can also help to discover edges that were not visible in the initial
predicted depth map D̂. However, it should be noted that our network can still work
even without image guidance.

4.3.4 Training Our Model on Toy Problems

In order to verify that displacement fields δp presented in Section 4.3.1 can be learned,
we first define a toy problem in 1D.

In this toy problem, as shown in Fig. 4.5, we model the signals D to be recovered as
piecewise continuous functions, generated as sequences of basic functions such as step,
affine and quadratic functions. These samples exhibit strong discontinuities at junctions
and smooth variations everywhere else, which is a property similar to real depth maps.
We then convolve the D signals with random-size (blurring) Gaussian kernels to obtain
smooth versions D̂. This gives us a training set T of (D̂,D) pairs.
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(a) (b) (c)

(d) (e) (f)

Fig. 4.4 Refinement results using the gold standard method described in Section 4.3.2 to
recover the optimal displacement field (best seen in color). (a) is the input RGB image
with superimposed NYUv2-OC++ annotation in green and (d) its associated Ground
Truth depth. (e) is the prediction using Laina et al. (2016) with pixel displacements
δp from Eq. (4.3) and (f) the refined prediction. (b) is the horizontal component of
the displacement field δp∗ obtained by Eq. (4.3). Red and blue color indicate positive
and negative values respectively. (c) is the horizontal component δx of displacement
field δp∗ along the dashed red line drawn in (b,c,d,e).
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Fig. 4.5 Comparison between displacement and residual update learning. Both
residual and displacement learning can predict sharper edges, however residual updates
often produce artifacts along the edges while displacements update does not.

We use T to train a network f(.; Θf ) of parameters to predict a displacement field:

min
Θf

∑
(D̂,D)∈T

∑
p

L
(
D(p)− D̂

(
p + f(D̂; Θf )(p)

))
. (4.4)

and a network g(.; Θg) of parameters to predict a residual depth map:

min
Θg

∑
(D̂,D)∈T

∑
p

L
(
D(p)− D̂(p) + g(D̂; Θg)(p)

)
, (4.5)

where L(.) is some loss. In our experiments, we evaluate the l1, l2, and Huber losses.
As shown in Fig. 4.5, we found that predicting a residual update produces severe

artifacts around edges such as overshooting effects. We argue that these issues arise
because the residual CNN g is also trained on regions where the values of D̂ and D are
different even away from edges, thus encouraging network g to also correct these regions.
By contrast, our method does not create such overshooting effects as it does not alter
the local range of values around edges.

It is worth noticing that even when we allow D̂ and D to have slightly different values
in non-edge areas -which simulates residual error between predicted and ground truth
depth-, our method still converges to a good solution, compared to the residual CNN.

We extend our approach validation from 1D to 2D, where the 1D signal is replaced
by 2D images with different polygons of different values. We apply the same operation to
smooth the images and then use our network to recover the original sharp images from
the smooth ones. We observed similar results in 2D: The residual CNN always generates
artifacts. Some results of our 2D toy problem can be found in supplementary material.
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Fig. 4.6 Our proposed pipeline for depth edge sharpening. The dashed lines define the optional
guidance with RGB features for our shallow network.

4.3.5 Learning to Sharpen Depth Predictions

To learn to produce sharper depth predictions using displacement fields, we first trained
our method in a similar fashion to the toy problem described in Section 4.3.4. While this
already improves the quality of occlusion boundaries of all depth map predictions, we show
that we can further improve quantitative results by training our method using predictions
of an MDE algorithm on the NYUv2-Depth dataset as input and the corresponding
ground truth depth as target output. We argue that this way, the network learns to
correct more complex distortions of the ground truth than Gaussian blurring. In practice,
we used the predictions of SharpNet (Ramamonjisoa and Lepetit (2019)) to demonstrate
this, as it is state-of-the-art on occlusion boundary sharpness. We show that this not
only improves the quality of depth maps predicted by SharpNet but all other available
MDE algorithms. Training our network using the predictions of other algorithms on the
NYUv2 would further improve their result, however not all of them provide their code or
their predictions on the official training set. Finally, our method is fully differentiable.
While we do not do it in this paper, it is also possible to train an MDE jointly with our
method, which should yield even better results.
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(a) (b) (c) (d) (e) (f)

Fig. 4.7 Refinement results using our method (best seen in color). From left to right: (a) input
RGB image with NYUv2-OC++ annotation in green, (b) SharpNet (Ramamonjisoa
and Lepetit (2019)) depth prediction, (c) Refined prediction, (d) Ground truth depth,
(e) Horizontal and (f) Vertical components of the displacement field. Displacement
fields are clipped between ±15 pixels. Although SharpNet is used as an example here
because it is currently state-of-the-art on occlusion boundary accuracy, similar results
can be observed when refining predictions from other methods.

4.4 Experiments

In this section, we first detail our implementation, describe the metrics we use to evaluate
the reconstruction of the occlusion boundaries and the accuracy of the depth prediction,
and then present the results of the evaluations of our method on the outputs from
different MDE methods.

4.4.1 Implementation Details

We implemented our network using the Pytorch framework (Paszke et al. (2019)). Our
network is a light-weight encoder-decoder network with skip connections, which has one
encoder for depth, an optional one for guidance with the RGB image, and a shared
decoder. Details on each component can be found in the supplementary material. We
trained our network on the output of a MDE method (Ramamonjisoa and Lepetit
(2019)), using Adam optimization with an initial learning rate of 5e-4 and weight decay
of 1e-6, and the poly learning rate policy (Zhao et al. (2017)), during 32k iterations on
NYUv2 (Silberman et al. (2012)). This dataset contains 1449 pairs RGB and depth
images, split into 795 samples for training and 654 for testing. Batch size was set to 1.
The input images were resized with scales [0.75, 1, 1, 5, 2] and then cropped and padded
to 320× 320. We tried to learn on the raw depth maps from the NYUv2 dataset, without
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success. This is most likely due to the fact that missing data occurs mostly around the
occlusion boundaries. Dense depth maps are therefore needed which is why we use Levin
et al. (2004) to inpaint the missing data in the raw depth maps.

4.4.2 Evaluation metrics

4.4.2.1 Evaluation of monocular depth prediction

As in previous work (Eigen and Fergus (2015); Eigen et al. (2014); Laina et al. (2016)),
we evaluate the monocular depth predictions using the following metrics: Root Mean
Squared linear Error (Rlin), mean absolute relative error (rel), mean log10 error (log10),
Root Mean Squared log Error (Rlog), and the accuracy under threshold (σi < 1.25i,
i = 1, 2, 3).

4.4.2.2 Evaluation of occlusion boundary accuracy

Following the work of Koch et al. (2018), we evaluate the accuracy of occlusion bound-
aries (OB) using the proposed depth boundary errors, which evaluate the accuracy ϵa

and completion ϵc of predicted occlusion boundaries. The boundaries are first extracted
using a Canny edge detector (Canny (1986)) with predefined thresholds on a normalized
predicted depth image. As illustrated in Fig. 4.8, ϵa is taken as the average Chamfer
distance in pixels (Fan et al. (2017)) from the predicted boundaries to the ground truth
boundaries; ϵcom is taken as the average Chamfer distance from ground truth boundaries
to the predicted boundaries.

4.4.3 Evaluation on the NYUv2 Dataset

We evaluate our method by refining the predictions of different state-of-the-art meth-
ods (Eigen et al. (2014); Fu et al. (2018); Jiao et al. (2018); Laina et al. (2016); Rama-
monjisoa and Lepetit (2019); Yin et al. (2019)). Our network is trained using the 795
labeled NYUv2 depth images of training dataset with corresponding RGB images as
guidance.

To enable a fair comparison, we evaluate only pixels inside the crop defined in Eigen
et al. (2014) for all methods. Table 4.1 shows the evaluation of refined predictions
of different methods using our network. With the help of our proposed network, the
occlusion boundary accuracy of all methods can be largely improved, without degrading
the global depth estimation accuracy. We also show qualitative results of our refinement
method in Fig. B.4.
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(a) (b)

Fig. 4.8 Occlusion boundary evaluation metrics based on the Chamfer distance, as introduced
in Koch et al. (2018). The blue lines represent the ground truth boundaries, the red
curve the predicted boundary. Only the boundaries in the green area are taken into
account during the evaluation of accuracy (a), and only the yellow area are taken into
account during the evaluation of completeness (b). (a) The accuracy is evaluated from
the distances of points on the predicted boundaries to the ground truth boundaries.
(b) The completeness is evaluated from the distances of points on the ground truth
boundaries to the predicted boundaries.

4.4.4 Evaluation on the iBims Dataset

We applied our method trained on NYUv2 dataset to refine the predictions from various
methods (Eigen and Fergus (2015); Eigen et al. (2014); Laina et al. (2016); Li et al. (2017);
Liu et al. (2018, 2015); Ramamonjisoa and Lepetit (2019)) on the iBims dataset( Koch
et al. (2018)). Table 4.2 shows that our network significantly improves the accuracy and
completeness metrics for the occluding boundaries of all predictions on this dataset as
well.

4.4.5 Comparison with Other Methods

To demonstrate the efficiency of our proposed method, we compare our method with
existing filtering methods (Barron and Poole (2016); He et al. (2013); Tomasi and
Manduchi (1998); Wu et al. (2018a)). We use the prediction of Eigen et al. (2014) as
input, and compare the accuracy of depth estimation and occlusion boundaries of each
method. Note that for the filters with hyper-parameters, we tested each filter with a
series of hyper-parameters and select the best refined results. For the Fast Bilateral
Solver (FBS) (Barron and Poole (2016)) and the Deep Guided Filter (GF) (Wu et al.
(2018a)), we use their default settings from the official implementation. We keep the
same network with and without Deep GF, and train both times with the same learning
rate and data augmentation.

77



Estimating Sharper Depth Maps with Displacement Fields

Depth error (↓) Depth accuracy (↑) OB (↓)

Method Refine rel log10 Rlin σ1 σ2 σ3 ϵa ϵc

Eigen et al. (2014)
- 0.32 0.17 1.55 0.36 0.65 0.84 9.97 9.99
✓ 0.32 0.17 1.54 0.37 0.66 0.85 4.83 8.78

Eigen and Fergus
(2015) (AlexNet)

- 0.30 0.15 1.38 0.40 0.73 0.88 4.66 8.68
✓ 0.30 0.15 1.37 0.41 0.73 0.88 4.10 7.91

Eigen and Fergus
(2015) (VGG)

- 0.25 0.13 1.26 0.47 0.78 0.93 4.05 8.01
✓ 0.25 0.13 1.25 0.48 0.78 0.93 3.95 7.57

Laina et al. (2016)
- 0.26 0.13 1.20 0.50 0.78 0.91 6.19 9.17
✓ 0.25 0.13 1.18 0.51 0.79 0.91 3.32 7.15

Liu et al. (2015)
- 0.30 0.13 1.26 0.48 0.78 0.91 2.42 7.11
✓ 0.30 0.13 1.26 0.48 0.77 0.91 2.36 7.00

Li et al. (2017)
- 0.22 0.11 1.09 0.58 0.85 0.94 3.90 8.17
✓ 0.22 0.11 1.10 0.58 0.84 0.94 3.43 7.19

Liu et al. (2018)
- 0.29 0.17 1.45 0.41 0.70 0.86 4.84 8.86
✓ 0.29 0.17 1.47 0.40 0.69 0.86 2.78 7.65

Ramamonjisoa and
Lepetit (2019)

- 0.27 0.11 1.08 0.59 0.83 0.93 3.69 7.82
✓ 0.27 0.11 1.08 0.59 0.83 0.93 2.13 6.33

Table 4.2 Evaluation of our method on the output of several state-of-the-art methods on
iBims.

As shown in Table 4.3, our method achieves the best accuracy for occlusion boundaries.
Finally, we compare our method against the additive residual prediction method discussed
in 4.3.1. We keep the same U-Net architecture, but replace the displacement operation
with an addition as described in Eq. (4.2), and show that we obtain better results. We
argue that the performance of the deep guided filter and additive residual are lower due
to generated artifacts which are discussed in Section 4.3.4. In Table 4.4, we also compare
our network’s computational efficiency against reference depth estimation and refinement
methods.

4.4.6 Influence of the Loss Function and the Guidance Image

In this section, we report several ablation studies to analyze the favorable factors of our
network in terms of performances. Fig. 4.6 shows the architecture of our baseline network.
All the following networks are trained using the same setting detailed in Section 4.4.1
and trained on the official 795 RGB-D images of the NYUv2 training set. To evaluate the
effectiveness of our method, we choose the predictions of Eigen et al. (2014) as input, but
note that the conclusion is still valid with other MDE methods. Please see supplementary
material for further results.
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Depth error (↓) Depth accuracy (↑) OB (↓)
Method rel log10 Rlin Rlog σ1 σ2 σ3 ϵa ϵc

Baseline (Eigen
et al. (2014))

0.234 0.095 0.766 0.265 0.610 0.886 0.971 9.926 9.993

Bilateral Fil-
ter (Tomasi and
Manduchi (1998))

0.236 0.095 0.765 0.265 0.611 0.887 0.971 9.313 9.940

Guided Filter (He
et al. (2013))

0.237 0.095 0.767 0.265 0.610 0.885 0.971 6.106 9.617

FBS (Barron and
Poole (2016))

0.236 0.095 0.765 0.264 0.611 0.887 0.971 5.428 9.454

Deep GF (Wu et al.
(2018a))

0.306 0.116 0.917 0.362 0.508 0.823 0.948 4.318 9.597

Residual 0.286 0.132 0.928 0.752 0.508 0.807 0.931 5.757 9.785
Our Method 0.232 0.094 0.757 0.263 0.615 0.889 0.971 2.302 8.347

Table 4.3 Comparison with existing methods for image enhancement, adapted to the depth
map prediction problems. Our method performs the best for this problem over all
the different metrics.

Method
SharpNet (Rama-

monjisoa and
Lepetit (2019))

VNL (Yin et al.
(2019))

Deep GF (Wu et al.
(2018a)) Ours

FPS - GPU 83.2 ± 6.0 32.2± 2.1 70.5 ± 7.5 100.0 ± 7.3
FPS - CPU 2.6 ± 0.0 * 4.0 ± 0.1 5.3 ± 0.15

Table 4.4 Speed comparison with other reference methods implemented using Pytorch. Those
numbers were computed using a single GTX Titan X and Intel Core i7-5820K CPU.
using 320x320 inputs. Runtime statistics are computed over 200 runs.

4.4.6.1 Loss Functions for Depth Prediction

In Table 4.5, we show the influence of different loss functions. We apply the Pytorch official
implementation of l1, l2, and the Huber loss. The Disparity loss supervises the network
with the reciprocal of depth, the target depth ytarget is defined as ytarget = M/yoriginal,
where M here represents the maximum of depth in the scene. As shown in Table 4.5,
our network trained with l1 loss achieves the best accuracy for the occlusion boundaries.

4.4.6.2 Guidance image

We explore the influence of different types of guidance image. The features of guidance
images are extracted using an encoder with the same architecture as the depth encoder,
except that Leaky ReLU (Maas et al. (2013)) activations are all replaced by standard
ReLU (Glorot et al. (2011a)). We perform feature fusion of guidance and depth features
using skip connections from the guidance and depth decoder respectively at similar scales.
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Depth error (↓) Depth accuracy (↑) OB (↓)

Method rel log10 Rlin Rlog σ1 σ2 σ3 ϵa ϵc

Baseline Eigen et al. (2014) 0.234 0.095 0.766 0.265 0.610 0.886 0.971 9.926 9.993

l1 0.232 0.094 0.758 0.263 0.615 0.889 0.971 2.168 8.173
l2 0.232 0.094 0.757 0.263 0.615 0.889 0.971 2.302 8.347
Huber 0.232 0.095 0.758 0.263 0.615 0.889 0.972 2.225 8.282
Disparity 0.234 0.095 0.761 0.264 0.613 0.888 0.971 2.312 8.353

Table 4.5 Evaluation of different loss functions for learning the displacement field. The l1
norm yields the best results.

Table 4.6 shows the influence of different choices for the guidance image. The edge
images are created by accumulating the detected edges using a series of Canny detector
with different thresholds. As shown in Table 4.6, using the original RGB image as
guidance achieves the highest accuracy, while using the image converted to grayscale
achieves the lowest accuracy, as information is lost during the conversion. Using the
Canny edge detector can help to alleviate this problem, as the network achieves better
results when switching from gray image to binary edge maps.

Depth error (↓) Depth accuracy (↑) OB (↓)

Method rel log10 Rlin Rlog σ1 σ2 σ3 ϵa ϵc

Baseline (Eigen
et al. (2014))

0.234 0.095 0.760 0.265 0.612 0.886 0.971 9.936 9.997

No guidance 0.236 0.096 0.771 0.268 0.608 0.883 0.969 6.039 9.832
Gray 0.232 0.094 0.757 0.263 0.615 0.889 0.972 2.659 8.681
Binary Edges 0.232 0.094 0.757 0.263 0.615 0.889 0.972 2.466 8.483
RGB 0.232 0.094 0.758 0.263 0.615 0.889 0.971 2.168 8.173

Table 4.6 Evaluation of different ways of using the input image for guidance. Simply using
the original color image works best.

4.5 Conclusion

We showed that by predicting a displacement field to resample depth maps, we can signif-
icantly improve the reconstruction accuracy and the localization of occlusion boundaries
of any existing method for monocular depth prediction. To evaluate our method, we also
introduce a new dataset of precisely labeled occlusion boundaries. Beyond evaluation of
occlusion boundary reconstruction, this dataset should be valuable for future methods to
learn to detect more precisely occlusion boundaries. Following Chapter 3, this chapter
introduces a new state-of-the-art on sharpness of depth edges obtained by MDE methods,
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at a minimal computational cost. In the following chapter, we discuss a new method to
improve efficiency of MDE architectures by exploiting the structure of depth maps.
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Chapter 5

Improving the Efficiency of
Monocular Depth Estimation using
Wavelets Transforms

The work described in this chapter is based on the following publication:
Single Image Depth Prediction with Wavelet Decomposition, Michaël Ramamonjisoa,
Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambetov, pub-
lished at CVPR 2021.

Abstract

We present a novel method for predicting accurate depths from monocular images with
high efficiency. This optimal efficiency is achieved by exploiting wavelet decomposition,
which is integrated in a fully differentiable encoder-decoder architecture. We demonstrate
that we can reconstruct high-fidelity depth maps by predicting sparse wavelet coefficients.

In contrast with previous works, we show that wavelet coefficients can be learned
without direct supervision on coefficients. Instead we supervise only the final depth image
that is reconstructed through the inverse wavelet transform. We additionally show that
wavelet coefficients can be learned in fully self-supervised scenarios, without access to
ground-truth depth. Finally, we apply our method to different state-of-the-art monocular
depth estimation models, in each case giving similar or better results compared to the
original model, while requiring less than half the multiply-adds in the decoder network.
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(a) Input color image – (320×1024)

(b) Sparse estimation using wavelets. Our network up-samples and
refines a 1/16-resolution depth map (bottom-right), by estimating wavelet
coefficients only in sparse regions.

(c) Reconstruction of the output depth map using the inverse wavelet
transform.

Fig. 5.1 We can represent depth maps more efficiently with wavelets. Here the
network takes image (a) as input and outputs a low resolution depth map, together
with sparse wavelet coefficients (b). We can reconstruct a high-resolution depth map
(c) using the inverse wavelet transform. In our model we predict multi-scale wavelet
coefficients with an image-to-image network, and we exploit sparseness of the output
to save computation.
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5.1 Introduction

As seen in Section 1.2, single-image depth estimation methods are useful in many real-time
applications, for example robotics, autonomous driving and augmented reality. These
areas are typically resource-constrained, so efficiency at prediction time is important.

Similarly to the works presented in Chapters 3 and 4, neural networks which estimate
depth from a single image overwhelmingly use U-Net architectures, with skip connections
between encoder and decoder layers (Ronneberger et al. (2015)). Most work on single-
image depth prediction has focused on improved depth accuracy, without focusing on
efficiency. Those that have cared about efficiency have typically borrowed tricks from
the “efficient network” world (Howard et al. (2017); Sandler et al. (2018)) to make faster
depth estimation, with the network using standard convolutions all the way through
(Poggi et al. (2018a); Wofk et al. (2019)). All these approaches still use standard neural
network components: convolutions, additions, summations and multiplications.

Inspired by sparse representations that can be achieved with wavelet decomposition,
we propose an alternative network representation for more efficient depth estimation,
using wavelet decomposition. We call this system WaveletMonodepth. We make the
observation that depth images of the man-made world are typically made up of many
piece-wise flat regions, with a few ‘jumps’ in depth between the flat regions. This structure
lends itself well to wavelets. A low-frequency component can represent the overall scene
structure, while the ‘jumps’ can be well captured in high-frequency components. Crucially,
the high-frequency components are sparse, which means computation can be focused
only in certain areas. This has the effect of saving run-time computation, while still
enabling high-quality depths to be estimated.

To the best of our knowledge, we are the first to train a single-image depth estimation
network that reconstructs depth by predicting wavelet coefficients. Furthermore, we show
that our models can be trained with self-supervised loss on the final depth signal, in
contrast to other methods that directly supervise predicted wavelet coefficients.

We evaluate on NYU and KITTI datasets, where we train supervised and self-
supervised, respectively. We show that our approach allows us to effectively trade off
depth accuracy against runtime computation.

5.2 Related Work

While most previous works in monocular depth estimation, discussed in Section 2.3 achieve
higher scores with equivalently trained architectures, some works aim for improved depth
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accuracy at the expense of efficiency. Our wavelet-based method aims to improve depth
estimation efficiency, without sacrificing accuracy. In this section, we thus first discuss
previous works in computer vision that used wavelets, then present related methods
to improve efficiency of neural networks in general, then especially the few works that
focused on efficient monocular depth estimation.

5.2.1 Wavelets in Computer Vision

Wavelet decomposition is an extensively used technique in signal processing, image
processing and computer vision. The discrete wavelet transform (DWT) allows a repre-
sentation of a discrete signal which is more redundant and hence compressible. A notable
example is compression of images with JPEG2000 format (Taubman and Marcellin (2013);
Unser and Blu (2003)). Furthermore, wavelet decomposition is also a frequency transform,
and can be used for denoising (Donoho (1995); Donoho and Johnstone (1994); Kang
et al. (2018)). Wavelet transforms have also recently been combined with Deep Learning
to restore images affected by Moiré color artifacts, which occur when RGB sensors are
unable to resolve high-frequency details (Liu et al. (2020b); Luo et al. (2020b)). Li et al.
(2020a) show that by substituting pooling operations in neural networks with discrete
wavelet transforms it is possible to filter out high-frequency components of the input
image during prediction and thus improve noise-robustness in image classification tasks.
Super-resolution methods (Deng et al. (2019); Guo et al. (2017); Huang et al. (2017b))
learn to estimate the high-frequency wavelet coefficients of an input low-resolution image
to generate high-frequency image through inverse wavelet transform.

Closer to our work, Yang et al. (2020) use wavelets in a stereo matching network but
require supervision of wavelet coefficients while we do not. Similarly, Luo et al. (2020a)
replaced the down-sampling and up-sampling operations of UNet-like architectures with
DWTs and inverse DWT respectively, and replaced standard skip-connection with high-
frequency coefficient skip-connections. However, they do not directly predict wavelet
coefficients of depth and as such are unable to exploit the sparse representation of wavelets
for efficiency. In contrast with both these works, we focus on efficient depth prediction
from a single image.

5.2.2 Efficient Neural Networks

Convolutional Neural Networks (CNNs) (LeCun et al. (1995)) have revolutionized the
field of computer vision as CNN based methods tend to outperform every other competing
methods on regression or classification tasks, if they are provided enough training data.
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However, the best performing neural networks contain a large number of parameters
and require a large number of floating point operations (FLOPs) at runtime, making
deployment to lightweight platforms problematic. Many architectures have been developed
to improve the accuracy/speed tradeoff in deep nets. For example, depth-wise separable
convolutions (Howard et al. (2017)), inverted residual layers (Sandler et al. (2018)), and
pointwise group convolutions (Zhang et al. (2018)). An alternative approach though is
to train a network before cutting down some of its unnecessary computations.

Channel pruning. One line of research is network pruning (He et al. (2017b); Liu
et al. (2017); Yu et al. (2019)), which consists of removing some of the redundant filters
in a trained neural network. While this helps reducing the network memory footprint
as well as the number of FLOPs necessary for inference, sparsity is typically enforced
through regularization terms He et al. (2017b); Wen et al. (2016) to compress the network
without losing performance. Using such regularisation, however, often requires careful
tuning to achieve the desired result (Ye et al. (2018)). In contrast, our wavelet-based
method intrinsically provides sparsity in outputs and intermediate activations, and the
wavelet predictions coincide with edges in the depth map, knowledge of which has direct
applications e.g. in augmented reality (Holynski and Kopf (2018); Ramamonjisoa and
Lepetit (2019)).

While most works focus on classification, channel pruning has also been successfully
applied to depth estimation in the aforementioned FastDepth (Wofk et al. (2019)), which
uses NetAdapt (Yang et al. (2018a)) to perform channel pruning.

Sparse inference. Another recent work considers spatially sparse inference in image-to-
image translation tasks. PointRend (Kirillov et al. (2020)) treats semantic segmentation
as a rendering process, where a high-resolution estimate is obtained from a low-resolution
one through a cascade of upsampling and sparse refinement operations. The location
of these sparse rendering operations is chosen based on an uncertainty measure of the
classification method. However, while they demonstrate the efficiency and applicability of
their method to classification tasks, their method cannot directly be applied to regression
tasks because of the requirement to evaluate an uncertainty heuristic for all pixel locations.
In contrast, our method can directly be applied to regression tasks, as rendering locations
are directly predicted by our model as non-zero-valued high-frequency wavelet coefficients.

Efficient depth estimation. Only a small number of works have been developed for
light-weight MDE. FastDepth (Wofk et al. (2019)) exploits separable convolutions, channel
pruning and efficient encoder to compress U-Net based neural network architectures.
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Poggi et al. (2018a) introduce PyDNet, which uses an image pyramid to enable high
receptive field with a small number of parameters. Huynh et al. (2022) explored Neural
Architecture Search (NAS) to build a light-weight MDE system. Several works also used
knowledge distillation to enable a small depth estimation network to learn some of the
knowledge from a larger network (Liu et al. (2020c); Spek et al. (2018)).

In contrast to these works, our contribution is to change the internal representation
of depth within the network itself. We note that our contributions could be used in
conjunction with the above efficient architectures or distillation schemes.

5.3 Method

In this section, we first introduce the basics of 2D wavelet transforms. We chose Haar
wavelets( Haar (1910)) due to their simplicity and provided efficiency. Next, we describe
how to use the cascade nature of wavelet representations to build our efficient depth
estimation architecture, which we call WaveletMonodepth. Finally, we discuss the
computational benefits of sparse representations.

5.3.1 Haar Wavelet Transform

The Haar wavelet basis is the simplest basis of functions for wavelet decomposition.
A discrete wavelet transform (DWT) with Haar wavelets decomposes a 2D image into
four coefficient maps: a low-frequency (L) component LL and three high-frequency (H)
components LH, HL, HH at half the resolution of the input image. For the remainder of
the paper, we refer to the coefficient maps as the output of the DWT. The DWT is an
invertible operation, where its inverse, IDWT, converts four coefficient maps into a 2D
signal at twice the resolution of the coefficient maps.

The multi-scale and multi-frequency wavelet representation is build by recursively
applying DWT to the low-frequency coefficient map LL, starting from the input image—
see Figure 5.2(a). Similarly, the multi-scale representation can be recursively inverted
to reconstruct a full resolution image (Figure 5.2(b)). This synthesis operation is the
building block of our depth reconstruction method.

5.3.2 WaveletMonoDepth

Our method, which we call WaveletMonoDepth, is summarized in Figure 5.3. It builds
on a recursive use of IDWT operation applied to predicted coefficient maps. Thus, we
reconstruct a depth map at the input scale by first predicting a coarse estimate at the
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Fig. 5.2 Illustration of a two-level wavelet representation of a depth image. The input image
LL0 is passed through a two-level wavelet decomposition (a), to produce a low
frequency depth map together with associated wavelets for high frequency detail. The
inverse wavelet transform (b) can reconstruct the original image from the wavelet
decomposition.

bottleneck scale of a UNet-like architecture (Ronneberger et al. (2015)), and iteratively
upscale and refine this estimate by predicting high-frequency coefficient maps.

In our network architecture, the coarse depth estimate LL3 is estimated at 1/16
of the input scale. This depth map is then progressively upscaled and refined using
Algorithm 1. A forward pass of our model generates a collection of 5 depth maps LLs

for scales [1/16, 1/8, 1/4, 1/2, 1]. We choose to supervise only the four last scales as
in Monodepth2 (Godard et al. (2019)). It is worth noting that the coefficient maps
are predicted at scales [1/16, 1/8, 1/4, 1/2], thus removing the need for full-resolution
computation.

5.3.3 Sparse Computations in Decoder

For piecewise flat depth maps, high-frequency coefficient maps have a small number of
non-zero values; these are located around depth edges. Hence, for full-resolution depth
reconstruction, only some pixel locations need to predict non-zero coefficient map values
at each scale. At any scale, we assume that these pixel locations with non-zero values
can be determined from high-frequency coefficient maps estimated at the previous scale
defined by a mask M described in GetSparseMask of Algorithm 1.

89



Improving the Efficiency of Monocular Depth Estimation using Wavelets
Transforms

IDWT

IDWT

IDWT

IDWT

HH LH

HL LL
LLIDWT

Sparse Conv.

Inverse Discrete Wavelet Transform (IDWT)

x0.5

x0.5

x0.5

x0.5

x2

x2

x2

2H x 2WH x Wx2

x0.5

C

C

C

C

C Concatenate

Fig. 5.3 Our method WaveletMonoDepth predicts depth from a single image using
wavelets. At each stage in our decoder, we predict sparse wavelet coefficients
{LH, HL, HH}. These capture the high-frequency details of the depth map, e.g.
occlusion boundaries. These are combined with the low-frequency depth map LL, taken
from the previous level in the decoder, and passed through an inverse discrete wavelet
transform (IDWT). This generates a new depth map at twice the resolution of LL.
This process is continued through the decoder until the original input image resolution
is reached. Because the wavelet coefficients are sparse, we can save computations;
we need only to evaluate each decoder layer at the non-zero wavelet locations in the
previous level. See Algorithm 1 for more details.
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Algorithm 1: Computing depth with wavelets
Result: Depth map at input scale
Input : Pyramid of feature maps [F4, F3, F2, F1];
Current scale s = 3;
LL3 ← DensePredict (F4);
Threshold η ;
Sparse computation mask M = Initialize with 1;
for ( s = 3; s >= 0; s = s− 1 ) {
← LHs, HLs, HHs ← SparsePredict (Fs+1; M);
LLs−1 ← IDWT(LLs, [LHs, HLs, HHs]);
ηs ← η · (max(LLs−1)−min(LLs−1));
M ← GetSparseMask (LHs, HLs, HHs, ηs);

}
procedure SparsePredict(F, M)

Input : Feature map F , Sparse mask M
for ( all p s.t. M [p] == 1 ) {

H[p] = SparseConv3x3(F[p]);
}
return H;

procedure DensePredict(F)
Input : Feature map F
Initialize M with ones;
return SparsePredict(F, M);

procedure GetSparseMask(H, η)
Input : High frequency coefficient maps H
M = max(|LH|, |HL|, |HH|) > η ;
M = upsample×2(M) ;
return M ;

The sparsity level achieved by using mask M is

ψ =
∑H,W

r,c=1,1 Mr,c

HW
, (5.1)

which allows us to remove redundant computation in the decoder layer. Indeed, for a
typical K ×K convolution (with a bias term) on a feature tensor of size H ×W that has
Cin input channels and Cout output channels, the number of multiply-add operations is

MACdense = HW (CinK
2 + 1)Cout. (5.2)
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With the sparsity level ψ, it would be

MACsparse = ψHW (CinK
2 + 1)Cout. (5.3)

Note that our sparsification strategy aims to reduce FLOPs by decreasing the number
of pixel locations at which we need to compute an output. This approach is orthogonal
and complements other approaches such as channel pruning, which instead reduces Cin

and Cout, or separable convolutions. We refer to supplementary material for further
details on these.

Considering a quite conservative threshold η = 0.05 used on high-frequency coefficient
maps, the sparse decoder computation is about 3× lower in FLOPs compared to standard
convolutions at all pixel locations for an image of size 320× 1024.

5.3.4 Self-supervised Training

Our self-supervised losses are as described in Godard et al. (2019), which we briefly
describe here for completeness. See supplemental material for further details. Given a
stereo pair of images (IL, IR), we train our network to predict a depth map DL, pixel-
aligned with the left image. We also assume access to the camera intrinsics K, and the
relative camera transformation between the images in the stereo pair TR→L. We use the
network’s current estimate of depth to synthesise an image IR→L, computed as

IR→L = IR

〈
proj(DL, TR→L, K)

〉
, (5.4)

where proj() are the 2D pixel coordinates obtained by projecting the depths DL into
image IR, and

〈〉
is the sampling operator. We follow standard practice in training with

a photometric reconstruction error pe, so our loss becomes Lp = pe(IL, IR→L). Following
Chen et al. (2019c); Godard et al. (2019) etc., we set pe to a weighted sum of SSIM and
L1 losses.

We also include the depth smoothness loss from Monodepth2 (Godard et al. (2019)).
For our experiments which train on monocular and stereo sequences (‘MS’), we

combine reprojection errors from the three different source images: one frame forward in
time, one frame back in time, and the corresponding stereo pair. In this case, we create
synthesized images from the monocular sequence using relative poses estimated from a
pose network, as described in Monodepth2. In this setting, we use a per-pixel minimum
reprojection loss, again following Monodepth2.
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5.4 Experiments

Our validation experiments explore the task of training a CNN to predict depth from a
single color image, using wavelets as an intermediate representation. Depending on the
experiment, we compare against known leading baselines that supplement, and pre- and
post-process the stereo pairs used for supervision, and the output depth maps.

5.4.1 Implementation Details

Datasets We conduct experiments on the KITTI and NYUv2 depth datasets. KITTI
(Geiger et al. (2012)) consists of 22,600 calibrated stereo video pairs captured by a car
driving around a city in Germany. Models are evaluated using the Eigen split (Eigen and
Fergus (2015)) using corresponding LiDAR point clouds; see e.g. Godard et al. (2017)
for details. NYUv2 (Silberman et al. (2012)) consists of RGBD frames captured with a
Kinect sensor. There are 120K raw frames collected by scanning various indoor scenes.
As in DenseDepth (Alhashim and Wonka (2018)), we use a 50K samples subset of the
full dataset where depth is inpainted using Levin et al. (2004) inpainting method. The
NYUv2 evaluation is run on the 654 test frames introduced by Eigen et al. (2014).

Models To demonstrate the efficiency of our method, we choose two models for
experiments on the NYUv2 and KITTI datasets. Both models are implemented using
Pytorch and use a compatible implementation of IDWT (Cotter (2019)).

For KITTI, we choose the weakly-supervised Depth Hints (Watson et al. (2019))
method, which adds Semi Global Matching (Hirschmuller (2005, 2007)) supervision to
the self-supervised Monodepth2 (Godard et al. (2019)), without requiring Lidar depth
supervision. At each scale s of the Monodepth2 decoder there is a layer which outputs a
one-channel disparity. We replace this layer at each scale with a 3-channel output layer
to predict {LHs, HLs, HHs}. While our baseline consumes decoder feature maps at scales
[1/16, 1/8, 1/4, 1/2, 1], we only need to keep the four scales [1/16, 1/8, 1/4, 1/2], as
the IDWT outputs disparity at 2× resolution. Both our model and baseline are trained
with an Adam optimizer using a learning rate of 10−4, with batch size 12 for 20 epochs.
Unless otherwise specified, our experiments are done with Resnet50-based model trained
with depth hints loss at 320× 1024 resolution.

For NYUv2, we implement a UNet-like baseline similar to DenseDepth Alhashim
and Wonka (2018), and detail its architecture in supplementary material. Similar to
our KITTI experiments, we discard the last layer of the decoder as it is not needed,
and add one extra layer at each scale to predict the wavelet coefficients. Both our
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Fig. 5.4 Analysis of performance loss vs density on KITTI. Using our wavelet represen-
tation, we can drop up to 90% of the wavelet coefficients while suffering a maximum
relative performance loss of less than 1.4%.

model and baseline are trained using an Adam optimizer with standard parameters,
for 20 epochs with batch size 8 and with learning rate 10−4. It is worth noting that
DenseDepth predicts outputs at half the input resolution, but evaluates at full resolution
after bilinearly upsampling.

5.4.2 Efficiency vs. Accuracy Trade-off Analysis

In this section, we study the relation between accuracy, sparsity, and efficiency of Wavelet-
MonoDepth. For each set of experiments, we compare our method to an equivalently
trained model without wavelets. We first study how wavelets contribute to high-frequency
details, then show that they are sparse. Finally, we discuss how we trade off accuracy
against efficiency by varying the threshold η used in Algorithm 1 to filter out close-to-zero
coefficients.

Wavelets enhance high-frequency details. As mentioned in Section 5.3.2, the
wavelet representation of depth maps allows us to output depth at different resolutions,
depending on how many levels of coefficients have been computed. Tables 5.1 and 5.2
demonstrate evaluation scores for depth maps produced at different levels of wavelet
decomposition on the KITTI and NYUv2 datasets respectively. As can be seen, most of
the signal is captured in low-frequency estimates of the depth map at the lowest resolution.
This confirms previous works observations (Chen et al. (2019a); Eigen and Fergus (2015))
that a coarse estimate of depth is sufficient to capture the global geometry of the scene.
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Fig. 5.5 Analysis of performance loss vs density on NYUv2. Using our wavelet
representation, we can drop up to 95% of the wavelet coefficients while suffering a
maximum relative performance loss of less than 0.2%.
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Abs Rel in red, and δ1 in green). We show here that we can reduce the computation
by more than half while still remaining on par with our baseline.
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Fig. 5.7 Qualitative results on wavelet representation of depth maps. When using
only a subset of wavelet scales, we run the inverse wavelet transform up to the
highest scale with those coefficients, then perform a bilinear upsampling up to the full
resolution. For each experiment, the bottom line shows the ℓ1 error map between the
considered depth maps and the depth map reconstructed with the complete (dense)
set of predicted wavelet coefficients, which shows that wavelets contribute to refining
details.
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Activated HF AbsRel SqRel R Rlog δ1 δ2 δ3

LL only 0.104 0.668 4.415 0.179 0.878 0.962 0.985
[3] 0.097 0.659 4.321 0.177 0.887 0.964 0.984
[3, 2] 0.096 0.679 4.333 0.179 0.890 0.963 0.983
[3, 2, 1] 0.096 0.702 4.366 0.180 0.891 0.963 0.983
[3, 2, 1, 0] 0.097 0.714 4.386 0.181 0.891 0.963 0.983

Table 5.1 Ablation study on high frequency coefficients on KITTI. While most of the
relevant depth information is captured by the low-frequency estimate, predicting
higher frequency coefficients increases accuracy. Results are evaluated without
post-processing.

Activated HF Depth Accuracy Occ. Boundaries
AbsRel RMSE log10 δ1 δ2 δ3 ϵacc ϵcomp

LL only 0.1281 0.5549 0.0548 0.8419 0.9674 0.9915 8.3672 9.8552
[3] 0.1264 0.5517 0.0543 0.8446 0.9680 0.9917 3.3945 8.7933
[3, 2] 0.1259 0.5512 0.0542 0.8451 0.9682 0.9917 2.1259 7.6702
[3, 2, 1] 0.1258 0.5515 0.0542 0.8451 0.9681 0.9917 1.8070 7.1073

Table 5.2 Ablation study on high frequency coefficients on NYU. While most of the
relevant depth information is captured by the low-frequency estimate, predicting
higher frequency coefficients increases depth and occlusion boundaries accuracy. We
evaluate occlusion boundary quality using metrics from Koch et al. (2018, 2020) and
the NYU-OC++ dataset (Ramamonjisoa et al. (2020); Ramamonjisoa and Lepetit
(2019)).

Using more wavelet levels adds more high-frequency details to the depth map, yielding
sharper results. Figure 5.7 shows the sharpening effect of wavelets qualitatively on KITTI
and NYUv2 images.

Wavelets are sparse. Next, we show that high-frequency coefficients are sparse. As
an example, Figure 5.1(b) shows one low-frequency and three high-frequency coefficient
maps for a given depth map. We observe that the high-frequency maps have non-zero
values near depth edges. More wavelet predictions can be found in supplementary. As
depth edges are sparse, high-frequency coefficients at only a few pixel locations are
necessary to produce high-accuracy depth maps.

Trading off accuracy against efficiency using sparsity. After training our network
with standard convolutions, these are replaced with sparse ones as in Figure 5.3 and
Algorithm 1. Varying the threshold value η allows us to vary the sparsity level ψ in
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Equation (5.3), and consequently to trade off accuracy against complexity. Because
wavelets are sparse, we can compute them only at a very small number of pixel locations
and suffer a minimal loss in depth accuracy. Figures 5.4 and 5.5 show relative score
changes with varying sparsity threshold on KITTI and NYU datasets respectively. Note
that a fixed value of η produces different sparsity levels depending on the content of an
image, so we also plot standard deviation of sparsity levels for each η value. Figure 5.4
indicates that computing the wavelet coefficients at only 10 percent of pixel locations
results in a relative loss in scores of less than 1.4% for KITTI images. Similarly, Figure 5.5
shows that we can compute wavelet coefficients at only 5 percent of pixel locations while
suffering a loss in scores of less than 0.20% for NYU images.

Finally, we demonstrate how sparsity of high-frequency coefficient maps can be
exploited for efficiency gains in the decoder. Figure 5.6 shows Abs Rel and δ1 scores for
varying η used during prediction. As can be seen, the score change is minimal when using
half multiply-add operations in the decoder and the performance is comparable to SOTA
methods using only a third of multiply-add operations. Note that biggest efficiency gains
are obtained at higher resolution, as sparsity increases with resolution.

5.4.3 KITTI results

We summarize our results on the KITTI dataset in Table 5.3. Here we show that our
method, which simply replaces depth or disparity predictions with wavelet predictions,
can be applied to a wide range of single image depth estimation models and losses.
In each section of the table, the off-the-shelf model numbers are reported, together
with numbers from a model trained with our wavelet formulation. For example, we
demonstrate that wavelets can be used in self-supervised depth estimation frameworks
such as Monodepth2 (Godard et al. (2019)), as well as its weakly-supervised extension
Depth Hints (Watson et al. (2019)). We note that we achieve our best results when using
Depth Hints and high-resolution input images. This is not surprising, as supervision from
SGM should give better scores, but more importantly using high resolution inputs and
outputs allows for more sparsification, as edge pixels become sparser as resolution grows.
Importantly, we show overall that replacing fully convolutional layers with wavelets gives
models with comparable performance to the off-the-shelf, non-wavelet baselines. We
show qualitative results from KITTI in Figure 5.7 (left).
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Improving the Efficiency of Monocular Depth Estimation using Wavelets
Transforms

Method H × W Abs Rel RMSE log10 δ<1.25 δ<1.252 δ<1.253 ϵacc ϵcomp

DenseNet baseline 480 × 640 0.1277 0.5479 0.0539 0.8430 0.9681 0.9917 1.7170 7.0638
Ours (last scale sup.) 480 × 640 0.1280 0.5589 0.0546 0.8436 0.9658 0.9908 1.7678 7.1433
Ours 480 × 640 0.1258 0.5515 0.0542 0.8451 0.9681 0.9917 1.8070 7.1073
Ours (η = 0.04) 480 × 640 0.1259 0.5517 0.0543 0.8450 0.9681 0.9917 1.8790 7.0746

Table 5.4 Quantitative results on NYUv2 (Silberman et al. (2012)) We compare our
DenseDepth (Alhashim and Wonka (2018))-inspired baseline to our implementation
with wavelets and with sparsity. All results are evaluated in the Eigen center crop,
without post-processing. As in DenseDepth, our network outputs a 240× 320 depth
map which is then upsampled for evaluation.

5.4.4 NYUv2 results

Scores on NYUv2 are shown in Table 5.4. Our method performs on par with our baseline,
which demonstrates that it is possible to estimate accurate depth and sparse wavelets
without directly supervising the wavelet coefficients, in contrast with Yang et al. (2020).
In Table 5.4, we show that supervising depth only at the last scale performs on par
with our network supervised at all scales, which shows that a full multi-scale wavelet
reconstruction network can be trained end-to-end. Qualitative results from NYUv2 are
shown in Figure 5.7 (right).

5.5 Conclusion
In this work we combine wavelet representation with deep learning for a single-image
depth prediction task. We demonstrate that a neural network can learn to predict wavelet
coefficient maps through supervision of the reconstructed depth map with existing losses.
Our experiments using KITTI and NYUv2 datasets show that we can achieve scores
comparable to SOTA models using similar encoder-decoder neural network architectures
to the baseline models, but with wavelet representations.

We also analyze sparsity of wavelet coefficients and show that sparsified wavelet
coefficient maps can generate high-quality depth maps. Finally, we exploit this sparsity
to reduce multiply-add operations in the decoder network by at least a factor of 2.
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Chapter 6

Reconstructing 3D Scenes as
Complex Sets of Primitives

The work described in this chapter is based on the following publication: MonteBoxFinder:
Detecting and Filtering Primitives to Fit a Noisy Point Cloud, published at ECCV 2022.

Fig. 6.1 Given a noisy 3D scan with missing data, our method extracts many possible cuboids,
and then efficiently selects the subset that fits the scan best. The resulting cuboids
can then be projected onto each camera viewpoint (bottom row), then used as ground
truth to supervise single image cuboid prediction methods.
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Reconstructing 3D Scenes as Complex Sets of Primitives

Abstract

We present MonteBoxFinder, a method that, given a noisy input point cloud, fits cuboids
to the input scene. Our primary contribution is a discrete optimization algorithm that,
from a dense set of initially detected cuboids, is able to efficiently filter good boxes
from the noisy ones. Inspired by recent applications of MCTS to scene understanding
problems, we develop a stochastic algorithm that is, by design, more efficient for our
task. Indeed, the quality of a fit for a cuboid arrangement is invariant to the order in
which the cuboids are added into the scene. We develop several search baselines for our
problem and demonstrate, on the ScanNet dataset, that our approach is more efficient
and precise. Finally, we strongly believe that our core algorithm is very general and that
it could be extended to many other problems in 3D scene understanding.
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6.1 Introduction

6.1 Introduction

Previous chapters (3-4-5) presented ways to improve single image depth estimation
algorithms. While depth maps are a dense representation of 3D from a single view point,
we are also interested in being able to represent a 3D scene with a set of simple geometric
primitives. The latter task is a long-standing computer vision problem (Roberts (1963)).
Solving it would provide a light representation of 3D scenes that is arguably easier
to exploit by many downstream applications than a depth map or a 3D point cloud
for example. But maybe more importantly, this would also demonstrate the ability to
reach a “high-level understanding” of the scene’s geometry, by creating a drastically
simplified representation. The following work presents a first step to single-image cuboid
detection, as reliable cuboids could then prove useful to supervise cuboid estimation from
single image methods, by projecting these cuboids into the original camera views (see
Figure 6.1). Training such methods is left for future work.

In this work, we start from a point cloud of a indoor scene, which can be obtained by
3D reconstruction from images or scanning with an RGB-D camera. Recent works have
considered representing 3D point clouds with primitives (Deprelle et al. (2019); Groueix
et al. (2018); Paschalidou et al. (2019, 2020)); however they consider “ideal 3D input
data”, in the sense that the point cloud is complete and noise-free. By contrast, point
clouds from 3D reconstruction or scans are typically very noisy with missing data, and
robust methods are required to handle this real data.

To be robust to noise and missing data, we propose a discrete optimization-based
method. Our approach does not require any training data, which would be very cumber-
some to create manually. Given a point cloud, we extract a large number of primitives.
While in our experiments we consider only cuboids as our primitives, our approach can
be generalized to other choices of primitives. We rely on a simple ad hoc algorithm (Schn-
abel et al. (2007)) to obtain an initial set of primitives. We expect this algorithm to
generate correct primitives but also many false positives. Our problem then becomes the
identification of the correct primitives while rejecting the incorrect ones, by searching
the subset of primitives that explains the scene point cloud the best.

While the theoretical combinatorics of this search are huge, as they grow exponentially
with the number of extracted primitives, the search is structured by some constraints. For
example two primitives should not intersect. To tackle this problem, we take inspiration
from a recent work on 3D scene understanding (Hampali et al. (2021)). Hampali et al.
(2021) proposes to rely on the Monte Carlo Tree Search (MCTS) algorithm to handle
a similar combinatorial problem to select objects’ 3D models: The MCTS algorithm
is probably best known as the algorithm used by AlphaGo (Silver et al. (2016)). It is
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Reconstructing 3D Scenes as Complex Sets of Primitives

Hill-Climbing 2 iterations of MCTS 2 iterations of our algorithm

Fig. 6.2 Comparative overview The hill-climbing algorithm—simply taking the primitive
that improves the most the objective function— can terminate × quickly as it gets
stuck into a local minimum because of the constraints between primitives. MCTS
as used in Hampali et al. (2021) explores iteratively the solution tree by traversing
blue paths, updating which primitives are the most promising ones, but keeping
the tree structure fixed. At each iteration, our approach also updates (→) which
primitives are the most promising ones, and starts with them. This makes our
approach identify a good solution much faster than MCTS in general. Red circles
represent objective function evaluations. Hill-climbing has to evaluate the complete
objective function each time it considers a primitive, while MCTS and our algorithm
evaluate the objective function only at the end of an iteration when a complete
solution is complete.

typically used to explore the tree of possible moves in the game Go because it scales
particularly well to high combinatorics. Hampali et al. (2021) adapts it to 3D models
selection by considering a move as the selection of a 3D model for one object, and showed
it performs significantly better than the simple hill-climbing algorithm that is sometimes
used for similar problems (Zou et al. (2019)). Another advantage of this approach is
that it does not impose assumptions on the form of the objective function, unlike other
approaches based on graphs, for example Shao et al. (2014).

While exploring the solution tree with MCTS as done in Hampali et al. (2021) is
efficient, we show we can still speed up the search for a solution significantly more.
The tree structure imposes an ordering of the possible 3D models to pick from. Such
sequential structures are necessary when MCTS is applied to games as game moves
depend on the previous ones, but we argue that there is a more efficient alternative in
the case of object detection and selection for scene understanding.

As illustrated in Figure 6.2, MCTS works by performing multiple iterations over the
tree structure, focusing on the most promising moves. The estimate of how much a move
is promising is updated at each iteration. For our problem of primitive selection, we
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6.2 Related Work

propose to also proceed by iteration. Instead of considering a tree search, at the end of
each iteration, we sort the primitives according to how likely they are to belong to the
correct solution. The next iteration will thus evaluate a solution that integrates the most
promising primitives. Our experiments show that this converges much faster to a correct
solution.

To evaluate our approach, we experiment on the ScanNet dataset (Dai et al. (2017a)),
a large and challenging set of indoor 3D RGB-D scans. It contains 3D point clouds of
real scenes, with noisy captures and large missing parts, as some parts were not scanned
and dark or specular materials are not well captured by the RGB-D cameras. We did not
find any previous work working on similar problems, but we adapted other algorithms,
namely a simple hill-climbing approach (Zou et al. (2019)) and the MCTS algorithm of
Hampali et al. (2021) to serve as our baselines for comparison. To do so, we introduce
several metrics to evaluate the fit quality.

Our algorithm is conceptually simple, and can be written in a few lines of pseudo-code.
We believe it is much more general than the cuboid fitting problem. It could first be
extended to other type of primitives, and applied to many other selection problems with
high combinatorics, and could be applied to other 3D scene understanding problems,
for auto-labelling for example. We hope it will inspire other researchers for their own
problems

6.2 Related Work

In this section, we first discuss related work on cuboid fitting, and then on possible
optimisation methods to solve our selection problem.

6.2.1 Cuboid Fitting on Point Clouds

Primitive fitting is a long standing Computer Vision problem. In the section, we
only discuss about methods that operate on point clouds, although there are a large
number of methods that are seeking progress in the field of cuboid fitting from 2D RGB
images (Gupta et al. (2010); Kluger et al. (2021); Roberts (1963)).

Object scale. Sung et al. (2015) leveraged cuboids decompositions to improve 3D
object completion of scans of synthetic objects. Tulsiani et al. (2017) introduced object
abstraction using cuboids on more challenging objects from the Shapenet (Chang et al.
(2015)) dataset. Paschalidou et al. (2019) extended Tulsiani et al. (2017) by using the
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Reconstructing 3D Scenes as Complex Sets of Primitives

more expressive superquadrics to fit 3D objects. However these methods only operate at
the scale of a single objects, on synthetic data, and always assume or are limited to a
moderate number of primitives. Some older work related to us have focused on parsing
an input point cloud as a decomposition into primitives. Li et al. (2011) decompose a real
scan of an object into primitives by extracting a set of primitives with RANSAC, which
they refine by reasoning on relationship between these primitives. However their method
works only on very clean scans, and using object that were built as a set of primitives.
Furthermore, since they reason about interaction between primitives using a graph, the
complexity of there method quickly becomes untractable.

Room-scale cuboid detection. Another class of works has focused on room-scale 3D
point cloud parsing with cuboids. A large number of works focused on detecting object
bounding boxes in 3D scans have recently emerged since the deep learning era (Qi et al.
(2019); Shi et al. (2020); Shi and Rajkumar (2020)). Guo et al. (2020) wrote a great
survey regarding these methods. Contrary to these methods, our method is able to parse
3D scans with cuboids at the granularity level of parts of objects. Jiang and Xiao (2013)
used RGB-D images to fit cuboids to the point cloud obtained by the depth map. In
contrast to us, they operate using single-view images, but also leverage color cues via
superpixels. Shao et al. (2014) also parse depth maps with cuboids. Given an initial set
of cuboids, they build a graph to exploit physical constraints between them to refine
the cuboids arrangement. However, they still require human-in-the-loop for challenging
scenes, and their graph based method limits the number of cuboids that can be retrieved
without exceeding complexity. Our method, in contrast, can deal with number of cuboids
that are an order of magnitude larger.

6.2.2 Solution Search for Scene Understanding

We focus here on scene understanding methods which, like us, do not rely on supervised
training data for complete scenes, even if some of them require training data to recognize
the objects. These methods typically start from a set of possible hypotheses for the
objects present in the scene (similar to the primitives in our case), and choose the correct
ones with some optimization algorithms.

Monte Carlo Markov Chain (MCMC) Andrieu et al. (2003) is a popular algorithm
to select the correct objects in a scene by imposing constraints on their arrangement.
MCMCs can be applied to a parse graph (Chen et al. (2019b); Choi et al. (2013); Huang
et al. (2018b); Zhao and Zhu (2013)) that defines constraints between objects. However,
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6.3 Method

Method Uphill MCTS Ours
Exploratory ✗ ✓ ✓

Stochastic ✗ ✓ ✓

Leverage order invariance ✓ ✗ ✓

Table 6.1 Properties of different solution search methods. Our method leverages all
popular mechanisms for efficient solution search while leveraging the structure of
the problem, which does not require employing tree structures for solution search.

this parse graph needs to be defined manually or learned from manual annotations. Also,
MCMCs typically converge very slowly.

Greedy approaches were also used in previous works (Izadinia et al. (2017)), and
they rely on a hill-climbing method to find the objects’ poses (Izadinia et al. (2017)).
Zou et al. (2019) selects objects using hill-climbing as well by starting from the objects
with the best fits to an RGB-D image. While simple and greedy, this approach can work
well on simple scenes. However, it can easily get stuck on complex situations, as our
experiments show. Lee et al. (2010) uses beam search but this is also an approximation
as it also cuts some hypotheses to speed up the search.

Monte Carlo Tree Search (MCTS) was recently used in Hampali et al. (2021),
where they proposed to use MCTS as an optimization algorithm to choose objects that
explain an RGB-D sequence. Hampali et al. (2021) adapts MCTS by considering the
selection of one object as a possible move in a game. The moves are selected to optimize
an objective function based on the semantic segmentation of the images and the depth
maps. The advantage of this approach is that MCTS can scale to complex scenes, while
optimizing a complex objective function.

Our approach is motivated by Hampali et al. (2021). However, we generate the
primitives in a very different way, but more importantly, we propose a novel optimization
algorithm, which, contrary to MCTS, does not rely on a tree structure, making it is
simpler and significantly more efficient than MCTS, as demonstrated by our experiments.

6.3 Method

In this section, we first describe how we extract a large pool of cuboids from a given 3D
scan. Then, we formalize the selection of the optimal cuboid arrangement. Finally, we
detail the solution we propose.
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Fig. 6.3 Overview of our cuboid generation pipeline. After extracting plane segments
using an off-the-shelf algorithm Schnabel et al. (2007), we construct cuboids around
these segments and pairs of adjacent segments. The result is a dense set of cuboids,
which may contain many false positives.

6.3.1 Generating Cuboid Proposals from Noisy Scans

Figure 6.3 summarizes our cuboid proposal generation pipeline. The goal of this pipeline
is to provide a large pool of cuboids. Some extracted cuboids can be false positives at
this stage. The correct subset of cuboids will be selected by the next stage. In this
way, we can be robust to noise and missing data in the 3D scan. Our pipeline can be
divided in 3 steps: (1) we first extract plane segments; (2) we construct cuboids from
pairs of plane segments; (3) we also construct thin cuboids by fitting a 3D bounding box
to the each plane segment individually. These thin cuboids allow us to represent planar
surfaces as well in the final representation. On average, we obtain 880 cuboids and 174
thin cuboids per scene.

Extracting planes segments. We use Efficient-RANSAC by Schnabel et al. (2007)
to extract 3D planes from the input point cloud. Efficient-RANSAC identifies and
returns planar connected components made of 3D points. It is controlled by three
hyperparameters: a threshold on the plane-to-point distance to count the inliers, a
threshold on the cosine-similarity between normals to points, and a connectivity radius.
We use the same hyperparameters for all the scenes in ScanNet, although we could run
RANSAC multiple times with various geometric parameters in order to adapt to various
types of noise, and still be able to efficiently filter out false positives.

Constructing boxes from pairs of planes. Given a set of planes segments {πi =
(Xi,N i)}, where a plane segment π is represented as a point cloud X and its fitted plane
normal N , we construct bounding boxes from all pairs of planes (πA, πB) that satisfy
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6.3 Method

two criteria, alignment and proximity. Alignment means that the two normals should
be orthogonal or co-linear. Proximity enforces planes segments to have at least one
connected component in 3D. We then employ two Gram-Schmidt ortho-normalizations
to obtain the frame coordinate of two bounding boxes, which are computed to enclose
XA ∪XB. More details can be found in the supplementary material.

Fitting 3D bounding boxes to 3D plane segments. Since we want our method
to also retrieve thin objects that may not have compatible neighbors, we therefore fit
a 3D oriented bounding box to each plane segment’s point cloud X, using the efficient
“Oriented Bounding Box” method from Chang et al. (2011).1

6.3.2 The Cuboids Arrangement Search Problem

We now want to select a subset S ′ of S, the set of cuboids generated in Section 6.3.1,
which fits well the input point cloud X of the scene. The cuboids in S ′ should not
mutually intersect to ensure a minimal representation of this scene.

To solve this problem, we consider (1) an objective function ℓ, defined in Algorithm 2,
which will guide the search towards the best solution, and (2) a search algorithm such
as the baselines described in Section 6.3.3, that should be designed to converge to the
best solution as efficiently as possible. To better present the algorithms, we introduce a
Cuboid Class, which we present first.

Cuboid Class. We define a Cuboid class to instantiate cuboids for our solution search
algorithms. It is described by its faces normals and its 8 corners, yielding a surface
mesh from which we can sample 3D points. Other attributes can be added to a Cuboid ,
depending on the needs of a particular algorithm, e.g. the number of times a Cuboid s
has been used in a solution can be denoted as s.n1.

To enforce constraints between cuboids, we need to test if the intersection between
two cuboids is small enough. We define this criterion using a variation of the mea-
sure of a Intersection-over-Union criterion, and provide its pseudo-code in Supp Mat.
isCompatible(s1, s2, η) measures the ratio between the volume vol(s1 ∩ s2) of the inter-
section between both cuboids s1 and s2, and the minimum of the volumes of each cuboid
vol(s1) and vol(s2). In practice, we approximate these volumes by uniformly randomly
sampling points from both cuboids and count the points that are inside both s1 and
s2. The volume ratio is then compared to a threshold η, to decide if the two Cuboid

1We used CGAL’s (The CGAL Project (2022)) implementation of Schnabel et al. (2007) and Chang
et al. (2011).
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Algorithm 2: Loss function
procedure evalObjFunc(S, Y )

Input : Set of cuboids S, target point cloud Y and its normals N (Y );
(X,N (X)) ← sample_mesh_surface(S);
ℓc := ChamferDistance(X → Y ) + ChamferDistance(Y → X);
ℓn :=
CosineDissimilarity(N (X)→N (Y )) + CosineDissimilarity(N (Y )→N (X));

return ℓc · (1 + 0.25 · exp(ℓn));

intersect. While this test can be performed “on the fly” when searching solutions, we
pre-compute the pair-wise Cuboid compatibility matrix in advance for efficiency.

Objective Function We aim to minimize the distance between our cuboids and the
target point cloud, while keeping its normals aligned with the pointcloud’s normals. We
use Chamfer Distance (CD) and Cosine Dissimilarity, i.e. the complement of Cosine
Similarity, as our distance and normals deviation losses, yielding full objective function is
described in Algorithm 2. In the loss, we truncate CD to τ = 0.1, and normalize it by τ .

6.3.3 Solution Search Baseline Algorithms

6.3.3.1 Hill-Climbing Algorithm.

The first baseline for our discrete optimization problem is the Hill-Climbing algo-
rithm (Skiena (2010)), a naive greedy descent algorithm. This algorithm constructs a
solution iteratively, where at each iteration, it comprehensively searches for the proposal
that best improves the loss function of a solution SF , while leaving the solution valid
i.e. with no incompatibilities. If no proposal is available nor can improve the objective
function, the algorithm stops ×. The pseudo code for Hill-Climbing is given in the
supplementary material.

6.3.3.2 MCTS Algorithm.

We first describe here the MCTS algorithm, as it inspired our algorithm. Browne et al.
(2012) provides a full description of the MCTS algorithm. We present it in the context
of our cuboid selection problem, following what was done in Hampali et al. (2021) for 3D
model selection. Hampali et al. (2021) provides a pseudo code for MCTS.

MCTS is able to efficiently explore the large trees that result from the high combi-
natorics of some games such as Go. As represented in Figure 6.2, the nodes of the tree
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correspond to possible states, and the branches to possible moves. MCTS does not build
explicitly the entire tree—this would not be tractable anyway—, but only a portion of it,
starting from the root at the top.

⇝Simulation step. Nodes are thus created progressively at each iteration. To decide
which nodes should be created, the existing nodes contain in addition to a state an
estimate V of the value of this state. To initialize V , MCTS uses a simulation step
denoted ⇝ in Figure 6.2, which explores randomly the rest of the tree until reaching a
leaf without having to build the tree explicitly. For games, reaching a leaf corresponds to
either winning or loosing the game. If the game is won, V should be large; if the game is
lost, V should be small.

Adaptation to our problem. Figure 6.2 shows that in our case, a state in a node is
the set of primitives that have been selected so far. A “move” corresponds to adding a
primitive to the selected primitives. The children of a node contain primitives that are
mutually incompatible, and compatible with the primitives in the ancestor nodes: Such
structure ensures that every path in the tree represents a valid solution. In this paper,
we consider two possibilities: A varying number of children as in Hampali et al. (2021)
and MCTS-Binary, a binary tree version of MCTS: In MCTS-Binary, a node has two
children, corresponding to selecting or skipping a primitive. More details are provided in
the supplementary material.

×“Reaching a leaf” happens when no more primitives can be added, because we ran
out of primitives or because all the remaining primitives intersect with the primitives
already selected. The value V of the new nodes are initialized after the simulation step
by evaluating the objective function for the set of primitives for the leaf. We take this
objective function as a fitness measure between the primitives and the point cloud. Note
that this function does not need to have special properties, nor do we need heuristics to
guide the tree search.

Selection and expansion steps. At each iteration, MCTS traverses the tree starting
from the root node, often using the standard Upper Confidence Bound (UCB) crite-
rion Browne et al. (2012) to choose which branch to follow. A high UCB score for a node
means that it is more likely to be part of the correct solution. This criterion depends
on the values V stored in the nodes and balances exploitation and exploration: When
at a node N , we continue with its child node N ′ that maximizes the UCB score, which
depends on the number of times N and N ′ have been visited so far. This criterion allows
MCTS to balance exploration and exploitation.
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At some point of this traversal procedure, we will encounter a node with a child
node N that has not been created yet, we add the child node to the tree. We use the
simulation step described above to initialize V (N) and initialize n(N) to 1.

→Update step. MCTS also uses the value V (N) to improve the value estimate of
each node N ′ visited during the tree traversal. Different ways to do so are possible, and
we found that for our problem, it is better to take the maximum between the current
estimate V (N ′) and V (N): V (N ′)← max(V (N ′), V (N)). n(N ′), the number of times
the node was visited is also incremented.

Final solution. After a chosen number of iterations, MCTS stops. For our problem,
we obtain a set of primitives by doing a tree traversal starting from the root node and
following the nodes with the highest values V .

6.3.4 Our algorithm: MonteBoxFinder

We first review the issues when using MCTS for our problem, then give an overview of
our algorithm and its components. Finally, we provide some details for each component.

6.3.4.1 Moving from MCTS.

Our primitives selection algorithm is inspired by MCTS, and it is motivated by two
observations that show that MCTS is not optimal for our selection problem:

• the order we select the primitives does not matter. However, MCTS keeps growing
its tree without modifying the nodes already created. This implies that if a primitive
appears at the top of the tree but does not actually belong to the correct solution,
it will slow down the convergence of MCTS towards this solution.

• if a node corresponding to adding some primitive P has a high value V , the node
corresponding to not keeping P should have a low value, and vice versa. There is
no mechanism in MCTS as used in Hampali et al. (2021) to ensure this. This is
unfortunate as one iteration could be used to update more nodes than only the
visited nodes.

6.3.4.2 Overview.

We give an overview of our algorithm in Algorithm 3. To exploit the two observations
described above, we do not use a tree structure. Instead, we use the list of primitives
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6.3 Method

Algorithm 3: Our MonteBoxFinder Algorithm
Result: Set of selected Cuboid SF

Input : Set of available Cuboid S;
Number of evaluations Neval ;
Threshold η ;
Current solution Sc := ∅ ;
Final solution SF := ∅;
Current best loss ℓ∗ := +∞ ;
procedure InitializeNodes(S)

Input : Pool of Cuboid S;
S ← Shuffle(s ∈ S);
Sc ←Simulate(S, η);
ℓ← evalObjFunc(Sc);
// Update ALL Cuboid states
S ← Update(S, Sc, ℓ);
return S

// MonteBoxFinder Core Algorithm
S ← InitializeNodes(S);
for ( iter=0; iter ̸= Neval; iter++ ) {
S ← Sorted↓(s ∈ S, s 7→ s.µ1);
Sc ←Simulate(S, η);
ℓ← evalObjFunc(Sc);
// Update ALL Cuboid states
S ← Update(S, Sc, ℓ);
if ℓ < ℓ∗ then

ℓ∗ ← ℓ;
SF ← Sc;

}
return Best solution SF ;

which we sort at each iteration, by exploiting our current estimate for each primitive
to be part of the current solution. Our method progressively estimates and exploits a
prior probability P for a primitive to belong to the solution based on our adaptation
of the Upper Bounding Criterion (UCB) that balances the exploitation vs. exploration
trade-off.

6.3.4.3 Initialization.

We initialize the run with a few random traversals in order to initialize the states of each
Cuboid proposal.

6.3.4.4 Simulate. (⇝)

At every iteration we first sort primitives SA according to their confidence value s.µ1 in
descending order, hence more confident primitives will be more likely selected. Afterwards,
we perform the simulation that pops primitives s from sorted SA. With probability
Pϵ = 0.3, we perform exploitation and add s to the list of selected proposals SF if
(s.µ1 > s.µ0). Otherwise, we perform exploration and add s to SF if (s.µ1 < s.µ0).
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Algorithm 4: Simulate(⇝) and Update(→) functions of our algorithm
Input : Exploration probability Pϵ;
Threshold δ;
procedure Simulate(SA, η)

Input : Pool of available Cuboid SA,
threshold η

Output SF := ∅;
for ( s ∈ SA ) {

if s.isCompatible(SF , η) then
ϵ := uniform_sample([0, 1]);
if (ϵ < Pϵ) then

if (s.µ1 > s.µ0) then
SF .add(s)

else
if (s.µ1 < s.µ0) then
SF .add(s)

end
}
return SF

procedure Update(S, SF , ℓ)
Input : Full pool of Cuboid S;
Selected set of Cuboid SF ⊂ S;
Solution score ℓ;
for ( s ∈ S ) {

if s ∈ SF then
// Update best ℓ when kept
s.ℓ1 ← min(ℓ, s.ℓ1)
s.n1 ← s.n1 + 1
s.µ1 ← −s.ℓ1 +

√
ln(1/δ)/s.n1

else
// Update best ℓ when

rejected
s.ℓ0 ← min(ℓ, s.ℓ0)
s.n0 ← s.n0 + 1
s.µ0 ← −s.ℓ0 +

√
ln(1/δ)/s.n0

end
}
return S

6.3.4.5 UCB Criterion.

We modified the UCB score to fit our algorithm, which does not rely on a tree structure.
We use this modified term to estimate two confidence measures s.µ0 and s.µ1 reflecting
how much a cuboid s is likely to belong to the correct solution or not:

s.µ0 = −s.ℓ0 +
√

ln(1/δ)/s.n0, s.µ1 = −s.ℓ1 +
√

ln(1/δ)/s.n1, (6.1)

where s.ρ0 and s.ρ1 are the minimum loss values reached when rejecting and accepting
primitive s, s.n0 and s.n1 denote the number of times that the primitive were rejected
and selected respectively, and δ = 0.03 is a hyperparameter modifying the exploration
rate, smaller δ implies larger exploration.

6.3.4.6 Update (→)

In comparison with the update step of MCTS described in 6.3.3, our MonteBoxFinder
algorithm updates all primitives states after an iteration. If a primitive s was selected,
we update its s.ℓ1, s.µ1, and s.n1 values based on the obtained loss ℓ and our adapted
UCB criterion, otherwise we update its s.ℓ0, s.n0, and s.µ0 values instead. In the next
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iteration during simulation, we use these value to determine whether to select or reject
the primitive.

6.4 Experiments

6.4.1 Dataset

ScanNet (Dai et al. (2017a)) is a dataset that contains noisy 3D scans of 1613 indoor
scenes. We evaluate our method on the full dataset, where for each scene, we used the
decimated and cleaned point clouds provided in ScanNet both for the box proposals
generation step and for the solution search step.

6.4.2 Metrics

6.4.2.1 Fitness measures.

The most direct way to measure the quality of a solution is to measure the loss function
ℓ described in Algorithm 2. Indeed, we want to evaluate the ability of our algorithm to
search the solution space. Additionally, we measure a bi-directional precision metric Prτ .
Prτ is computed as the proportion of points successfully matched between the “synthetic”
point cloud X, generated by sampling 3D points from retrieved 3D cuboid meshes, and
the 3D scan Y . A point is successfully matched if its Chamfer Distance (CD)2 value is
below a threshold τ = 0.2:

Prτ = |{x ∈ X s.t. CD[x→ Y ] ≤ τ}|
2|X| + |{y ∈ Y s.t. CD[y → X] ≤ τ}|

2|Y | . (6.2)

6.4.2.2 Efficiency measure.

The motivation for developing our approach compared to Hampali et al. (2021) is to
converge faster towards a good solution. In order to measure efficiency of a given method,
we consider the curve of the objective function of the best found solution as a function
of the iteration, as the ones showed in Figure 6.4. We use the Area Under the Curve
(AUC) given a maximum budget of iterations Neval: the lower the AUC, the faster the
convergence. We also report AUC (norm), which normalizes the AUC values of the
different between 0 and 1, with 0 being the value of the best performing method and 1
being the value of the worst performing method.

2In this case, we do not apply the normalization discussed in Algorithm 2
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Fig. 6.4 Value of the objective function for the best found solution as a function of
the number of evaluations for Hill-Climbing, MCTS, MCTS-Binary, and
our MonteBoxFinder (MBF) method. Hill-Climbing requires many evaluations
before finding a reasonable solution, which explains the flat curve at the beginning. It
also gets stuck into a local minimum and stops improving. In this experiment, we give
the number of evaluations Hill-Climbing used before getting stuck to the three other
methods. Our method converges significantly faster than the other methods towards
a better solution. Similar graphs for other scenes are provided in the supplementary
material.

6.4.2.3 Complexity measure.

We observe that bad solutions tend to contain a small number of selected primitives.
This is because it is challenging to find a large subset of cuboids with no intersection
between any pair of cuboids. Hence we also report the number of cuboids in the retrieved
solutions.

6.4.3 Evaluation Protocol

For all scenes from the ScanNet dataset (Dai et al. (2017a)), we run the Hill-Climbing
method, and obtain its solution SHC. We then consider the number Neval of evaluations
of the objective that were required by Hill-Climbing to construct this solution. We then
run MCTS and our algorithm using the same number of evaluations Neval. This ensures
the three methods are compared fairly, as they are given the same evaluation budget,
which is by far the most costly step of all three algorithms.

6.4.4 Quantitative results

Table 6.2 provides the results of our experimental comparisons. As expected, the Hill-
Climbing algorithm performs worst: By greedily selecting proposals that minimize the
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Loss↓ Precision ↑ AUC ↓ AUC
(norm) ↓

Avg. #
Cuboids ↑

Hill-Climbing 0.383 0.928 0.871 0.998 12
MCTS 0.247 0.966 0.427 0.225 28
MCTS-Binary 0.292 0.961 0.370 0.102 35
Ours (MonteBoxFinder) 0.201 0.982 0.322 0.018 37

Table 6.2 Comparison between our method and our baselines. Our method outperforms
all baselines on all metrics computed on ScanNet. We retrieve a more accurate fit,
while being able to find more non-intersecting cuboids.

loss, it gets stuck to local minimum solutions consisting of large proposals. It can also
provide a complete solution only once it converged, while MCTS, MCTS-Binary and our
method can provide a good solution much faster. The table also shows that our algorithm
converges significantly faster than MCTS and MCTS-Binary, which was the desired goal.
Interestingly, MCTS-Binary performs better than the original MCTS method of Hampali
et al. (2021). In the supplementary material, we discuss in details the links between our
method and MCTS-Binary.

6.4.5 Qualitative Results

Figure 6.5 shows qualitative results. Hill-climbing focuses on large cuboids to describe
the scene. MCTS often selects many true positives but misses some of the proposals
because it cannot explore deeper levels of the tree for the given iteration budget. In
contrast, our algorithm is able to successfully retrieve cuboid primitives for objects of
different sizes, such as walls, floors, and furniture.

6.5 Conclusion

We proposed a method for efficiently and robustly finding a set of cuboids that fits well
a 3D point cloud, even under noise and missing data. Our algorithm is not restricted to
cuboids, and could consider other primitives. Only a procedure to identify the primitives
is required, even if it generates many false positives as our algorithm can reject them.
Moreover, the output of our algorithm could be used to generate labeled data for training
a deep architecture for fast inference. This could be done to predict cuboids from point
clouds, but also from RGB-D images, since the 3D scans of ScanNet were created from
RGB-D images By simply reprojecting the cuboids retrieved by our method, we can obtain
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Hill-climbing MCTS-Binary MonteBoxFinder (ours)

Fig. 6.5 Qualitative results. Hill-climbing often selects large cuboids that span across
multiple different objects (first, third, fourth rows, and fifth rows). MCTS does better,
but does not sufficiently explore the solution space (second row). In contrast, our
algorithm outperforms both methods and is able to successfully reconstruct many
chairs in first, third, and fifth rows, and bedroom furniture in fourth row. More
qualitative results are provided in the supplementary material.
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RGB-D images annotated with the visible cuboids. This concludes our contributions to
3D scene reconstruction from images, which we will discuss in the next and final chapter.
Acknowledgments We would like to thank Pierre-Alain Langlois for his suggestions and
help with CGAL. We thank Gul Varol, Van Nguyen Nguyen and Georgy Ponimatkin for
our helpful discussions. This project has received funding from the CHISTERA IPALM
project.
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Chapter 7

Conclusion

In this chapter, we summarize the contributions presented in the thesis. We then discuss
a few research directions opened by this work.

7.1 Summary of contributions

This thesis led to the following contributions in monocular depth estimation:

• Reconstructing 3D scenes from images is a difficult problem. In the case where
only a single color image can be used to infer depth, many challenges arise. Most
modern methods therefore employ deep learning to learn to predict good depth maps
despite the ill-posedness of the task. We saw in Chapter 3 that most monocular
depth estimation methods that focus on overall accuracy lack precision around
depth edges. We therefore introduced a geometric constraints at train time in a
multi-task learning setup that enforce consistency between surface normals, depth,
and occlusion boundaries. This yielded significant improvement in sharpness and
accuracy of depth edges, with minimal accuracy loss. We also introduced manual
test annotations of occlusion boundaries for the popular NYUv2 dataset, enabling
simultaneous evaluation of depth and occlusion boundaries accuracies.

• In Chapter 4, we proposed a new method that enables prediction of sharp depth
discontinuities using a new class of networks. Classical fully convolutional networks
lack ability to produce strong discontinuities in regression tasks. With the help
of Spatial Transformer Networks (Jaderberg et al. (2015)) we designed a depth
refinement method that is able to sharpen depth maps around depth edges for all
state-of-the-art monocular depth estimation works we considered, without reducing
their global accuracy.
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• In Chapter 5, we seeked to improve an often overlooked aspect of depth estimation
with neural networks: efficiency. Our wavelet-based method exploits the struc-
ture of natural depth maps, which are typically piece-wise smooth, with strong
discontinuities around occlusion boundaries. Since it is end-to-end differentiable,
our method can learn to perform depth estimation through wavelet coefficients
estimation, without requiring direct supervision over their values. We finally showed
that through a simple tunable parameter, one can choose to trade-off efficiency for
accuracy, and still remain competitive in the high efficiency regime.

As a first step to explore primitive decompositions for 3D reconstruction from a single
image, in Chapter 6 we developed:

• a method that reconstructs a scene as an arrangement of 3D cuboids from a noisy
point cloud obtained by scanning a scene with an RGB-D camera

• a simple modification of the Monte Carlo Tree Search algorithm applied to scene re-
composition (Hampali et al. (2021)) to enable efficient and accurate reconstruction
as an arrangement of cuboids, given a very large pool of cuboid proposals.

7.2 Future works

In this thesis, we first developed methods to improve the quality of depth maps around
occlusion boundaries. This was performed through usage of synthetic data as well
as geometric constraints in Chapter 3, and using displacement fields in Chapter 4.
While yielding compelling results in depth edge quality, both these works trained neural
networks to solve a regression task. However, dense classification tasks such as semantic
segmentation or foreground/background segmentation often yield crisp, and accurate
boundaries. Previous work such as DORN by Fu et al. (2018) exploited this paradigm to
improve depth edges, however they produce over-discretized depth maps. An alternative
version of our displacement fields could then be to locally classify foreground and
background around depth edges in order to impose strong depth gradients.

In Chapter 5, we introduced an efficient method for monocular depth estimation
which leverages the sparsity of wavelets when representing piece-wise smooth signals,
such as depth maps. One limitation of this work is that this efficiency is theoretical as it
is measured in FLOPs and does not translate in direct improvement in speed. In practice,
deep learning frameworks such as Pytorch are optimized for convolutions on GPUs. Sparse
convolutions on the other hand, cannot benefit from such optimizations that happen
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only when convolutions are computed densely. Translating the theoretical efficiency of
WaveletMonodepth into speed improvements would require more optimization on
CPU-like devices, for instance.

Finally in Chapter 6, we explored 3D reconstruction of point clouds using arrangements
of cuboids. Our efficient optimization algorithm, implemented as a variant of MCTS
by Hampali et al. (2021) provides compelling arrangements after convergence. The loss
function used in the optimization problem is global, as it is computed as a variant of
Chamfer Distance. In order to improve the proposed solutions even further, one option
could be to perform local refinements of the cuboids, drawing inspiration from Iterative
Closest Point (ICP), for example. As mentioned in Chapter 6, this work aimed to
generate ground truth data for single-image cuboid decomposition for 3D reconstruction.
Future work could try to train using this data, after applying the necessary pre-processing
steps, such as solving per-view visibility of cuboids for example.
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Appendix A

Additional results on SharpNet

A.1 Synthetic Dataset

To train our network to predict geometrically consistent normals, depth, and occluding
contours, we used the synthetic dataset from PBRS from Zhang et al. (2017). Indeed,
perfect consistency between each output is important to ensure high quality depth maps
at occluding contours, but also to ensure good generalization from synthetic to real
data. We show in Figure. A.1 a sample from the PBRS dataset, as well as our geometric
constraints, which enforce the network to predict outputs consistent with each other,
both with synthetic and real images.

A.2 Training Details

Here we present some details about our training method. Since we are performing
multi-task learning, each task-attached loss is weighted in the global loss term. We found
that learning normals and boundaries first brought the best results. We also present the
data augmentation strategy we used while training.

A.2.1 Data Augmentation

We used the following standard data augmentation to train both on PBRS and NYUv2-
Depth Silberman et al. (2012):

• random scale with scale factor s ∈ [0.5, 2]: the depth map is divided by s and the
z coordinate of the normal map is multiplied by s,
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RGB Depth

  

Normals Instance boundaries

Fig. A.1 A sample of the synthetic PBRS (Zhang et al. (2017)) (left) and geometric constrains
on depth, normals and occluding contours (right).

• random rotation of angle θ ∈ [−6°,+6°]: all corresponding maps are rotated the
camera 2D plane and normals maps are recomputed in the camera coordinates (the
rotation matrix R(θ) ∈ SO(3) is applied on each pixel of rotated normal map)

• random crops of size (320× 320),

• random Gamma adjustment using Torchvision transforms package, using ratio
∈
[
0.15, 1

0.15

]

A.2.2 Training Parameters

We recall the loss function equation:

L = λdLd(D, D̂) + λcLc(C, Ĉ) + λnLn(N , N̂ ) + Ldc(D̂, Ĉ) + Ldn(D̂, N̂ ).

We detail all training steps in Table. A.1. For all experiments, we used polynomial
learning rate decay with power 0.9. We also used weight decay with a decay rate of
1.10−6. At all step, we wait until convergence and pick the model with lowest validation
loss. For finetuning on NYUv2-Depth, we freeze normals and occluding contour decoders.
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Dataset batch size iter size learning rate λd λc λn Ldc Ldn
PBRS 8 3 1.10−2 1 0.01 20 OFF OFF
PBRS 8 3 9.10−3 1 0.005 0.5 ON ON

NYUv2-Depth 8 3 5.10−3 1 0 0 OFF OFF
NYUv2-Depth 8 3 3.10−3 1 0 0 ON ON

Table A.1 Training details for each step of our training method. iter size stands for the
number of batches used per iteration for back-propagation (performed using the
average loss computed from each batch loss. λc values are this low to rescale the
attention loss of Wang et al. (2018a).

Fig. A.2 Illustration of our occlusion-aware virtual object insertion. Top row (left to right):
the original RGB image, the virtual object õ, an object insertion ignoring occlusion.
Bottom row (left to right): our estimated depth map D, the augmented depth map
when using õ, the final result.

A.3 Additional Qualitative Results

We show in Figure. A.3 some results of image augmentations: we augment the images
by adding a virtual object õ in them using both the RGB image and a depth map D

of the scene and a depth map Dõ of the virtual object. This object is inserted with
consideration of occlusions, i.e. we only fill pixels such that Dõ < D with RGB pixels
from the rendered object õ.
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Fig. A.3 More examples of virtual occlusion-aware object insertion using depth maps predicted
by different methods as well as along with the Kinect ground truth depth map from
the original NYUv2-Depth dataset

128



A.3 Additional Qualitative Results

RGB Laina et al.
(2016)

Fu et al.
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Jiao et al.
(2018)

GT
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Fig. A.4 More examples of images from our NYUv2-OC dataset and their associated depth
map estimate for different methods. Edges (in black) were detected using a Canny
edge detector with σ− = 0.03 and σ+ = 0.05. Our manually annotated ground truth
is represented in red.
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Appendix B

Additional results on Displacement
Fields

B.1 Architecture Details

In Fig. B.1, we detail the architecture of our network, which is composed of two encoders,
one for Depth and an optional one for Guidance. We use a single decoder which combines
the respective outputs of the Depth and Guidance decoders using residual blocks and
skip connections. We give full details of each block in the following.

B.1.1 Depth Encoder

Our Depth is a standard encoder with a cascade of four down-convolutions, denoted
D-DownConv. The D-DownConv blocks are composed of a convolution layer with 3x3
kernel, followed by a 2x2 MaxPooling, and a LeakyReLU (Maas et al. (2013)) activation.
The D-DownConv block convolution layers have respectively [32, 64, 128, 256] channels.
They all use batch-normalization, are initialized using Xavier Glorot et al. (2011b)
initialization and a Leaky ReLU activation.

B.1.2 Guidance Encoder

Our Guidance encoder is composed of a cascade four of down-convolutions as in He
et al. (2016b), which we denote G-DownConv. It is identical to the D-DownConv block
described in B.1.1 except that it uses simple ReLU Glorot et al. (2011b) activations. and
batch normalization for the convolution layers. The convolution layers have respectively
[32, 64, 128, 256] channels.
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Fig. B.1 Detailed architecture of our displacement field prediction network. Details on the
Depth and Guidance encoders are provided in Sections B.1.1 and B.1.2 respectively.

B.1.3 Displacement Field Decoder

The displacement field decoder is composed of a cascade of four ResUpConv blocks
detailed in Fig B.1.3.1, and a convolution block OutConv.

B.1.3.1 ResUpConv

The ResUpConv block is the main component of our decoder. It fuses depth and guidance
features at multiple scales using skip connections. The block architecture is detailed in
Fig B.2. Guidance features are refined using a 3x3 residual convolution layer He et al.
(2016b) denoted ResConv3x3. All blocks use batch-normalization, Leaky ReLU Maas
et al. (2013) activation and filters weights are initialized using Xavier initialization.

B.1.3.2 Output layers

The final output block OutConv is composed of two Conv3x3 layers with batch-normalization
and ReLU Glorot et al. (2011b) activation, followed by a simple 3x3 convolution layer
without batch-normalization nor activation. The number of channels of those layers are
respectively 32, 16, and 2. Weights are initialized using Xavier initialization.
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Fig. B.2 Details of the ResUpConv block used in our displacement field decoder.

B.2 Qualitative Results

B.2.1 Comparative Results on 2D Toy Problem

In Fig. B.3, we show qualitative results on the 2D Toy Problem described in Section 3.3
of the main paper. One can see that residual update introduces severe artifacts around
edges, producing large and spread out errors around them. Constrastingly, our proposed
displacement update recovers sharp edges without degrading the rest of the image. To
ensure fair comparison between residual and displacement update methods, identical
CNN architectures were used for this experiment except for the last layer which predicts
a 2-channel output for the displacement field instead of the 1D-channel output residual.

B.2.2 Comparative Results on NYUv2 Using Different MDE
Methods

In Fig B.4, we show qualitative results of our proposed refinement method on different
MDE methods (Eigen et al. (2014); Fu et al. (2018); Jiao et al. (2018); Laina et al. (2016);
Ramamonjisoa and Lepetit (2019); Yin et al. (2019)) evaluated in the main paper. Our
method always improves the sharpness of initial depth map prediction, without degrading
the global depth reconstruction.
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1-a

1-b

2-a

2-b

3-a

3-b

Fig. B.3 Comparison between residual and displacement learning on a toy image sharpening
problem for three examples. A blurred input image Ĩ is fed through a Convolutional
Neural Network which learns to reconstruct the original clean image I. Lines (1,2,3)-a
show from left to right: the input image, samples of the dense predicted displacement
field, refinement result with displacement update, error map. Lines (1,2,3)-b show,
from left to right: the ground truth image, the predicted residual (blue is negative,
red is positive, white is zero), refinement result with residual update, error map.
While introducing artifacts, residual learning also results in a spread out error map
around edges. 134
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Fig. B.4 Refinement results using our method (best seen in color). Each example is represented
on two rows, first row being the original predicted depth and second row being the
refined depth. First column shows the RGB input images and associated ground
truth depth from NYUv2 Silberman et al. (2012). Following columns are refinement
results for different methods we evaluated.
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B.3 More NYUv2-OC++ Samples

In Fig. B.5 we show several examples of our manually annotated 654 images NYUv2-
OC++ dataset, which extends Ramamonjisoa and Lepetit (2019). This dataset is based
on the official test split of the popular NYUv2-Depth (Silberman et al. (2012)) depth
estimation benchmark.
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B.3 More NYUv2-OC++ Samples

Fig. B.5 Samples taken from our fine-grained manually annotated NYUv2-OC++, which
add occlusion boundaries to the popular NYUv2-Depth (Silberman et al. (2012))
benchmark. We annotated the full official 654 images test set of NYUv2-Depth.
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Appendix C

Additional results on
WaveletMonodepth

C.1 Network Architectures and Losses

C.1.1 On direct supervision of wavelet coefficients

The previous work WaveletStereo (Yang et al. (2020)) supervises its wavelet based stereo
matching method with ground truth wavelet coefficients at the different levels of the
decomposition. However, wavelets can only reliably be supervised when ground truth
depth -or disparity- is provided and when it does not contain missing values or high-
frequency noise, as they show on the synthetic SceneFlow (Mayer et al. (2016)) dataset.
The sparsity of ground truth data in the KITTI dataset especially around edges makes it
impossible to estimate reliably ground truth wavelet coefficients. On NYUv2, the noise
in depth maps is also an issue for direct supervision of wavelets, e.g. with creases in
the layout or inaccurate depth edges. This noise also prohibits the use of Semi Global
Matching ground truth for wavelet coefficient supervision.

As we show in our work, supervising the network on wavelet reconstructions allows
us to ignore missing values and be robust to noisy labels.

C.1.2 Experiments on KITTI

Architecture The architecture we use for our experiments is a modification of the
architecture used in Godard et al. (2019), as described in the main paper. In Table C.1,
we set out our decoder architecture in detail.

∗Work done during an internship at Niantic
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Self-supervised losses Our self-supervised losses are as described in Godard et al.
(2019), which we repeat here for completeness. Given a stereo pair of images (IL, IR),
we train our network to predict a depth map DL, pixel-aligned with the left image. We
also assume access to the camera intrinsics K, and the relative camera transformation
between the images in the stereo pair TR→L. We use the network’s current estimate of
depth to synthesise an image IR→L, computed as

IR→L = IR

〈
proj(DL, TR→L, K)

〉
, (C.1)

where proj() are the 2D pixel coordinates obtained by projecting the depths DL into
image IR, and

〈〉
is the sampling operator. We follow standard practice in training the

model under a photometric reconstruction error pe, so our loss becomes

Lp = pe(IL, IR→L). (C.2)

Following Chen et al. (2019c); Godard et al. (2019) etc. we use a weighted sum of SSIM
and L1 losses

pe(Ia, Ib) = α
1− SSIM(Ia, Ib)

2 + (1− α)∥Ia − Ib∥1,

where α = 0.85. We additionally follow Godard et al. (2019) in using the smoothness
loss:

Ls = |∂xd
∗
L| e−|∂xIL| + |∂yd

∗
L| e−|∂yIL|, (C.3)

where d∗
L = dL/dL is the mean-normalized inverse depth for image IL.

When we train on monocular and stereo sequences (‘MS’), we again follow Godard
et al. (2019) — see our main paper for an overview, and Godard et al. (2019) for full
details.

Depth Hints loss When we train with depth hints, we use the proxy loss from Watson
et al. (2019), which we recap here. For stereo training pairs, we compute a proxy depth
map D̃L using semi-global matching Hirschmuller (2005), an off-the-shelf stereo matching
algorithm. We use this to create a second synthesized image

ĨR→L = IR

〈
proj(D̃L, TR→L, K)

〉
, (C.4)
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C.1 Network Architectures and Losses

We decide whether or not to apply a supervised loss using D̃L as ground truth on a
per-pixel basis. We only add this supervised loss for pixels where pe(IL, ĨR→L) is lower
pe(IL, IR→L). The supervised loss term we use is logL1, following Watson et al. (2019).
For experiments where Depth Hints are used for training, we disable the smoothness loss
term.

Additional experiments We additionally tried training using edge-aware sparsity
constraints that penalize non-zero coefficients at non-edge regions, by replacing depth
gradients with wavelets coefficients in Monodepth’s Godard et al. (2017) disparity
smoothness loss, which unfortunately made training unstable. We also tried to supervise
wavelet coefficients using distillation (Aleotti et al. (2021); Hinton et al. (2015)) from a
teacher depth network, which resulted in lower performances.

C.1.3 Experiments on NYUv2

Architecture We adapted our architecture from the PyTorch implementation of
DenseDepth (Alhashim and Wonka (2018)). Our implementation uses a DenseNet161
encoder instead of a DenseNet169, and a standard decoder with up-convolutions. We first
design a baseline that does not use wavelets, using the architecture detailed in Table C.3.
Our wavelet adaptation of that baseline is then detailed in Table C.4. For experiments
reported in the main paper, we follow the DenseDepth strategy and predict outputs
at half the input resolution. Hence, the last level of the depth decoder in Table C.4 is
discarded. For experiments using a light-weight decoder discussed later in Section C.4.4,
which predicts 224× 224 depth maps given a 224× 224 input image, we keep all four
levels of wavelet decomposition.

Supervised losses For our NYU results in the main paper, we supervise depth using
an L1 loss and SSIM:

LD(y, y∗) = λ1ℓ1(y, y∗) (C.5)

where y and y∗ are respectively predicted and ground truth depth and λ1 = 0.1. Similar
to Ramamonjisoa et al. (2020); Ramamonjisoa and Lepetit (2019), we clamp depth
between 0.4 and 10 meters.
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Additional results on WaveletMonodepth

C.2 Scores on Improved KITTI Ground Truth

We report results on the improved KITTI ground truth (Uhrig et al. (2017)) in Ta-
ble C.5. As we saw in the main paper, our method is competitive on scores with
non-wavelets baselines, but as we have shown our wavelet decomposition enables more
efficient predictions.

C.3 Qualitative Results

In this section, we show qualitative results of our method.
In Figures C.3-C.4-C.5 and Figures C.6-C.7-C.8 we first show our sparse prediction

process with corresponding sparse wavelets and masks, on the NYUv2 and KITTI datasets
respectively. While we only need to compute wavelet coefficients in less than 10% of pixel
locations in the decoding process, we show that our wavelets efficiently retain relevant
information. Furthermore, we show that wavelets efficiently detect depth edges and their
orientation. Therefore, future work could make efficient use of our wavelet based depth
estimation method for occlusion boundary detection.

In Figure C.1, we show comparative results between our baseline Depth Hints Watson
et al. (2019) and our wavelet based method.

C.4 Exploring Other Efficiency Tracks

Our paper mainly explores computation reduction in the decoder of a UNet-like architec-
ture. However, this direction is orthogonal and complementary with all other complexity
reduction lines of research.

Our approach is for example complementary with the FastDepth approach, which
consists in reducing the overall complexity of a depth estimation network by compressing
it in many dimensions such as (1) the encoder, (2) the decoder (3) the input resolution.
They argue that the deep network introduced by Laina et al. Laina et al. (2016) suffers
from high complexity, while it could largely be reduced. Here we present a set of
experiments we conducted to explore these different aspects of complexity reduction.

C.4.1 Experiment with a light-weight MobileNetv2 encoder

First, we replace the costly ResNet (He et al. (2016b)) or DenseNet (Huang et al. (2019,
2017a)) backbone encoders with the efficient MobileNetv2 (Sandler et al. (2018)). Indeed,
in contrast with FastDepth, in the main paper, we report results using large encoder
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C.4 Exploring Other Efficiency Tracks

Input image Baseline model Wavelets prediction

Fig. C.1 Comparing wavelet predictions to a baseline model on the KITTI dataset.
On the left we show the input image, and in the middle column we show the prediction
from an off-the-shelf Depth Hints ResNet 50 model Watson et al. (2019). On the
right we show an equivalently trained ResNet 50 model, but with our wavelets in
the decoder. We see that our predictions retain the high quality of the baseline
predictions, but are more efficient to predict.

models (Resnet18/50 or Densenet161). Although this helps achieving better scores, we
show in Table C.6 and Table C.7 that we can reach close to state-of-the-art results even
with a small encoder such as MobileNetv2.

C.4.2 Separable convolutions

Secondly, FastDepth also shows that separable convolutions in their "NNConv" decoder
provides the best score-efficiency trade-off. Since this approach is orthogonal to our
sparsification method, it therefore complements our method and can be used to improve
efficiency. Interestingly, we show in Table C.7 that replacing sparse convolutions with
sparse-depthwise separable convolutions works on par with standard convolutions. This
can be explained by the fact that IDWT is also a separable operation, and therefore
efficiently combines with depthwise separable convolutions.
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Additional results on WaveletMonodepth

C.4.3 Channel pruning

A popular approach to complexity and memory footprint reduction is channel pruning,
which aims at removing some of the unnecessary channel in convolutional layers. Note
that our wavelet enabled sparse convolutions are complementary with channel pruning,
as can be seen in Figure C.2. While channel pruning can, in practice, greatly reduce
both complexity and memory footprint, it requires heavy hyper-parameter search that
we therefore choose to leave for future work.

C

H

W
(a)

C

H

W
(b)

Fig. C.2 Channel pruning (a) vs our sparse computation (b). Our sparse computation enabled
by wavelets is complimentary with the channel pruning strategy to reduce the amount
of computation, as both computation reduction methods operate in orthogonal
dimensions.

C.4.4 Input resolution

Finally, one important factor that makes FastDepth efficient is that it is trained with
224 × 224 inputs, against our 640 × 480 input. While our method is best designed
for higher-resolution regime where sparsity of wavelets is stronger, we still show that
our method achieves decent results even at low-resolution, and report our scores in
Table C.8.
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C.4 Exploring Other Efficiency Tracks

Depth Decoder
layer k s chns res input activation
upconv5 3 1 256 32 econv5 ELU Clevert et al. (2015)
Level 3 coefficients predictions
iconv4 3 1 256 16 ↑upconv5, econv4 ELU
disp4 3 1 1 16 iconv4 Sigmoid
wave4 3 1 3 16 iconv4 Sigmoid
upconv4 3 1 128 16 iconv4 ELU
IDWT3 - - 1 8 disp4, wave4 -
Level 2 coefficients predictions
iconv3 3 1 128 8 ↑upconv4, econv3 ELU
wave3 3 1 3 8 iconv3 Sigmoid
upconv3 3 1 64 8 iconv3 ELU
IDWT2 - - 1 8 IDWT3, wave3 -
Level 1 coefficients predictions
iconv2 3 1 64 4 ↑upconv3, econv2 ELU
wave2 3 1 3 4 iconv2 Sigmoid
upconv2 3 1 32 4 iconv2 ELU
IDWT1 - - 1 8 IDWT2, wave2 -
Level 0 coefficients predictions
iconv1 3 1 32 2 ↑upconv2, econv1 ELU
wave1 3 1 3 2 iconv1 Sigmoid
IDWT0 - - - 1 IDWT1, wave1 -

Table C.1 Our decoder network architecture for experiments on the KITTI Geiger
et al. (2012) dataset using ResNet backbone Here k is the kernel size, s the
stride, chns the number of output channels for each layer, res is the downscaling
factor for each layer relative to the input image, and input corresponds to the
input of each layer where ↑ is a 2× nearest-neighbor upsampling of the layer. disp4
is used produce the low-resolution estimate LL3, while waveJ is used to decode
{LHJ, HLJ, HHJ} at level J. disp4 and waveJ are convolution blocks detailed in
Table C.2.
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Additional results on WaveletMonodepth

disp4 Layer
layer k s chns res input activation
disp4(1) 1 1 chns(iconv5) / 4 16 iconv5 LeakyReLU(0.1) Xu et al. (2015)
disp4(2) 3 1 1 16 disp4-1 Sigmoid

Wavelet Decoding Layer - waveJ
layer k s chns res input activation
waveJ(1+) 1 1 chns(iconv[J+1]) 2J iconv[J+1] LeakyReLU(0.1)
waveJ(2+) 3 1 3 2J waveJ(1+) Sigmoid
waveJ(1-) 1 1 chns(iconv[J+1]) 2J iconv[J+1] LeakyReLU(0.1)
waveJ(2-) 3 1 3 2J waveJ(1-) Sigmoid

substract 1 1 3 2J waveJ(2+), LinearwaveJ(2-)
Table C.2 Architecture of our wavelet decoding layer used for KITTI experiments J

denotes the level of the decoder. disp4 is used produce the low-resolution estimate
LL3, while waveJ is used to decode {LHJ, HLJ, HHJ}.

Depth Decoder
layer k s chns res input activation
upconv5 3 1 1104 32 econv5 Linear
iconv4 3 1 552 16 ↑upconv5, econv4 LeakyReLU(0.2)
iconv3 3 1 276 8 ↑iconv4, econv3 LeakyReLU(0.2)
iconv2 3 1 138 4 ↑iconv3, econv2 LeakyReLU(0.2)
iconv1 3 1 69 2 ↑iconv2, econv1 LeakyReLU(0.2)
outconv0 1 1 1 2 iconv1 Linear

Table C.3 Architecture of our DenseNet baseline decoder for experiments on the
NYUv2 Silberman et al. (2012) dataset Note that as in DenseDepth Alhashim
and Wonka (2018) we produce a depth map at half-resolution. Table adapted from
Godard et al. (2019).
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C.4 Exploring Other Efficiency Tracks

Depth Decoder
layer k s chns res input activation
upconv5 3 1 1104 32 econv5 Linear
Level 3 coefficients predictions
iconv4 3 1 552 16 ↑upconv5, econv4 LeakyReLU(0.2)
disp4 1 1 1 16 upconv5 Linear
wave4 3 1 3 16 upconv5 Linear
IDWT3 - - 1 8 disp4, wave4 -
Level 2 coefficients predictions
iconv3 3 1 276 8 ↑iconv4, econv3 LeakyReLU(0.2)
wave3 3 1 3 8 iconv3 Linear
IDWT2 - - 1 4 IDWT3, wave3 -
Level 1 coefficients predictions
iconv2 3 1 138 4 ↑iconv2, econv2 LeakyReLU(0.2)
wave2 3 1 3 4 iconv2 Linear
IDWT1 - - 1 2 IDWT2, wave2 -

Table C.4 Our decoder network architecture for experiments on the NYUv2 (Sil-
berman et al. (2012)) dataset Note that since like in DenseDepth (Alhashim
and Wonka (2018)) we produce a depth map at half-resolution, we only need to
predict wavelet coefficients until quarter-resolution. Table adapted from Godard
et al. (2019).
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Additional results on WaveletMonodepth

RGB /
Mask[J] DepthJ LHJ HLJ HHJ Error[J]

Fig. C.3 Qualitative results of predicted wavelets coefficients of depth maps on
the NYU dataset (1/3). Our predicted wavelets have two desirable properties:
they are sparse, allowing for efficient computation, and they are accurately located
around depth edges without needing to supervise them. Results are obtained with
η = 0.04. For each block of results, each row shows coefficients and depth maps
obtained at scale J in the decoder from lowest to highest scale (decreasing J), as
well as the (signed-)error between DepthJ and the Depth map obtained with dense
wavelet coefficients at all scales. Error is displayed within range [−1.5m, 1.5m].152



C.4 Exploring Other Efficiency Tracks

RGB /
Mask[J] DepthJ LHJ HLJ HHJ Error[J]

Fig. C.4 Qualitative results of predicted wavelets coefficients of depth maps on
the NYU dataset (2/3). Our predicted wavelets have two desirable properties:
they are sparse, allowing for efficient computation, and they are accurately located
around depth edges without needing to supervise them. Results are obtained with
η = 0.04. For each block of results, each row shows coefficients and depth maps
obtained at scale J in the decoder from lowest to highest scale (decreasing J), as
well as the (signed-)error between DepthJ and the Depth map obtained with dense
wavelet coefficients at all scales. Error is displayed within range [−1.5m, 1.5m].153



Additional results on WaveletMonodepth
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Fig. C.5 Qualitative results of predicted wavelets coefficients of depth maps on
the NYU dataset (3/3). Our predicted wavelets have two desirable properties:
they are sparse, allowing for efficient computation, and they are accurately located
around depth edges without needing to supervise them. Results are obtained with
η = 0.04. For each block of results, each row shows coefficients and depth maps
obtained at scale J in the decoder from lowest to highest scale (decreasing J), as
well as the (signed-)error between DepthJ and the Depth map obtained with dense
wavelet coefficients at all scales. Error is displayed within range [−1.5m, 1.5m].154



C.4 Exploring Other Efficiency Tracks

RGB /
Mask[J] DepthJ LHJ HLJ HHJ Error[J]

Fig. C.6 Qualitative results of predicted wavelets coefficients of depth maps on
the KITTI dataset (1/3). Our predicted wavelets have two desirable properties:
they are sparse, allowing for efficient computation, and they are accurately located
around depth edges without needing to supervise them. Results are obtained with
η = 0.05. For each block of results, each row shows coefficients and depth maps
obtained at scale J in the decoder from lowest to highest scale (decreasing J), as
well as the (signed-)error between DepthJ and the Depth map obtained with dense
wavelet coefficients at all scales. Error is displayed within range [−5m, 5m].
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Fig. C.7 Qualitative results of predicted wavelets coefficients of depth maps on
the KITTI dataset (2/3). Our predicted wavelets have two desirable properties:
they are sparse, allowing for efficient computation, and they are accurately located
around depth edges without needing to supervise them. Results are obtained with
η = 0.05. For each block of results, each row shows coefficients and depth maps
obtained at scale J in the decoder from lowest to highest scale (decreasing J), as
well as the (signed-)error between DepthJ and the Depth map obtained with dense
wavelet coefficients at all scales. Error is displayed within range [−5m, 5m].
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C.4 Exploring Other Efficiency Tracks
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Fig. C.8 Qualitative results of predicted wavelets coefficients of depth maps on
the KITTI dataset (3/3). Our predicted wavelets have two desirable properties:
they are sparse, allowing for efficient computation, and they are accurately located
around depth edges without needing to supervise them. Results are obtained with
η = 0.05. For each block of results, each row shows coefficients and depth maps
obtained at scale J in the decoder from lowest to highest scale (decreasing J), as
well as the (signed-)error between DepthJ and the Depth map obtained with dense
wavelet coefficients at all scales. Error is displayed within range [−5m, 5m].
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Appendix D

Additional results on
MonteBoxFinder

D.1 More on Cuboids

D.1.1 Constructing Cuboids from Pairs of Plane Segments

In this section, we provide more details regarding the construction of cuboids given a
pair of plane segments πA = (XA,NA) and πB = (XB,NB).

D.1.1.1 Checking planes adjacency

We recall that two planes (πA, πB) should be considered for constructing a cuboid only if
they fulfill two requirements: alignment and proximity.

Proximity Two plane segments are adjacent if they verify the proximity criterion, which
requires that they have at least one connected component, such that min(ChamferDistance(XA →
XB),ChamferDistance(XB → XA)) < γ, where γ is a small 3D distance.

Alignment Two plane segments πA = (XA,NA) and πB = (XB,NB) are aligned if they
are either “orthogonal enough” or “co-linear enough”; This corresponds to |NT

ANB| < α

or |NT
ANB| > β, respectively, where α << 1 and β ≲ 1.

In our experiments we set (α, β, γ) = (0.3, 0.7, 0.05m).
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Additional results on MonteBoxFinder

D.1.1.2 Getting cuboids main axes

We can now construct two orthonormal bases BA = (uA,vA,wA) and BB = (uB,vB,wB)
of vectors using Gram-Schmidt orthonormalization with NA or NB as the first vector
alternatively, as shown in Equations (D.1a) and (D.1b).

uA := NA

∥NA∥2

vA := NB −
uT

ANB

∥NB∥2
uA

vA ←
vA

∥vA∥2

wA := uA × vA,

(D.1a)

uB := NB

∥NB∥2

vB := NA −
uT

BNA

∥NA∥2
uB

vB ←
vB

∥vB∥2

wB := uB × vB,

(D.1b)

D.1.1.3 Computing the final cuboids

Based on the two cuboids bases, we compute their sizes by simply projecting all 3D
points X ∈ XA ∪ XB and computing the minimum and maximum of the projections
along each axes of BA and BB. This results in two bounding boxes aligned with BA and
BB respectively, which both enclose all points in XA ∪XB.

D.1.2 Computing Intersections with isCompatible

In order to check compatibility between cuboids s1 and s2, we design a variation of an
Intersection-over-Union criterion, replacing the Union with the volume of the smallest
cuboid between s1 and s2. In order to compute the volume of the intersection, we
approximate volumes by sampling points in both s1 and s2 and counting points that are
inside both. Full details of the procedure used in isCompatible are given in Algorithm 5.
In practice we use an intersection threshold η = 10%.

D.2 More About our Baselines

D.2.1 The Hill-Climbing Algorithm

The Hill-Climbing algorithm Skiena (2010) is a naive greedy descent algorithm that
constructs a solution iteratively, where at each iteration, it comprehensively searches for
the proposal that best improves the objective function of a solution SF , while leaving the
solution valid i.e. with no incompatibilities. If no proposal is available nor can improve
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D.3 More results

the objective function, the algorithm stops ×. A pseudo-code for the Hill-Climbing
algorithm is provided in Algorithm 6.

Sub-optimal solutions In practice, Hill-Climbing leads to sub-optimal solutions where
the algorithm gets stuck into a local minimum. This is because the algorithm first greedily
fits large regions of the scene, therefore employing large Cuboid ; This makes a lot of
potentially good cuboids unavailable, as they would intersect with that large Cuboid .

Sub-optimality of evaluations Hill-climbing has to evaluate the complete objective
function each time it considers a primitive, which is particularly costly at the beginning
of the algorithm where the solution SF is still empty, since no Cuboid candidate would
intersect with it. After selecting a large Cuboid , the set of available, i.e. compatible
cuboids gets dramatically reduced, hence resulting in an acceleration of the search of
Hill-Climbing as shown in Figure 6.4, which however converges to sub-optimal solutions.
In contrast, MCTS and our algorithm evaluate the objective function only at the end of
an iteration when a complete solution is complete.

D.2.2 Binary-Tree MCTS

In our non-binary tree adaptation of MCTS, the search algorithm spends many iterations
on iterating the first levels of the tree which might contain many, mutually incompatible,
primitives. Therefore, this can limit the exploitation capabilities of MCTS as the
algorithm prioritizes nodes that have not been visited yet. In our binary-tree adaptation
of MCTS, every level of the tree corresponds to selecting or skipping a primitive. The
resulting tree structure, hence, trades tree-breadth for tree-depth, which enables better
exploitation. However, due to a large depth of the tree, MCTS does not explore solutions
in the bottom of the tree, hence we observed only minor improvements over its non-binary
adaptation. We argue that our MonteBoxFinder method can be seen as an adaptive
version of binary-tree MCTS. In contrast to binary-tree MCTS, as we show in Figure D.1,
the tree equivalent of our method is able to adapt its structure during the search and
enable better update mechanism leading to faster convergence.

D.3 More results

D.3.1 Qualitative results

We show more qualitative results in Figure D.2.

161



Additional results on MonteBoxFinder

Binary-tree MCTS 2 iterations of our algorithm interpreted with a binary tree

Fig. D.1 We observe that behavior of our algorithm can be interpreted as an adaptive binary-
tree MCTS, even though we do not explicitly define a tree structure. As MCTS
is bound by its tree structure, it will invest iterations into exploring primitives in
the upper part of the tree, even those with low confidence, visualized as colored
bars. Further more, as indicated with colored circles, MCTS models confidences
of same primitives in different parts of the tree independently. Blue circles indicate a
selection path of a single MCTS iteration that fails to extract meaningful proposals
due to aforementioned difficulties. In contrast, our method sorts at each iteration
primitives according to their confidences µ1 and will focus more easily on more
promising primitives. In addition, as indicated by colored circles we only model a
single confidence per primitive. These features enable our method to converge faster
to good solutions in practice.
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D.3 More results

D.3.2 Progress plots

We show more progress plots in Figure D.3.

163



Additional results on MonteBoxFinder

Algorithm 5: The isCompatible function
procedure isCompatible(s1, S, η)

Result: Returns True if Cuboid s1 is compatible with all Cuboid in S
Input : Cuboids Cuboid S, threshold η
if (∀s2 ∈ S, IntersectionOverVolume(s1,s2)> η) then

return False ;
return True ;

procedure IntersectionOverVolume(s1, s2)
Input : Cuboids s1 and s2
Volume of Cuboid s1 V1 := Volume(s1)
Volume of Cuboid s1 V2 := Volume(s2)
Number of samples Nsamples := 5000;
Number of samples from s1 in s2 N1⊂2 := 0;
Number of samples from s2 in s1 N2⊂1 := 0;
// Sample 3D points within both cuboids s1 and s2
X1 := sample_points_inside(s1, N) ;
X2 := sample_points_inside(s2, N) ;
// Count points sampled in s1 which are also inside s2
for ( x ∈ X1 ) {

if x ∈ s2 then
N1⊂2 ← N1⊂2 + 1;

}
// Count points sampled in s2 which are also inside s1
for ( x ∈ X2 ) {

if x ∈ s1 then
N2⊂1 ← N2⊂1 + 1;

}
// Compute approximation of the intersection volume

Intersection := V1 ·N2⊂1 + V2 ·N1⊂2

2Nsamples

;

return Intersection/(min(V1, V2)) ;
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D.3 More results

Algorithm 6: Hill-climbing algorithm
Result: Set of selected Cuboid SF

Input : Set of proposal Cuboid S;
Threshold η ;
Final solution SF := ∅;
Current best loss ℓ∗ := +∞ ;
Current best Cuboid s∗ := ∅;
Set of available Cuboid SA := S;
Evaluations counter Neval := 0;

while SA ̸= ∅ do
s∗ ← ∅;
for ( s ∈ SA ) {

if s.isCompatible(sf , η) then
SF .add(s);
ℓ← evalObjFunc(SF );
Neval ← Neval + 1;
if ℓ < ℓ∗ then

ℓ∗ ← ℓ;
s∗ ← s;

SF .remove(s);
else
SA.remove(s);

end
}
SF .add(s∗);

end
return SF , Neval
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Hill-climbing MCTS-Binary MonteBoxFinder (ours)

Fig. D.2 Qualitative results. Hill-climbing often selects large cuboids that span across
multiple different objects. MCTS does better, but sometimes yields outliers (second
and fifth row). In contrast, our algorithm outperforms both methods and is able to
successfully reconstruct many more details.
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D.3 More results

Fig. D.3 Samples of progress plots. Our method consistently outperforms its baselines, i.e.
the Hill-Climbing algorithm and MCTS, as it converges faster to a better solution.
These plots correspond to the scene examples in Figure D.2
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