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AVA N T- P R O P O S

Quel que soit son sujet, un doctorant commence par énoncer un
problème et interroge la communauté sur les méthodes existantes.
Vient ensuite une question existentielle : Quelle sera ma contribution ?

Avant de plonger dans la complexité d’une description mathéma-
tique abstraite, il n’est en effet pas inutile de s’interroger sur le but
profond de son travail. En ces temps de changements climatiques
irréversibles, l’adage de Rabelais "Science sans conscience n’est que
ruine de l’âme" est plus vrai que jamais. Il pourrait même être com-
plété par la "ruine du monde". Mais d’aucuns (et surtout les jeunes
étudiants) pourraient être pétrifiés par un tel niveau de gravité.

Et si notre travail pouvait faire partie d’une contribution positive
à l’humanité au lieu d’une revendication vigoureuse pour éviter la
ruine et la terreur ?

Au cours de ces trois ans de thèse, seul le parallèle avec l’art m’aura
donné une distance suffisante pour entrevoir une réponse. Dans son
traité sur le contrepoint, Johann Joseph Fux attribue à l’art une qualité
toute particulière : " il imite et perfectionne la nature, mais ne la détruit
jamais". On peut trouver dans cette phrase une façon d’entreprendre
la recherche scientifique avec plus de légèreté, en la mettant au service
de la nature.

Ponctués par ces quelques considérations, les travaux présentés
dans cette thèse résultent d’un travail de trois ans au Centre de Math-
ématiques Appliquées de Mines ParisTech (Université Paris Science et
Lettre). Les recherches ont été menées en collaboration avec le départe-
ment Recherche et Développement de TotalEnergies et financées par la
bourse CIFRE (Convention industrielle de formation par la recherche)
n° 2018/3264. Bien que ce travail n’adresse qu’une petite partie des
enjeux climatiques, j’espère que le lecteur trouvera quelques réponses
pour un futur plus harmonieux.

Pour appréhender ce document, le lecteur se référera à la table
des matières générale. Des tables des matières détaillées sont ensuite
disponibles au début de chaque chapitre. Les symboles mathéma-
tiques, indices et ensembles sont définis pour chaque chapitre de
manière indépendante et sont listés dans des sections ad hoc.
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F O R E W O R D

Regardless its speciality, a doctoral student shall start by stating a
problem and asking the community about the lack to solve it. Then
comes the existential question : what will be my contribution ?

Before diving into the complexity of an abstract mathematical de-
scription, it is indeed not useless to ask ourselves the profound aim of
our work. In times of irreversible climate changes, Rabelais’s adage
"Science without conscience is nothing but the ruin of the soul" is
more true than ever. It might even be completed by the "ruin of the
world". But one (and especially young students) might be ossified by
such a level of solemnity.

What if our work could be a part of a positive contribution to
humankind instead of a vigorous claim to avoid ruin and terror ? A
question that art is undoubtedly able to answer. Art, as referred by
Johann Joseph Fux in his counterpoint treaty, "Imitates and perfects
nature, but never destroys it". One might find in this sentence a lighter
way of undertaking scientific research.

Such considerations has informed this work which results from
the collaboration between the Center for Applied Mathematics of
Mines Paristech (member of the Paris Science et Lettres University)
and the R&D department of TotalEnergies. The research was funded
by TotalEnergies thanks to the CIFRE (Convention industrielle de
formation par la recherche) grant n° 2018/3264. Even though this
scantly contributed to our world’s challenges, I hope that one might
find modest answers for a more sustainable and harmonious future.

When apprehending this document, the reader may refer to the gen-
eral table of contents for an overview of the work and shall find a de-
tailed table of contents at the beginning of each chapter. Mathematical
symbols, indices, and sets are defined for each chapter independently
and listed in ad hoc sections.
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A B S T R A C T

Recent policies and markets evolutions have pushed the industry to
invest in new electricity supply technologies with the aim of reducing
its environmental footprint. In developing countries with unreliable
grids or large off-grid areas, industrial facilities rely on on-site fossil
generation. For economic and safety reasons, the electricity supply fol-
lows strict reliability specifications in terms of power plant availability
and power quality. The integration of a large-scale solar power plant
in off-grid industrial power systems brings new challenges related to
the short-term variability. If fossil generators cannot quickly compen-
sate for the solar power drops, a fast-responding storage system must
take over to guarantee electrical stability. Therefore, the long-term
planning of industrial microgrids must now integrate the relation-
ship between renewable penetration, short-term variability, and power
quality which alters the techno-economic optimization paradigm.

The objective of this thesis is to integrate the short term solar-
photovoltaic (PV) variability in the performance evaluation of optimal
management strategies and in the sizing optimization process of off-
grid industrial power systems.

After a general introduction (Chapter 1), the concept of industrial
micro-grid is defined and the main research challenges for solar power
integration are presented in Chapter 2. In Chapter 3, the modeling
and characterization of large-scale solar power plant variability are
investigated. A methodology is proposed to identify solar irradiance
profiles among a year long dataset allowing fast grid simulations.
In Chapter 4, a simulation framework is proposed to evaluate the
operability and economical performances of an industrial micro-grid.
An energy management optimization layer is coupled with a dynamic
electrical model to reproduce the behavior of the power plant and eval-
uate grid frequency deviations, fuel consumption, and CO2 emissions.
Finally, the process of optimal and robust sizing of a solar-powered
industrial microgrid is developed in Chapter 5. First, a preliminary
optimization technique is presented to evaluate the optimal size of the
PV and storage system while ensuring resiliency over cloud passage.
The mathematical formulation embeds linear frequency constraints
and worst-case ramp scenarios. Then, the optimal solution found at
the first step is assessed by the operational simulator developed in
Chapter 4 to verify the operability of the architecture and refine the
size of the storage system. The power generation of a liquefied natural
gas processing plant is used as a case study and illustrates the ability
of the method to provide optimal and robust sizing of the hybrid
architecture.
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R É S U M É

Les récentes politiques climatiques et l’évolution des marchés ont
conduit le secteur industriel à investir dans de nouvelles technolo-
gies de production d’électricité dans le but de réduire son empreinte
environnementale. Dans les pays en développement ne disposant
pas d’un accès fiable à l’electricité ou possédant de large zones sans
réseau, les sites industriels produisent leur propre électricité. Par
ailleurs, la production d’électricité est soumise à des spécifications
strictes en termes de continuité d’approvisionnement et de qualité de
courant pour des raisons de sécurité industrielle. Dans ce contexte, les
centrales solaires photovoltaiques de grande puissance amènent de
nouveaux défis lié à la gestion de leur intermittence. Lors des passages
nuageux, les variations de l’ensoleillement doivent être compensées
par les générateurs fossiles ou par un système de stockage rapide pour
garantir la stabilité électrique. La planification long-terme des micro-
réseaux industriels doit donc intégrer les liens entre la variabilité de
l’ensoleillement et la qualité d’approvisionnement ce qui modifie le
paradigme d’optimisation technico-économique.

L’objectif de cette thèse est d’intégrer la variabilité court terme de
l’ensoleillement dans les processus de simulation des stratégies de
gestion optimales et d’optimisation du dimensionnement de centrales
électriques industrielles hors-réseau.

Après une introduction générale (Chapitre 1), le concept de micro-
réseau industriel et ses principales problématiques de recherche sont
détaillés dans le Chapitre 2. Le Chapitre 3 explore la caractérisation
et la modélisation de la variabilité de l’ensoleillement. Des profils
d’ensoleillement tenant compte de la variabilité court terme sont iden-
tifiés à partir d’un jeu de données annuel pour simplifier les simula-
tions électriques. Le Chapitre 4 présente un cadre de simulation pour
évaluer les performances opérationnelles d’une centrale électrique
hybride. Une couche d’optimisation de la gestion de l’énergie est
couplée à un modèle électrique dynamique afin d’évaluer les écarts de
fréquence sur le réseau, la consommation de carburant et les émissions
de CO2. Enfin, une méthode de dimensionnement est proposée dans
le Chapitre 5. Une optimisation préliminaire est réalisée pour évaluer
les investissement optimaux du couple photovoltaique-stockage tout
en garantissant la stabilité électrique lors de perte d’ensoleillement.
Le simulateur opérationnel présenté dans le Chapitre 4 est ensuite
utilisé pour vérifier l’opérabilité de l’architecture et raffiner la taille
du système de stockage. Une usine de liquéfaction de gaz est utilisée
comme cas d’étude pour illustrer le potentiel de la méthode.
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G E N E R A L I N T R O D U C T I O N

Thanks to growing environmental policies, the industrial sector is
more and more committed to reducing its greenhouse gases emissions.
When no utility grid is available, industrial facilities rely on on-site
generation to power their processes. In many industrial sectors such
as upstream and downstream Oil&Gas, chemical or mining industries,
the continuity of electricity supply is a priority for operators for both
economical and safety reasons. This explains the wide use of fossil
fuels for electricity generation as conventional generators have a high
level of reliability. However, this contradicts sustainable industrial
development.

Integration of renewable electricity is a promising lever to reduce
carbon emissions. In particular, solar photovoltaic (PV) generators
have now reached a low break-even point which leads the industry to
explore hybrid power plants solutions (or microgrids) featuring fossil
generators and large-scale solar systems. On the other hand, the vari-
ability of solar resources puts the continuity of electricity supply at risk.
Short-term solar variations can cause a temporary mismatch between
production and consumption leading to large electrical instabilities
and a loss of electricity supply. To mitigate electrical perturbations,
storage systems can be installed but come at high costs which reduce
the profitability of the system.

Therein lies the problem of autonomous industrial hybrid power
plant development: improve the environmental footprint of electricity
production with the best economical performances while guaranteeing
the reliability of electricity supply against solar power short-term
variations.

The motivation of this thesis is to provide methods helping in-
dustrial architects with the preliminary assessment process of such
systems. Operational philosophy for the optimal management of PV
power and fossil generators must be investigated to evaluate the costs,
CO2 emissions, and electrical stability of the system over its lifetime.
In addition, an integrated sizing method is necessary to provide a
robust and optimal solution for the installed capacities of PV and
primary support storage systems. To properly assist industrial de-
velopers, the development of numerical tools and methods shall be
adapted to preliminary technical studies : (1) most of the technical
inputs such as grid topology or PV and fossil unit technology charac-
teristics are not available at this step; (2) the computational complexity
should be kept minimal to allow screening a wide range of solutions
in a limited amount of time with standard computational resources.

21



22 general introduction

Lots of highly detailed electrical models are available to evaluate
electrical stability of micro grids but only a few of them provide a focus
on the impact of short-term solar variability and combine PV systems
with large scale fossil generators. In particular, ramping constraints on
fossil generation is generally not considered. Detailed electrical models
require complex technological blocks with many input parameters and
require large computational resources to simulate large time windows
such as daily irradiance timeseries.

The majority of these models are focused on electrical stability
whereas economical and environmental performances evaluation of
the plant is separately carried out by high level energy models. This
may lead to discrepancies between short-term and hourly level be-
haviour.

Sizing tools currently available are based on high level energy mod-
els with a 15 minutes to 1h time-decompositions. Consequently, elec-
trical stability problems are not considered. Alternatively, non-linear
optimization and meta-heuristics have been proposed to address the
grid stability in case of a generator contingency or wind power vari-
ations. The literature highlights the interest of Mixed Integer Linear
Programming (MILP) formulations to avoid convergence to local op-
timum but only a few work ave addressed grid resiliency in a linear
optimization framework. Regardless of the sizing optimization tech-
nique, the grid resiliency to short term solar variability remains poorly
covered.

Bearing in mind the state-of the art methods, this thesis contributes
to the research field on industrial micro-grid development in the
following manners:

1. A pre-treatment procedure for 1-second solar irradiance time
series is proposed to reduce the number of solar input scenario
to consider in grid simulations. The method applies the Wavelet-
Variability-Model to simulate a MW-scale equivalent irradiance
and uses Kmeans clustering to obtain a set of representative time
series.

2. A methodology to identify worst-case solar ramps is proposed
to perform fast grid simulation and integrate solar ramps in
high-level energy model. The methodology is based on a ramp-
detection algorithm and a convex-hull representation of linear
solar drops.

3. A multi-layer simulation framework is developed to simultane-
ously consider power quality control and energy management
optimization. The short term model is based on a reduction
of detailed electrical models to improve its computational per-
formances and is adapted for better consideration of gas tur-
bines physical limitations. The energy management optimization
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model reproduces the planning strategy of an industrial power
plant.

4. The use of a reduced set of solar irradiation time series com-
posed of representative days and a worst-case scenario allows
the multi-layer simulation to provide an evaluation of the life-
time performances of the power plant as well as the minimum
required storage installed capacity to ensure electrical stability.

5. A MILP optimization model is formulated to provide optimal
and robust sizing of PV and storage installed capacities. The
model ensure the plant’s resiliency to fossil generators contin-
gencies thanks to redundancy constraints. The resiliency against
fast-cloud passage is ensured thanks to linear frequency de-
viations constraints and solar ramp convex hulls previously
identified.

6. All these tools are assembled into a sizing procedure which
provides validated architecture to power plants architects. The
MILP sizing model is used is as a preliminary optimization step
for fast screening of potential solutions. Then, the selected ar-
chitectures are evaluated thanks to the multi-layer simulation to
provide refined storage requirement and lifetime performances.

The contributions mentioned above are developed throughout this
document as follows:

• Chapter 2 provides an overview of the challenges and state-of
the art research on industrial micro-grids and highlights the
main knowledge gaps.

• The methodology for solar irradiance time series pre-processing
and scenario generation is developed in Chapter 3.

• The multi-layer simulation framework for operational simulation
is detailed in Chapter 4 after a description of electrical and
energy management models.

• In Chapter 5, the sizing optimization model is formulated and
discussed. Then, the full sizing process is presented and applied
to a case study aiming at sizing the PV and storage capacities
for the power generation of a Liquefied Natural Gas (LNG)
processing plant.

• Conclusions are drawn in Chapter 6 as well as recommendations
for industrial microgrids development and future research.
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2
S O L A R P O W E R E D I N D U S T R I A L M I C R O G R I D S

This chapter defines the concept of industrial microgrids and reviews existing
applications. The challenges of dynamical modeling of fossil generation and
PV systems are presented and state-of-the-art relevant power control and
energy management strategies are set out. This work has been published in
Elservier’s Renewable and Sustainable Energy Reviews [1].

Ce chapitre définit le concept de micro-réseaux industriels à partir d’une
revue les applications existantes. Les défis principaux liés à la modélisation
dynamique des générateurs fossiles photovoltaïques sont présentés. L’état de
l’art des stratégies de contrôle et de gestion de l’énergie est finalement exposé.
Ce travail a été publié dans la revue scientifique Renewable and Sustainable
Energy Reviews [1].

1 CONTEXT AND DEFINITION OF INDUSTRIAL MICROGRIDS

Main characteristics Large-scale systems, reliability and power quality constraints

Focus on Oil&Gas applications : existing studies and main challenges

Outline : 
PV integration may endanger the continuity of  supply

Challenge for short-term transient evaluations

2  MAIN TECHNOLOGICAL COMPONENTS

PV systems

Production and variabiliy

Modelling and forecast

Fossil generators

Technologies and limitations
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Storage systems

Main technologies 

and characteristics

How to ensure reliable operation ?

3 OPERATIONAL MANAGEMENT

How to provide reliable sizing ? 

4 SIZING

Short-term power control

Optimal energy management 

Optimal, robust and stochastic

planning of  microgrids

5 HIGHLIGHTS AND RESEARCH METHOD
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2.1 the concept of industrial microgrid

2.1.1 General context

In 2019, the General assembly of the United Nations (UN) stated that
“eradicating poverty in all its forms and dimensions, [. . . ] is the great-
est global challenge and an indispensable requirement for sustainable
development” [2]. Meanwhile, the majority of the representatives of
the states and governments, enlightened by the IPCC (International
panel on climate change) and IPBES (The Intergovernmental Science-
Policy Platform on Biodiversity and Ecosystem Services), agree on the
increasing danger of climate change and its effects on lands, ocean,
biodiversity and populations. At the COP25, The IPCC executive
secretary Espinosa stated that meeting our CO2 reduction objectives
is “absolutely necessary to the health, safety and security of everyone
on this planet—both in the short- and long-term” [3].

At the beginning of the 2020 decade, these two major challenges
pile up together and bring the world a double issue to solve as quickly
as possible. Among all the dimensions of these problems, the role of
energy is of major interest as it is the link between climate and growth.

On one hand, the access to energy – and more specifically electricity -
is a key lever for poverty alleviation and socio-economic development.

Electricity access is necessary to satisfy the basic needs of popula-
tions and improve their well-being. It is crucial for clean and safe
cooking, health infrastructures and scholar development which is
why the UN’s development program has included ‘access to electric-
ity’ to its “Multidimensional Poverty Index” [4]. Recently, the IEA
warned that the covid-19 crisis reversed electricity access progress
and highlighted the need to put it at the core of recovery plans and
development programs [5].

Figure 2.1: Proportion of population with access to electricity [5].
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In a macro-economic perspective, electricity access turns out to be
necessary to increase productivity, allow industrial development and
living standards improvements [6]. An unreliable supply due to insuf-
ficient grid infrastructure is a strong barrier to industrial activities [7].
The case of the Indian manufacturing sector is a good illustration as
electricity shortage could have reduced its revenue by 5.6% [8]. The
relative low price of fossil fuels and their ability to provide electricity
continuously explains the choice of the developing countries in their
energy mix: 80% of their electricity is produced by coal, oil or gas in
Africa and India.

On the other hand, energy production is the main contributor to
the global warming. Coal, gas and oil are widely employed and
respectively account for 39%, 23% and 3% of the world’s electricity
production whereas their CO2 emission represents 32.5 MTCO2 [9].
Despite the current carbon footprint of electricity production, 1.3 bil-
lion of people still have unsecured access to it and 95% of them live
either in sub-Saharan area or in Asia. Between 1890 and 2018, only 2%
of GHG was due to activities within the African continent [10]. The
coming rise of the African economy could bring millions of people out
of poverty, yet, fail to meet the environmental constraint if the same
trajectory as the past is taken.

An affordable and reliable energy supply is an absolute necessity to
the socio-economic development of billions of people. But the struggle
will remain useless if clean solutions are not developed to limit the
negative environmental impact as much as possible.

2.1.2 The role of microgrids for clean electricity supply

Policies and investments for bringing access to electricity follow two
main strategies: grid extension and local energy systems development.
Grid extension consists in extending the utility grid by investing in
new production units and transmission lines across a country, but this
solution requires a lot of capital expenditures. The costs, risks and
technical challenges crossing wide desertic areas is a strong barrier to
a fully grid-connected future. Local energy systems offer more flexibil-
ity to policymakers and investors. They consists in small stand-alone
systems such as solar kits or autonomous grids with proper control
which are called micro-grid or mini-grid [11].

The microgrid definition of the US Department of Energy is “a
group of interconnected loads and distributed energy resources within
clearly defined electrical boundaries that acts as a single controllable
entity with respect to the grid. A microgrid can connect and discon-
nect from the grid to enable it to operate in both grid-connected and
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island-mode”.

Microgrid can have an interesting capacity of adaptability as they
can serve small load such as a few houses to an entire city or industrial
facility. Their capacity to operate either disconnected or connected to
the grid is also a promising feature, allowing policymakers to create
electricity clusters before considering large interconnection. It also
allows securing critical parts of existing grids such as hospitals, uni-
versities, state services etc.

The IEA 2019 outlook for Africa sees that microgrids will be a key
stakeholder for electricity supply and could account for 30% of the
electricity access by 2030 [10]. A review of regulatory framework and
policies with regards to microgrid development in 8 countries covering
3 continents such as India, Tanzania or Peru can be found in [12].

2.1.3 General background on microgrids

One of the main advantages of microgrids is undoubtably their ability
to manage renewable energy resource as well as storage and conven-
tional fossil generation to ensure the right trade-off between costs,
reliability and sustainability. Microgrid now covers a wide variety
of use from grid connected systems able to sell and buy electricity
depending on market price, to robust and isolated systems ensuring
continuous power for mining or military facilities [13, 14]. This is
illustrated in Fig. 2.2 which displays the University of California San
Diego’s microgrid.

Figure 2.2: University of California San-Diego’s microgrid.

Energy expenses represent a substantial share of capital and opera-
tional expenditures. Thus, the performance of the power plant must
be ensured and optimized with care. Regardless of the size and use
of microgrid, the planning and operation share three fundamental
objectives with conventional utility grids [15]:
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1. Providing the electricity at the lowest cost possible

2. Ensure the safe supply of electricity to deliver all the consumers
at the required time

3. Guarantee the quality of supply at delivery point

Finally, microgrids are more and more developed and operated with
the aim of reducing the CO2 footprint.

The performance of the microgrid can be defined as the ability of
the plant to achieve these goals. The most important goal according to
the user’s specifications forms the objective function of an optimiza-
tion problem. The others build the set of constraints that the plant
must satisfy while tracking the maximum or minimum value of the
objective.

This optimization paradigm is the cornerstone of the microgrid’s
performance from the early developments to the plant’s real-time
management. Therefore, it needs to handle phenomemnon that take
place at various time-scales:

• The long-term planning (or sizing) of the micro-grid is carried at
development steps and aims at finding the optimal architecture
in order to optimize the plant in the long run (typically 20 years)

• The energy management aims at balancing energy flux between
the producers and the consumers. Different strategies may be
used to minimize the costs under constraints of reliability or
environmental footprint. This is carried within typical intervals
of 10 minutes to several days.

• The control of power ensures a good quality of supply and a
safe operation. It shall prevent large fluctuation and instabilities
by balancing the power flows in real time. This is generally
assessed with a timescale from a few milliseconds to seconds.

Figure 2.3 shows these different time scales for the main actors and
phenomenon taking place during the microgrid’s lifetime.

Due to the relative small size of hybrid power plants compared
to utility grids, their sensitivity to power fluctuations is significantly
increased and developers now have to account for power dynamics,
flexibility and uncertainties of production.

From an operational point of view, interaction between time-scales
and devices clearly appears. The management layer is distinguished
from the control layer by the timescale and the hardware connection
to devices. The management layer is generally ensured by one or
several EMS (Energy Management System) for the whole plant based
on communication technologies or even cloud technologies. In the
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Figure 2.3: Different time-scales for planning and operations.

contrary, the control layer is carried out by the PMS (Power Manage-
ment System) which adjust the output of each device based on local
measurements in order to instantly correct instabilities and protect
the equipment [16]. Fig. 2.4 shows an overview of the interreaciton
between the control and management layer, additional operational
strategies are presented in detail in [13, 14] and will be furtherly
reviewed in this chapter.

Figure 2.4: Interconnection of management and control layer of an au-
tonomous microgrid.

Lots of running project can be found such as the island of Eigg in
Scotland which is an isolated hydro-wind-solar powered grid backed-
up by diesel generators [17] or the campus of San Diego’s university
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which smartly interconnects the grid to a portfolio of gas and steam
turbines, solar PV and thermal storage [18]. Recent work has also
been done on isolated offshore sites for commercial of residential
applications [19]. However, lots of research are still carried to optimize
the architectures, find the best operational strategies and identify the
proper protection schemes depending on needs and constraints [20–
22].

Technological choices may differ from one case to another such
as commercial, residential, military or industrial plants. In addition,
availability of resources (gas, diesel, solar, wind etc.) may vary. Hence,
sizing methodologies and operational strategy must adapt to a wide
bench of scenarios. Unlike for commercial and residential applications,
the literature poorly covers industrial microgrids [20, 21].Therefore,
the next part will try to identify the particularities of industrial power
system in order to understand the research challenges.

2.1.4 Industrial microgrids : motivation, definition and examples

In 2016, the industry sector accounted for 36% of the global CO2

emissions mainly due to its high energy-intensive processes [23]. In
order to match with the COP 21’s 2° objective, a substantial effort has
to be made to improve the energy efficiency and reduce the carbon
footprint. As mentioned above, the challenge is not solely to reduce
the impact of current activities, but also to prevent the emerging in-
dustries from cumulating their emission to the ones that have caused
global warming.

From the IEA again, it is highlighted that the industry GHG reduc-
tion will be enhanced by three main levers [24]: the minimization of
the processes energy demand, powering facilities with low-carbon
electricity, and finally the integration of CCS (Carbon Capture and
Storage) .

The reduction of energy use by industrial processes is without a
doubt, the first action to consider as it enables operational costs and
CO2 savings. Consumption monitoring, process optimization and heat
and cold recycling are among the most famous solutions as they don’t
usually require large investment. However, the potential in energy
saving always meet thermodynamic, feasibility, and costs limitations.
CCS has also shown promising potential to reduce the emissions.
Nevertheless, some facilities will not be able to implement it because
of the lack of a nearly located CO2 storage capacity or because of
insufficient carbon intensity processes.

Process electrification offers an alternative way for achieving the
industry’s CO2 ambitions. One example consists in converting com-
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pressor and pump drivers powered by fossil engines into electric
drivers meanwhile powering the facility by a less carbon intensive
electricity. But this does not come without challenges.

For most of large-scale industrial plants, reliability is a key factor.
The potential penalties resulting from a failure of the power supply
are much larger than potential energy savings. Facilities located in
developed countries can substantially reduce their GHG emissions
using green electricity purchase agreements. The facility will then
benefit from the renewable production located sometimes miles away.
However, there is numerous applications where the plant is connected
either to an unreliable grid or totally isolated from it. In these ap-
plications, microgrid will play a key role: GHG reduction thanks to
renewables must be handled by on-site autonomous power plants
with the highest level of reliability.

2.1.4.1 A conceptual definition

It is very hard to find a proper definition of industrial microgrids since
needs, size and resources may substantially differ from one case to
another. Based on a review of existing projects, studies and industrial
surveys, it is possible to propose some general characteristics:

• Size: The installed power capacity or total load served generally
excesses several hundreds of kW and often reach several MW

• Type of consumers: Consumers are mainly industrial equipment
such as electric drivers for torque production, pumping, com-
pression. The proportion of resistive load is slightly lower than
residential microgrid resulting in specific electrical character-
istics. The daily profile follows the production schedule and
therefore significantly varies from a residential and tertiary load
profile (traditionally two peaks in the morning and the evening,
high temperature sensitivity due to heating and chilling and
high degree of stochasticity).

• Ownership and operation: Generating units and transmission
system within the industrial microgrid can be financed, owned
and operated by different entities but assets are rarely separated
or managed individually. Consuming equipment are considered
as a single client. The microgrid management only serve the
industrial production schedule, the concept of multi-user decen-
tralized scheme is therefore not fully relevant compared to a
centralized decision scheme

An additional key dimension that characterizes industrial micro-
grids is the need for reliability and a continuous power supply in order
to keep the production chain running. If the facility is connected to a
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Reference [25] [26] [27] [28] [29] [30]

Application Mining Offshore oil Industry Industry Water treatment Manufacturing

Energy Electricity Electricity Heat Electricity Electricity Electricity Electricity

Power 26MW 40MW 14MW MW scale 3.2MW 20-40 MW

On grid off grid Off-grid Off-grid On-grid Not specified On grid On grid

Renewable resource Solar Wind Wind – Solar Wind Solar Wind Solar

Fossil generation Diesel CCGT2 Not specified Diesel Diesel -

Comment Installed plant Study Study Study Study Study

Table 2.1: Examples of studies and projects focusing on industrial microgrids.

stable grid, the continuity of supply is ensured by the transmission
system operator. However, both in weak-grid (subject to outages) and
off-grid configurations, the continuity of supply relies only on the
self-producing capacity of the plant [31, 32].

The reliability challenges of integrating more and more renewable
resources into large-scale systems have been covered by island micro-
grid studies [33] such as those performed for the islands of La Réunion
[34, 35]. The stochastic variation of renewable resources endangers the
continuity of supply and the power quality and therefore limits the
penetration of renewables [36, 37].

This shows that reliability concerns should not be neglected in large
industrial off-grid systems. However, the literature only scantly covers
this aspect of industrial microgrids, despite the fact that it remains
critical for their long-term development [38, 39]. This chapter intends
to identify the challenges involved in ensuring reliability in these
applications.

2.1.4.2 Reliability as watchword

It is needless to that that the continuity of electricity supply is a matter
of profitability but it is even more a matter of safety. Industrial facilities
(refineries, LNG production plants and terminals, Oil rigs, Chemical
units etc.) feature lots of processes where gas and liquid must stay
at a defined pressure. Leakage in pipes, tanks or reactors may cause
hazardous situations since products may be highly flammable. In
the case of a partial loss of the electricity supply, some critical safety
equipment may remain connected ( fluid recirculation circuits, heating
or coolant systems to avoid phase change, etc.) but some products
are automatic send to the flaring system, causing air pollution such as
SO2 or H2S emissions. This is confirmed in lots of accident reports
[40], which proves how much the power system must be resilient and
carefully designed.

The availability of power system refers to the proportion of the
time during which the plant is able to supply its consumers. In a
power system, a loss of the electricity supply may be caused by several
reasons:
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• Generator contingencies : fossil generator breakdown causes a
sudden loss of the electricity supply. It is a common practice to
operate in "N+1" philosophy, meaning that an additional unit
is running to compensate the sudden loss of another unit. In
some situations the plant may run in "N" configuration, which
means that the system cannot supply the load in case of a loss
of a running unit.

• Unplanned load step: if large consumers are suddenly connected
to the system, fossil unit will have to rapidly change their power
output. This may cause a disconnection of fossil units in the case
of large shaft deceleration or turbine over-heating.

• Unplanned load rejection : Load rejection may happen in the case
of a consummer breakdown (heater, pump, motor) or sudden
disconnection for safety reasons. This causes an acceleration of
the generator mechanical shaft. If the speed reaches the upper-
limit, the unit can disconnect to prevent over-speed.

• Cascade of generator disconnection : In some severe situations,
one of the three above mentioned situations may cause other
disconnections of generating units. This can lead to a complete
loss of the electricity supply (i.e blackout)

• To prevent a cascade of disconnection, operator may stop some
processes to maintain the power balance of the system. These
procedures are called "load shedding procedures".

To ensure a power plant’s highest availability, the mean time be-
tween failures of power suppliers and the mean time to recover normal
operation must be evaluated [41]. The availability (Eq. 2.1) of the
power system is tracked thanks to the MTBF (mean time between
failure) and MTTR (mean time to repair) which are linked to the prob-
ability of generators and consumer breakdown, maintenance schedule
etc.

Availability =
MTBF

MTBF+MTTR
(2.1)

One part of the problem consists in optimizing the maintenance
planning of each power device. However, unplanned events, measured
by the failure rate of equipment (probability of unexpected loss), need
to be minimized. In conventional fossil-based systems, the major
risk is fossil generator breakdown, but the integration of PV systems
introduces new parameters into the reliability assessment:

• Risk of equipment failure in the PV power plant (PV strings,
inverters)
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• Loss of transmission system (lines and converters) between the
main bus and the PV plant.

Additionally, PV power fluctuations due to cloud passage can cause
considerable power quality fluctuations that have the same impact as
a loss of equipment. This new aspect in the reliability assessment is
related to the site’s weather conditions, the installed PV and storage
capacities and the fossil generation ramp-rate.

Risks
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PV component 

breakdown
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Figure 2.5: Summary of reliability aspects of industrial microgrids from risks
to consequences. λ refers to the failure rate (see [42]) and ∆P
refers to the probability of power variation in the equipment.

2.1.4.3 The example of O&G power systems

A focus on oil and gas applications (O&G) offers a wide variety of ex-
amples for industrial microgrids since O&G has used on-site isolated
electrical generation for decades. Many operating facilities, studies
and future projects can provide useful feedback on experience, opera-
tional data, and even methodological insights. Some of the challenges
of producing electricity in this sector are shared with numerous other
applications, such as hospitals, military facilities, high-tech manufac-
turing, and even highly sensitive urban areas.

The LNG facility of Ichtys LNG (Austrailia) is an example of a
large scale autonomous power plant as it is fully autonomous from
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the national grid an entirely rely on gas turbines for its electricity
generation (about 200MW of installed capacity).

Figure 2.6: The Ichtys LNG terminal (Australia) operated by TotalEnergies.

specificities of o&g architectures and operations

From internal survey of applications in TotalEnergies main upstream
O&G facilities, the following specificities have been identified are are
added up to previous industrial characteristics:

• Isolated location: O&G rigs are often located in isolated areas or
in developing countries with a poorly reliable grid. The facility
can be located either onshore or offshore.

• Low fuel price: As the fuel is available on-site and sometimes
not even valued for business (for example natural gas in an oil
field), its financial value is very low.

• Proportion of torque, electricity and thermal demand: excepted
for refineries which consumes more heat than electricity, O&G
facilities almost only uses torque and electricity.

• Reliability and quality specifications: O&G developers have de-
veloped dedicated specification for their electrical systems. The
production plant needs to be 99.9% available and tight limitation
are set for frequency and voltage fluctuations.

• Low load flexibility: For safety and economic reasons, the de-
mand must be met at all time and no shift in load can occur
during the day due to unavailability of renewable resources.

• Fossil generation to ensure continuous power: the architecture
feature gas turbine or internal combustion engines with a redun-
dancy operational philosophy to prevent generator loss from
causing a system failure.

Power quality specification play an important role in the reliability
assessment of the power plant. When frequency and voltage limita-
tions are met, operators must trigger load shedding procedures to
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Load Acceptance Minimum frequency
Recovery time to more

than 97% of Fn

Minimum voltage

% of Un

Recovery time to more

than 97% of Un

> 90% Fn > 3 sec > 90% Un > 1.5 sec

Load Rejection Maximum frequency
Recovery time to less

than 105% of Fn

Maximum voltage

(% of Un )

Recovery time to less

than 103% of Un

6 110% Fn 6 10 sec 6 120% Un 6 2 sec

Steady-state operation Maximum variation - Maximum variation

+/- 0.5% Fn +/- 0.5% Un

Table 2.2: Specifications for Frequency and voltage variation in transient and
steady-state operation applied in TotalEnergies industrial facilities.

Frequency range (Hz) % of Nominal Duration Contractual commitment

47 - 47.5 -6% to -5% 1 minute Once every 5 to 10 years

47.5 – 49 -5% to -2% 3 minutes Once every 5 to 10 years

49 – 49.5 -2% to -1% 5 hours
100h in total during the customer’s

installation life

50.5 – 51 1% to 2% 1 hour
15 hours in total during the customer’s

installation life

51 – 52 2% to 4% 15 minutes 1 to 5 times a year

52 – 55 4% to 10% 1 minute Exceptionally

Table 2.3: RTE’s frequency contractual range [43].

protect the grid from large instabilities. During normal operation, op-
erators must ensure that frequency and voltage do not exceed 0.5 % of
the nominal values (see Tab. 2.2). Comparison of industrial standards
with french transmission system operator’s contractual specifications
(Tab. 2.3) shows that similar constraints are set for power system oper-
ation. This naturally requires to accurately evaluate the risk of power
quality degradation and install mitigation devices if needed.

pathways for renewable integration

Due to the level of reliability necessary and the isolated location of
such facilities, fossil generation is generally the only solution to pro-
duce electricity which participates in “well-to-wheels” emissions [44].
The increasing pressure of global warming has led the O&G industry
to invest in low-carbon R&D (Research and Development) and to con-
sider renewables as a possible solution for its power generation units
[45]. Potential plants include onshore and offshore fields, pipeline
pumping stations, refineries and, more recently, liquefied natural gas
(LNG) terminals.

The Hywind Tampen project is a good example of O&G microgrid.
It aims at connecting two offshore platforms in the North Sea (Gullfaks
and Snorre) with a floating wind farm of 11 turbines. The construction
is planned to start in 2022 and is supported by the Norwegian company
Equinor. The two platform’s fossil power plants and the wind farm
will create a fully autonomous grid isolated from shore. Renewable
production is expected to cover 35% of annual power demand and
should cut 200 kilotons of C02 per year.
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Figure 2.7: Illustration of hywind tampen hybrid power plant [46].

Table 2.4 gives an overview of studies addressing the problem of
hybrid fossil-renewable power for O&G, ranging from large-scale inte-
gration potential to highly detailed electrical stability studies. Wind
integration and offshore platforms are the most widely covered sub-
jects, while fewer studies have addressed the problem of onshore
facilities and solar PV systems from a technical point of view. The
studies highlight that electrical instabilities due to renewable resources
constitute the main technical limiting factor and that storage is gener-
ally necessary to allow large-scale integration. Design optimization,
such as carried out in [26], shows the interest of renewable integration
for fuel and CO2 reductions. However, no parametric study including
storage has been proposed to date and it is expected that the additional
capital expenditure would reduce the financial benefits. Furthermore,
[47] concludes that renewables will impact the fatigue and lifetime of
fossil generation which could be a major issue when reliability is a
key factor.

Reference [48], [49] [26] [50] [47], [51] [52],[53], [54]

Scope O&G Offshore oil Offshore oil Offshore oil Offshore oil

Energy Electricity, Heat Electricity Electricity Electricity Electricity

Power range 40MW 40MW MW -

Grid Type Off-grid Off-grid Both Off-grid

Resource Solar Wind Wind Wind Wind

Fossil unit - CCGT3 CCGT Gas turbine Gas turbine

Storage - - Battery -, -, Battery

Focus area
Large-scale potential

for solar

Method for

optimizing design

Power quality

challenges

Operational &

energy optimization

Electrical stability

study

Table 2.4: Review of Oil and Gas microgrid studies for renewable integration.

This overview shows the interest of O&G microgrids to identify
the challenges and to highlight success stories for other industrial
applications in isolated areas. In a research perspective, O&G micro-
grids provide interesting case studies and make it possible to compare
results and validate them in a similar environment before considering
their adaptation to other applications.
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2.1.5 Main research challenges

From the review presented above, the following research challenges
are identified:

• Due to their relatively small size compared to large grids, indus-
trial power systems are more vulnerable to electrical instabilities
[50]. However, industrial facilities cannot afford unplanned
blackouts and electricity shortages. This calls for the develop-
ment of a method to ensure an equilibrium of active and reactive
power with a high degree of reliability.

• Reliability constraints make it necessary to consider unplanned
power fluctuations brought about by the integration of PV sys-
tems. Notably, the impact of short-term stochastic solar variation
on continuity of supply must be addressed.

• Flexibility levers used to compensate renewable power variations
are crucial to ensure grid reliability. Storage systems are the
subject of increasing investigation, while less attention is being
paid to fossil-fuel technologies due to their apparent maturity.
But their response to successive ramps remains unknown and
may significantly alter their lifetime and fuel consumption. Very
few models account for their dynamical behavior or integrate it
in a long-term assessment.

• A large number of studies now address the control, management
ans sizing of microgrids to smartly interconnect all power devices
on the grid. In the context of industrial microgrids, this involves
making the right trade-off between economic performance and
robustness and therefore requires dedicated strategies.

This chapter intends to contribute to filling these gaps as follows.
First, a review of the short-term dynamical assessment of PV systems,
fossil generation a storage is presented. Next follows an investigation
of real-time control strategies that ensure reliability and power quality
within industrial microgrids. Fourthly, sizing procedures are investi-
gated. The final section concludes and presents the scientific method
for addressing the problem stated in Chapter 1.
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The insights provided by O&G studies enlighten the future for indus-
trial microgrids but often focus on a particular aspect of the system
(design, operation, stability). When it comes to supply electricity with
high reliability standards and low environmental impact, the big ques-
tion is to assess the maximum share of renewable and, naturally to
find the cost associated to it. In addition, the literature survey shows
that less work has been done on solar. However, the decreasing costs
and the enormous potential of photovoltaic technologies pushes to
integrate it in industrial microgrids. Hence, the technical challenges
for the planification and operation industrial microgrids must be iden-
tified with regards to the specificities of photovolotaïc generation.
Since electrical stability and power quality are crucial aspects, the dy-
namic behavior of the microgrid have to be understood and modelled
carefully. Section 2.2.1 and 2.2.2 presents an overview of the dynamic
behavior of fossil and photovolaïc generators. An overview of the
relevant storage technologies for intermittency mitigation is therefore
provided in Section 2.2.3.

2.2.1 Conventional fossil generation

In industrial applications, gas turbines and internal combustion en-
gines are the main technologies used to produce electricity. The choice
between these two options depends on the availability of the fuel
(diesel, heavy-fuel oil, methane etc.), the costs and the maintenance
requirement. Some other consideration may impact the decision such
as the need for a heat production, footprint, emissions etc.

With the penetration of variable and uncertain renewable power,
fossil generation is about to dramatically change from a steady-state
operational paradigm with fixed load and well-known production
plan to a constantly changing demand with stochastic perturbation.
This forces the manufacturers and users to ensure operational flex-
ibility [55] with an increasing number of start-up, shut-down, fast
load change and need for power-quality control. Meanwhile, cost-
effectiveness, reliability and emission-regulations compliance needs to
be guaranteed.

The main objectives for fossil generation in industrial applications
can be summed up as follows:

1. Adapt the power output to match the power needs (provide
enough spinning reserve in case of a sudden PV drop or load
step).

2. Provide enough primary response to ensure frequency and volt-
age stability (engine control needs to ensure compliance with
the operator’s grid code).
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3. Maintain the highest level of availability when operated in ex-
tended transient mode (prevent the risk of failure or breakdown
due to successive load fluctuations).

4. Ensure cost-efficiency in the long run with regards to O&M costs
and aging.

5. Guarantee compliance with emission regulations in transient
operations.

As performed in [56], numerous commercial studies attempt to
compare fossil generation flexibility for hybrid generation purposes.
To ensure that such comparisons are creditable and accurate, perfor-
mance assessment needs shift from steady-state off-design correlations
to dynamic modeling at a short time-scale. For project developers,
making a choice based on a generator’s dynamical performance is not
an easy task:

• Ramp-up capacities are rarely provided by manufacturers for
small time-scales (seconds).

• Manufacturers usually provide ramp-up capacities for fast start-
ups and shut-downs, which are meant to be occasional.

• There is no guarantee that the thermodynamic parameters (pres-
sure, temperature, etc.) will remain within acceptable limits.

• No insights are provided on the machine’s performance: fuel
consumption, emission, fatigue.

These reasons call for a deeper understanding of fossil generator
dynamics and more detailed modeling. The next part presents some
theoretical aspects as well as the state-of-the-art on dynamic modeling
of fossil assets.

2.2.1.1 Gas turbines

working principles

Gas turbine (GT) theory has been widely developed in past decades
and detailed in a large number of references [57–59]. GT performance
predictions have been one of the main concerns in order to evaluate
differences between ISO parameters provided by manufacturers and
user’s operating conditions. Fig. 2.8 and Fig. 2.9 show the main
components of single-shaft and twin-shaft gas turbines.

Gas turbine cycle efficiency is defined by the ratio of total output
work over the heat added to the system. The total output work is
expressed as the turbine output power minus the compressor power
consumption. The overall cycle efficiency ηcycle is expressed by 2.2
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Figure 2.8: Single-shaft gas turbine.

Figure 2.9: Twin-shaft gas turbine.

where Wtotal is the net output power (kJ/s), ṁfuel is the fuel mass-
flow (in kg/s) and LHVfuel the lower heating value of the fuel (in
kJ/kg).

ηcycle =
Wtotal

ṁfuelLHVfuel
(2.2)

The power plant heat rate is another metric used to characterize
the gas turbine performance and defined as the inverse of efficiency
(generally expressed in kJ/kWh). Fig. 2.10 compares the heat rate
curve of two types of gas turbines and shows that gas turbines have
lower performances at part-load.
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Figure 2.10: Twin-shaft gas turbine.
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As shown in Figure 2.11, the compressor crosses iso-efficiency lines
during transient operation and increases the turbine’s fuel consump-
tion and particle emissions and impacts its mechanical fatigue [58].
Acceleration and deceleration are also constrained by surge and flame-
out limits that need to be taken into account to assess the ramping
capacity of the turbine.

Figure 2.11: Compressor transient running line.

thermodynamic models

The thermodynamic relationships of the components can be used to
simulate the steady state “off-design” points due to part-load opera-
tions, special weather conditions, etc. This methodology can be found
in the literature and is used by commercial software like ThermoFlow
[60] or Proosis [61] but only represents static conditions.

The development of dynamic models for the performance prediction
of gas turbines is still the subject of considerable research. Various
methodologies with a growing degree of complexity can be used
[62]. Some studies propose “black-box” models based on artificial
intelligence in order to learn and reproduce the behavior of an asset
based on operational data [63]. Computational-Fluid-Dynamics (CFD)
models are probably the most accurate, but the level of complexity may
go beyond the needs of renewable integration studies. Moreover, these
models require large computational resources and perfect knowledge
of the components’ geometry.

models for electrical studies

Zero-D modeling appears to be a good trade-off between a comprehen-
sive approach and complex calculations. They consist in describing a
component’s dynamics using the Laplace’s domain with saturation
and time constants accounting for each thermodynamic process. Sev-
eral levels of complexity exist here as detailed in reference [64], which
compares different modeling techniques for power quality studies.
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The most emplyed models are the GGOV (General Governor, see 7.2)
model and the GAST model (in Fig. 2.12).

Figure 2.12: The GAST GT Model [64].

Electrical models are focused on the temporal evolution of the gas
turbine’s mechanical power and do not address fuel consumption
or unit degradation. To have a better insight of fuel consumption
during electrical transients, a similar 0-D representation is introduced
in [65–67] . Blocks are obtained by implementing a Laplace trans-
formation of thermodynamic equations. Reference [65] proposes a
MATLAB/Simulink model of a dual-shaft turbine. A 10-second step
load is applied, and sensitivity analysis is conducted on the shaft’s
inertia. This reference provides a control scheme for Gas Turbines (GT)
for the evaluation of a wind-GT hybrid power plant and simulates 10

hours of operation. The same modelling technique is applied in [68] to
perform a gas turbine diagnostic under transient operation. Reference
[66] proposes a dynamic modeling of a single-shaft turbine featuring
VIGV (Variable Inlet Guide Vanes). The simulation time is typically
10 minutes.

Figure 2.13: Dynamic model of turbine and its regulation system.

Thanks to their hybrid thermodynamic/electrical model, [65] show
that hybrid gas/wind power plants can reduce both fuel consumption
and NOx emissions by at least 40%. However, NOx reduction is de-
batable, as pointed out in [69], where an increase in NOx emissions
from large-scale gas-fired power plants has been observed for shares of
renewables below 30%. Due to increasing pressure from emissions reg-
ulations, the question of emissions modeling for transient operations
will undoubtably be a key challenge for researchers in the future.
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These methodologies may provide tools to represent the behavior
of gas turbines but input parameters vary from one turbine to another.
In addition, compressor turbine maps are necessary despite the fact
that they are not publicly disclosed by manufacturers. This creates a
strong barrier to study and compare the performances of gas turbines
during transient operation.

2.2.1.2 Internal combustion engine

Research on diesel engine modeling has mainly focused on propulsion
applications [70] and only a few references study its behavior in power
systems [71, 72]. The principle of a diesel generator is basically the
same as an automotive diesel engine: combustion within the pistons
drives the crank shaft, which provides mechanical torque to the electric
generator. This process follows the Carnot thermodynamic cycle.

Figure 2.14: Principle of ICE power conversion from combustion to electricity
supply.

Unlike for gas turbines, manufacturers tend to provide more insights
on the short-term dynamical behavior of their engines since this is
a key selling argument. Nevertheless, the impact of a repeated load
increase remains unknown and a detailed thermodynamic modeling
is necessary.

thermodynamic models

The thermodynamics of the transient operation of ICE is widely cov-
ered in Refs. [74] and [75]. Two main modeling approaches can
be used considering either a continuous phenomenon (mean-value
model) or discrete events for combustions within the pistons (discrete-
event models). Both methods aim at describing the change in the
pistons’ input parameters (air mass, fuel mass and exhaust gas recir-
culation) when a torque command is given to the system as described
in Fig. 2.16.

In [71, 72], several modeling approaches are described, many of
which are based on highly complex fluid mechanics. However, a
lack of data on the engine’s geometry makes it impossible to imple-
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Figure 2.15: Recommended load increase of Wartsila W32 according to the
product guide [73].

Figure 2.16: Principle of torque regulation.

ment such a model in preliminary study. Reference [76] presents a
simple mathematical model of an engine based on thermodynamic
expressions, enabling a fairly accurate study of the engine’s step load
response. The parameters needed for the simulation are generally
not available in the literature and the author recommends calibrating
the model using experimental data. Finally, reference [77] provides a
simple methodology to model the transient behavior of a diesel engine.
The model is calibrated with experimental data and requires accurate
turbocharger parameters to run.

Due to their high complexity, detailed thermodynamic models can-
not cover large time-windows. This is why reduced order models
are proposed for electrical studies. On the contrary to gas turbines,
no study proposed to link thermodynamic approach with electrical
model to have better insight on fuel consumption or degradation
during transient operation.

models for electrical studies

From a control-science perspective, the transient modeling of a diesel
engine mainly consists in describing 4 main components: the reg-
ulator (controller), the actuator, the engine’s combustion, and the
synchronous generator. In ref [78, 79] dynamic models are proposed
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for the frequency control (taking actions on the angular velocity) and
therefore represent the short-term transient response of the engine.

Figure 2.17: Conventional diesel engine representation.

The above-mentioned references are based on a mathematical mod-
eling of the machine’s processes and components. Other modeling
techniques consist in “learning” the engine’s response using neuro-
computing. In ref [80], an HIL test bench is combined with a real
diesel engine in order to learn the frequency’s transient behavior and
control. A dynamic model is then built to conduct stability analysis.
However, this approach gives a very poor understanding of the ma-
chines, which makes it very difficult to adapt to another engines with,
for example, a different number of pistons.

In [81], a sensitivity analysis of the engine injection delay is carried
out. The results show that a short time-delay significantly improves the
grid’s frequency stabilization. The study recommends a low injection
time-delay (mostly found in high rotational speed engines) in order to
improve the penetration rate of renewables.

On the other hand, a good comprehension of the thermodynamical
limitation is also a very important factor in renewable integration. In
[82–84], it is shown that a high penetration rate can be enhanced by
low-loading engines featuring dedicated pre-heating and clutching
systems. This calls for further investigations on the link between
transient thermodynamic performances and electrical studies.

2.2.1.3 Ageing and maintenance considerations

Is has been observed that fossil generators will increasingly be op-
erated in a transient state with rapid variation to smooth out solar
variability. The evolution of fatigue and fault probability due to tran-
sient operation is still poorly addressed by the scientific community.
[85] evaluates the impact of an extended dynamic operation of CCGT,
and indicates that the lifetime reduction may be up to 10% greater than
in reference steady-state cases. Further analysis would be necessary
to evaluate the failure rates of typical fossil technologies in industrial
microgrids. Solar variability modeling may once again prove crucial
for such an evaluation.
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2.2.2 Large scale solar PV systems

Solar photovoltaic (PV) power is traditionally assessed with a quasi-
static framework as mainly hourly variations are of interest for eco-
nomic evaluation [86]. As previously mentioned, the vulnerability of
large-scale isolated power systems motivates a study of sub-hourly
phenomena that might impact electrical stability. Hence, short-term
variability is a key element to ensure the balance between production
and consumption and therefore a high level of reliability. Eq. 2.3
shows the relationship between the power produced by a PV plant
and the solar irradiance [87].

PPV =Winstalled
PV ∗

GHIplaneofarray

1000
∗ [1−Kθ(θ− 25)] (2.3)

Where Kθ is the temperature sensitivity coefficient, Winstalled
PV the

rated capacity of the panel in ISO conditions, and GHIplaneofarray
the Global Horizontal Irradiance calculated in the plane of the panel.
The actual amount of energy collected by the panel will depend on
additional factors [88] such as the clearness of the sky, the performance
of the PV panel (efficiency, temperature sensitivity, aging etc.), shade
and fouling due to the surrounding environment, etc.

Accurate modelling of PV system can be a challenging task when
temperature data is not available. In addition, the main factors im-
pacting PV performance can be hard to assess (cabling configuration,
soiling conditions etc.). An alternative to Eq. 2.3 is to use PV derating
factor ηPV as used in [86] and expressed in Eq 2.4.

PPV =Winstalled
PV ∗

GHIplaneofarray

1000
ηPV (2.4)
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Figure 2.18: Two irradiance profiles captured with 1 second sampling [89].

Cloud passage is the main contributor to short-term variability and
needs to be addressed carefully. Fig. 2.18 shows an example of solar
irradiance variability over two days with a 1 second time-step.
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The following sub-sections will focus on the approaches imple-
mented to explain, measure and forecast short-term solar variability
in order to integrate the risk of power imbalance in an industrial
microgrid.

2.2.2.1 Addressing PV variability

Solar variability affects the irradiance measured by sensors as well as
the power produced by one or several PV panels. Two time-scales are
important for microgrid operation and planning:

• Solar power range: difference between the minimum and maxi-
mum solar power output in a time interval (typically 15 minutes
to 1 hour).

• Solar ramps: the change of solar power or irradiance in a short
time interval (within the range of the sampling interval: 1 second
to 1 min) that dispatchable units will have to instantly compen-
sate

Solar range and solar ramps are necessary to calculate the amount
of spinning reserve, the ramping capacity of dispatchable units, and
the storage capacity requirements. In high-reliability applications like
industrial systems, extreme ramp events are also of interest to make a
robust assessment.

variability indicators

It is possible to assess the level of variability over an entire day in
order to determine the frequency and magnitude of perturbations.
The variability index as defined in [90] is the ratio between the length
of global irradiance series and the length of clear sky irradiance over
a defined time interval (the study proposes to calculate the variability
index over 1 day). In [91], 6 metrics are compared to evaluate the solar
variability on 31 test days. The study proposes a new indicator based
on integrating the cumulative density function of solar increment.
According to the study, these metrics can be used to characterize
the variability at both high and low frequencies and classify days
depending on the perturbations. Variability indicators proposed in
the literature are of varying computational complexity. The integrated
complementary cumulative distribution function was found to be the
best indicator to account for the variability at different magnitude.
However, the time-increments used in these two studies were larger
than 1 minute which excludes small solar drops that might impact
the grid stability. Therefore, it appears necessary to validate the
performance of variability indicators in small time-scales (from 1

seconds up to 1 minute).

climate-dependent variability

Location plays a role in solar variability due to climate type, orography
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and vegetation (large forests also generate clouds during daylight).
A solar variability map of the US drawn up using high-resolution
production data [92] shows significant differences between desertic-
arid areas and islands like the Lau islands and Hawaii where the
highest level of variability is observed. In [93], the author studied
the relationship between the clearness index and solar variability
for locations in different climate zones. The authors concluded that
climate zone and weather-driven clouds may have less impact on
variability that the orography of a site. It is expected that the small,
fast-moving clouds formed by the relief may have a bigger impact on
short-term variability.

2.2.2.2 Modelling PV system variability

A PV system’s short-term variability is different from the irradiance
variability observed from a single sensor. In [94] it is concluded that
the power profile entirely follows the irradiance profile for time ranges
greater than 10 minutes. However, short-term variability is affected
by the size, shape and distribution of a plant. For plants of several
megawatts, 1-s, 10-s, and 1-min ramps can be approximately 60%, 40%,
and 10% smaller, respectively, than those measured by a pyranometer.
These results are confirmed in [95, 96].

smoothing irradiance data to obtain pv power

Since PV power transients are smoother than irradiance transients,
considerable work has been done to obtain a realistic power output
from the data employing a single irradiance sensor. Hoff and Perez
introduced the concept of the dispersion factor for a distributed PV
fleet, calculated from the plant’s layout, the wind speed and the
time interval. The dispersion factor is used to characterize different
types of layout (crowded or spacious) and the irradiance variability is
smoothed to obtain the power in each configurations [97].

A Wavelet Variability Model (WVM) is proposed in [98] to obtain
a PV power time-series from irradiance data. The model parameters
are the plant footprint and the density of the sensors. The WVM is
compared to three other methods: linear scaling, moving average, and
averaging on every sensor available. When compared to the 2MW
output power, the WVM outperformed the three methods, especially
when evaluating the maximum ramp rates. A toolbox has been devel-
oped and is freely available in the MATLAB and Python environment
[99].

generating synthetic time series

Assessing solar variability is a big challenge if no high-resolution
irradiance data is available on site. One solution is to generate an
irradiance profile based on numerical weather prediction or satellite
predictions. In [100], methodologies based on Markov chains are
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proposed to generate irradiance and a clear-sky index profile. [101]
reproduces high-frequency patterns of historical data to increase the
temporal resolution of satellite prediction. However, these methodolo-
gies need representative training data set of high-resolution ground
measurements which requires to have closely located sensors avail-
able. Recently, [102] paved the way for generating 1 min data without
ground measurements, but concluded that additional research needs
to be carried out in order to obtain finer resolution.

2.2.2.3 Forecasting solar variability

Solar forecasting has been a growing topic in recent years since it
provides valuable information for microgrid operation and is used
for various purposes, such as market trading, reserve scheduling,
genset planning, and storage management [103]. Its potential to
optimize battery sizing and lower the LCOE of ramp-constrained
multimegawatt power plants is highlighted in [104]. Capturing solar
variability with forecasts may consist in providing either very short-
term production estimations or an indicator of the variability to be
expected for a large horizon (15 mn to 1 h) [105, 106]. As an example,
[107] proposes a methodology to estimate the largest ramp rate by
analyzing cloud shadow velocity and irradiance sensor measurements.
Satellite irradiance forecasts and numerical weather predictors are
now widely used and can be accessed online [108]. Due to their large
time and space resolution, a downscaling approach is necessary to
predict the variability at 10 seconds or 1 minute scales. Such solutions
are proposed in [109–111] but due to the geographical dependency of
the variability, no generic method has been proposed to downscale
satellite prediction without high-resolution data at the specific location.
Sky imagers have been developed and commercialized in recent years
with the intention of giving very short-term prediction for spinning
reserve management (diesel load margin, storage capacity etc.) [112,
113]. The development of these techniques will be a key factor of
success for the reliable management of industrial microgrids.

2.2.2.4 Reliability considerations for PV systems

Integrating PV systems in industrial power plants brings additional
risks for the continuity of supply and may therefore reduce the reli-
ability of the power plant. Reference [114] provides an overview of
reliability assessment methods for PV inverters, modules, transmis-
sion systems, and overall distribution systems based on fault analysis.
Insights on the impact of aging and weather conditions on reliability
over the lifetime of a plant are provided in [115], showing that high
average ambient temperature is likely to increase failure rates (almost
10% after 5 years in the case of a PV system in Arizona against 0%
in Denmark). This factor must therefore be considered in reliability
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analyses. In [114], solar variability is mentioned as one of the main
future challenges for distribution systems; however no insights are
given on its impact on reliability. This is why a special focus on solar
variability assessment is provided in this study.

2.2.3 Storage systems

Storage systems may achieve two different objectives in microgrids:
energy shifting and system services. System services refers to appli-
cations dedicated to enhancing a system’s reliability when subject to
unplanned events. For example, a storage system can provide power if
the renewable output suddenly decreases or if a fossil generator trips
(2.19). The storage device is therefore used as a buffer to compensate
for the start time and ramp of the replacing unit.

Figure 2.19: Buffer storage system.

Depending on its objectives, a storage system will have specific
technical requirements that require carefully choosing the technology.
[116] gives an outstanding overview of storage technologies in mi-
crogrids and provides examples for the five main types of storage
technologies listed in Fig. 2.20.

Figure 2.20: Categories of storage technologies.

Thanks to the variety of storage technologies available, numerous
applications are covered, from very small uninterruptible power sys-
tems to utility scale systems such as pumped hydro. Fig. 2.21 shows
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the general trends of technologies according to their rating capacities
and discharge times (additional features for technology comparison
can be found in [117] ). Considering the characteristics of industrial
microgrids and their production units, storage systems must contain
several MWs in order to provide services with reaction times vary-
ing from a few seconds to several hours. Li-Ion batteries, flywheels
and supercapacitors seem to be the most suitable options for these
applications [117, 118].

Figure 2.21: Discharge time and power ratings.

Technology Li-ion Batteries Fly-wheels Supercapacitors

Reference [116, 119, 120] [121, 122] [123–125]

Advantages

High energy density,

High cycling efficiency

Rapid response time,

Low self discharge

Aplicable to other uses

(energy shifting)

Quasi -infinite

number of cycles

High power density

Long lifetime and limited

ageing

Drawbacks
Lifecycle degradation

due to cycling and

thermal effects

Low energy density

High self-discharge rate

High sel discharge rate

(up to 40% a day)

Comment

Market leader. Driven by

synergies with automotive

applications

Recent economies of scale

Low maturity,

high costs

Suitable only for very

short-term applications

Low maturity in large-scale

applications

Table 2.5: Review of advantages and drawbacks of main storage technologies
suitable for industrial microgrids.
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2.3 control and management of microgrids

Most of studies in microgrid tackle the problem of operation and
planning by handling a single aspect of the microgrid (control, energy
management or sizing). But due to the specific characteristics of
industrial microgrids, careful attention must be taken for each of
them. As a matter of fact, the size of the facility emphasizes power
quality problems and endangers the continuity of operations. Secondly,
operational costs are a part of the product profitability and must be
optimized. Finally, as industrial power plant requires huge investment,
a reliable sizing is crucial. Control, energy management and sizing
are three steps of a single process which aims at finding the best
operational scenario for the microgrid.

The operational management of a microgrid consists in adjusting
the production units in order to ensure the system reliability and sup-
ply the load at the minimum costs an environmental footprint. The
term dispatchable units refers to devices on which control action can be
undertaken to adjust the level of production. These are typically the
fossil units and storage systems. As their power output only depends
on external phenomenon (wind, sun etc.), renewable resources are
considered as non-dispatchable units and only a few control actions
can be undertaken to adjust their power output. Loads may be consid-
ered either as dispatchable or non-dispatchable depending on their
criticality.

2.3.1 Short term power control

The performance of a microgrid is highly related to its control scheme
since it is supposed to execute de the production plan while protecting
the power system and devices when instabilities occur. It ensures a
reliable electricity supply by following power quality specification
and protects the devices from going out of their operational range.
In industrial microgrids, a special attention is paid to the frequency
and voltage control. In the next parts, fundamentals of voltage and
frequency transients will be presented alongside with the main levers
to enhance grid stability. As transient perturbations due to renewable
variation or generator contingency mainly impact active power, a
special focus will be provided on active power regulation. Then,
control strategies for each devices of the microgrid will be presented.
Finally, a brief overview of grid modeling technique will be given in
order to conduct dynamic studies.

2.3.1.1 Fundamentals of frequency and voltage regulation

To properly understand the role of power quality in the continuity
of supply, a brief introduction of power system theory is necessary.
However, for the sake of simplicity and clarity, this chapter will not
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develop the theory of power system in details. The ready may refers
to specialized work such as [126].

power system theory

Figure 2.22: Representation of load and generating torque at both sides of a
synchronous machine.

The generating torque produces a rotation of the rotor wich induces
votalges and currrent thanks to the magnetic fields. This produces
sinusoidal voltage and curent signals at each phase characterized by
their magnitude and frequency f.

When a torque unbalance between load and generation causes hap-
pens, the synchronous machine rotor starts to accelerate or decelerate.
This is expressed by the equation of motion derived from Newton’s
2nd law (Eq. 2.5). Where J is the moment of inertia of rotating parts
of the connected equipments in kg.m2.

J
dω

dt
= tm − te (2.5)

The frequency f in Hz is related to the voltage and current sig-
nal’s period ω in rad.s−1 which also corresponds to the synchronous
machine’s shaft rotational speed.

ω = 2 ∗ π ∗ f (2.6)

On the contrary to frequency stability which can reasonably con-
sidered as uniform within the power system (assuming synchronous
grid), voltage stability must be evaluate at each node of the power
system. This is done by resolving the non linear relationship linking
current and voltage at each node k to the injected active and reactive
power (Eq. 2.7).

Ik =
Pk − jQk
Vk

(2.7)



2.3 control and management of microgrids 57

The power flow equations are usually solved in their Jacobean
formulation by commercial softwares (Eq. 2.8).

[
∆P

∆Q

]
=

[
δP
δθ

δP
δV

δQ
δθ

δQ
δV

]
·

[
∆θ

∆V

]

(2.8)

Voltage stability can be handled at relatively low costs with available
commercial technologies. In addition, reactive power compensation
capacities (such as capacitors banks) are more affordable than active
power compensation capacities (which are new production units such
as storage or fast fossil generation). This means that the techno-econoic
balance will be less impacted by making adustements on reactive ca-
pacities trhough the successive sizing steps. Finally, unlinke for active
power, reactive power can be produced by all devices which gives
more flexibility to the system. This is why assessing the impact of vari-
able energy ressources penetration on voltage stability can be assigned
with a lower priority than assessing frequency stability problems [127,
128]. After the long-term planification, a detailed modeling of voltage
control remains necessary in isolated system whenever the grid topol-
ogy is available. This is generally done in detailed engineering studies
and is out of the scope of this study.

The power system’s response to a sudden load step (Fig. 2.23) shows
that the frequency stabilization is handled by passive and active levers.
Passive levers are the first to participate in the frequency regulation
and consists in the kinetic energy stored in synchronous machines as
well as the frequency dependency of consumers. They are linked to
the system’s mechanical and electrical characteristics and does not
require any human actions. Then, active levers are triggered. These
involve power reserves from devices which are activated following a
specific order with the aim of recovering from the perturbation.

the role of inertia in passive regulation

As seen in Fig. 2.23, the kinetic energy delivered in the first few seconds
is much more important than the primary reserve and frequency-
dependent load reduction. When a sudden power unbalance happens,
mechanical torque as both sides of the alternator shafts causes it to
decelerate. The inertia softens the shaft’s deceleration by returning the
kinetic energy stored in the rotating mass[126]. The inertia constant
H (sec) accounts for the kinetic energy stored in the synchronous
machine. It is calculated as a function of the angle velocityω (rad/sec),
moment of inertia J (kg/m²) and power rating of the unit (MVA).
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Figure 2.23: Evolution of frequency after a load change [15].

Type of unit Inertia constant (s)

600 MW steam turbine 13.7

11 MW middle speed diesel engine 3

21 MW middle speed diesel engine 5.2

30 MW gas turbine 2.5

Photovoltaic generator 0

Table 2.6: Value of inertia constant for several production units [129].

H =
1

2
.
Jω2 ∗ 10−6

MVAPUratings
(2.9)

The inertia constant of a system is the sum of individual inertia
constant H of each generating unit i (Htotal =

∑
iHi ). In the first

moments of a perturbation, the frequency shift is only driven by
the swing equation and therefore depends on the power difference
∆P = Pgen − Pload and the inertia constant H [129]. This means that
the frequency drop highly depends on the mass of rotating parts.
Hence, moment of inertia of production units are key lever to enhance
frequency stability and resiliency of the power system. Due to the
increasing penetration rate of renewables, microgrids tends to have
less inertia in their system. This is due to the fact the inertia values of
diesel generator and gas turbine are smaller than large conventional
fossil units (see Tab. 2.6) and also because units may be shut down
when renewable power feed the system.

In a microgrid, keeping an enough inertia is crucial to maintain the
grid’s stability. This aspect must be considered with the same care as
active control actions. This is pointed out in [130], where a microgrid’s
frequency response is evaluated for different inertia constant values.
Even though PV systems do not provide inertia to the system, power
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electronics and fast response storage system may help to synthetize
inertia and therefore improve the system’s resiliency [131, 132].

2.3.1.2 Control of dispatchable units

As soon as a frequency shift is detected, control actions are triggered
to prevent the voltage and frequency from exceeding their nominal
values. These actions consist in adjusting the power output of the
devices to bring, at first, the power unbalance to zero, secondly, to
bring the frequency to its nominal value. These actions come after the
inertial response due to the time delays of communication systems,
fuel injectors, combustors and the limited ramping capacity of fossil
units. Typical controls strategies for microgrids under various con-
ditions are detailed in [13, 16] and an outstanding review have been
provided by [131]. Fig. 2.23 shows the typical three-layer hierarchical
control is used in most of the system to adjust the power and correct
the deviations:

• Primary control: immediately adjusts the power output of dis-
patchable units in order to stop the frequency or voltage shift.

• Secondary control: modifies the output power of dispatchable
units to bring the frequency or voltage at its nominal value.

• Tertiary control: re-equilibrates the output power of each gener-
ator to make them run at their economical optimum.

These control actions can come from any dispatchable units (fossil
units, storage system or even loads) provided that the strategy follows
the device’s specifications. Their regulation will be detailed in the
following parts for each of the microgrid’s device. Among all primary
controls developed in the literature, the droop-control method is
by far the most commonly used and easier to implement. In large
power system, it is used to control units involved in the primary
regulation [126, 129]. Its use in microgrid is justified and detailed
in [133, 134]. Any power imbalance is automatically compensated
by the generation proportionally to the frequency deviation. The
contribution of each generator is proportional to its droop value Rgen
giving ∆Pgen = Rgen ∗ ∆f (it must be noticed that the generation
remains limited by its ramp-rate). Figure 2.24 illustrates how two
units of different droop characteristics can participate to the frequency
regulation.

The active power control is a common rule applied by all units
which takes place in the primary response. However, controller must
embed additional features in order to protect the equipment from
going out of their operational range. This will be presented in the next
sections.
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Figure 2.24: Control of two units with different droop characteristics [126].

control of fossil units

Fossil engines are naturally the main actors of power quality regu-
lation. In most of stability studies, the regulation potential is solely
addressed using the droop Rgen. But fossil units remain limited by
their flexibility in terms of ramp and load factor (which justifies the
study of their dynamical behavior as presented in part 2.2.1 ). The
control of fossil units and its simulation for stability studies will de-
pend on the availability of information regarding the unit’s transient
behavior and well at its technical limitation (ramping range, power
range, maximum fuel mass flow, temperature limits, emissions limits
etc.). In most of the cases, the fossil controller is provided by the man-
ufacturer and its information is confidential. In order to model and
study the electrical stability, only high level of abstraction is generally
possible such as shown in Fig. 2.25.

Figure 2.25: Principle of a multi-constrained fossil generation frequency con-
troller.

The control scheme may consist in a succession of saturation and
time delay accounting for constraints and transient behavior such
as done in the reduced order system frequency response model in
[135] and shown in Fig. 2.26. This accounts for either time delays of
communication and injectors as well as physical limits of minimum
and maximum power.
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Figure 2.26: Reduced order frequency model accounting for gas turbine
constraints and dynamics [135].

In Fig. 2.26 and similarly to the control of conventional large-scale
units, the power output is only driven by the droop characteristics
and the frequency shift. But in normal operation, the fossil generator
needs to supply the power required by the user. The control signals of
the load demand and frequency regulation are therefore summed-up
to obtain the final power need from the generator [126]).

Figure 2.27: Coupled frequency and load reference control.

control of gas turbines

In Ref. [58], it is highlighted that gas turbine’s control system shall
adjust the power output while protecting the engines from exhaust gas
temperature excess (turbine’s overheating), over speed and over-stress
of rotating parts, stalling and surging due to high compressor ratio.
Fig. 2.25 gives a direct example for gas turbine: the fuel command
depends on the frequency deviation and is then saturated by the
surge limit and flame out limit. This is applied in [65] for the control
of the mass flow which is a good methodology to include physical
limits of components in the power control of gas turbines. However
as pointed-out in part 2.2.1, the knowledge required for modelling
such control is rarely available and sometime a simplified model has
to be implemented (use of maximum and minimum ramp rates for
example).

control of diesel engines

Diesel control strategies and challenges regarding the plant’s protec-
tion are stated in [136]. Similarly to gas turbines, the power demand
of diesel units must take into account its limitation such as the mini-
mum loading factor or its maximum achievable ramp rate.References
[78, 79] proposed a diesel engine frequency control and showed how
the engine’s characteristics may impact the grid stability. In [78], the
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advantages of a highly flexible control for diesel allowing low loading
are presented. The results show an improved stability margin for
frequency and highlights the potential of low-load diesel technology
to reduce storage capacity investments. As fossil units tend to be
flexibility providers more than prime energy suppliers, low-load and
highly flexible fossil units’ control will probably be a key issue in the
future.

control of storage systems

Fast discharging storage technologies are naturally widely used for
short term regulation of power unbalances. An overview of control
strategies for storage systems in given in [137]. In [138], an experi-
mental study shows how a droop-controlled storage can be used to
regulated the system’s frequency. As battery energy systems are now
spreading in microgrid applications, the literature covers a wide vari-
ety of control strategy. [137] introduced the concept of state-of-charge
weighted droop control in order to adapt the regulation to the remain-
ing amount of energy in the battery. Similarly, to fossil engines, battery
control system includes protections and saturation to take chemical
dynamics and component’s electrical limitations into account. A good
example of such control is found in [139], where a three-phase battery
improves the frequency and regulation using conventional droop and
inertia emulation. An ingenious control scheme is proposed by [140]
with the aim to coordinate the frequency control of fossil units and
storage system. A low pass filter is applied to the frequency deviation
so that the generator only corrects low-frequency deviation whether
the storage systems correct fast-moving deviation thanks to its high
flexibility. Since control scheme must take specificities of each tech-
nologies into account, dedicated strategies are developed for flywheels
and super-capacitors. In [141], a highly detailed control scheme for a
flywheel system is presented. The study proposed to use fuzzy logics
in order to improve the integration of wind power into the grid. In
[142], a supercapacitor controller is proposed to regulate electrical
transient caused by wind power ramps.

control of loads

In high-reliability industrial application, the continuity of supply is a
priority. This lets a small potential for taking actions on load in order to
correct instabilities. Underfrequency load shedding procedures must
be used only in emergency situations in order to protect the grid from
blackout [126]. It is however important to carefully design the load
shedding as significant stability improvement [143]. If a significant
share of load is considered as non-critical, it is possible to use it as a
flexibility potential and regulate the frequency and voltage deviations
[47, 144]. However, accurate load models are necessary to accurately
assess the potential of flexibility and stability improvements [145].
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This solution is one of the most advantageous since no additional
investment in necessary to integrate large share of renewables.

control of pv systems

Unlike for wind generators, which have higher inertia and regulation
capabilities for frequency and voltage, PV generator are more limited
when no storage is associated [146]. Depending on inverter technol-
ogy, the power factor can be adjusted and therefore participate to the
voltage regulation. Thanks to capacity curtailment, it is also possible
to regulate overfrequency events by lowering the power output of
the inverter. This is detailed in [147], which presents an overview of
the active power control of PV systems. The potential of PV plant
curtailment has also been pointed out in [148] to lower the risks of
short-term drops due to solar variability. By reducing the number of
connected panels and therefore the available production, the potential
solar drop is also reduced. This is however subject to high uncer-
tainties related to the forecast of short-term variations. In addition,
a significant part of the solar production is lost, which reduces the
environmental and economic performance of the plant. This solution
must therefore be put into perspective with other mitigation levers,
such as storage systems, and should be evaluated at the sizing step.

When associated to a sufficient energy buffer with very fast response
time, grid forming inverters can enhance the grid’s stability with
synthetic inertia. It also allow black start capability when large share
of renewables feed the system. An overview of grid forming PV
inverters from operator, manufacturer and research perspective is
provided in [149].

2.3.1.3 Electrical modelling and simulation

Modeling the short-term power control is mandatory to accurately
assess a system’s potential for renewable integration. Using voltage
and frequency response modeling, the authors of [37] proved that the
maximum renewable penetration limit to ensure grid reliability in
Indonesia was 31%. In [150], a transient stability method is used to
determine the maximum intermittent power penetration in an isolated
system. Using swing equation equal area criteria, the ability of a
system to properly control active power during transient events is
studied in [151]. Numerous commercial software applications now
allow stability studies featuring renewable technologies (ETAP, MAT-
LAB, PSCAD, OPEN-DSS) and are widely used in both academic
and industrial environments. Finally, research programs increasingly
work on simulating systems in real time using hardware-in-the loop
techniques [152]. By running simulations over a long period of time,
it is possible to assess the performance of the microgrid in terms of
quality of supply through reliability indicators [28] such as EENS,
CAIDI, ASAI, and ASUI. This study gives an example of how to assess
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Power system simulation
Dynamic models and control strategies
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Validation
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Figure 2.28: Example of a procedure for reliability assessment over a mi-
crogrid layout (where decisions are made on PV and storage
capacities).

the reliability level in several plant configurations (islanded vs grid-
connected, various sizes of PV systems and storage). Thanks to power
quality simulation, probabilities of electricity outages (underfrequency
load-shedding or grid blackouts) can be identified and thus integrated
in the reliability assessment. This issue has been partly addressed in
a previous work based on the duration of overfrequency and under-
frequency regimes over one day [153]. Deeper investigations need to
be carried out to propose a methodology to evaluate the reliability
indicators related to power quality problems. Fig. 2.28 proposes such
a procedure for the reliability assessment of an industrial microgrid
with renewable integration.
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2.3.2 The energy management approach

Although power control is very important for grid stability and ro-
bustness, it does not deal with economic objectives or handle forecasts
of load and renewable resources. This is dealt by the energy man-
agement layer, which ensures the global equilibrium of production
and consumption while minimizing the overall costs. The Energy
Management System (EMS) ensures the proper allocation of produc-
tion units by monitoring data and collecting forecasts. Considering
industrial microgrid characteristics, centralized EMS generally seems
more convenient [14]. The efficient performance of EMS lies in its
ability to allocate the resources of each device at a minimal cost, which
means that its dispatch algorithm is of paramount importance. In [154,
155], detailed surveys of energy management methods are proposed.

Linear programming (LP) and multi-layer optimization techniques
turn out to be very relevant to address reliability and power quality in
industrial energy management problems. This is why a special focus
is proposed in this chapter.

2.3.2.1 Deterministic, robust and stochastic optimization

Examples of linear programming techniques for energy management
are given in Tab 2.7. In most of the cases, a deterministic approach
is used which means that uncertainties of renewable forecasts and
load forecasts are neglected. However, when dealing with unit com-
mitment, storage charging cycle or reliability constraints, the risk of
discrepancies between forecasts and real-time production shall be
addressed with more accuracy

A stochastic approach can deal with probabilistic forecasts and is
therefore suitable to address renewable’s prediction uncertainties [156].
However, the complexity of the problem is significantly increased, and
this approach does not guarantee a fully reliable solution. A stochastic
approach is more relevant when a trade-off can be made between
reliability penalties and operational savings.

A robust approach is useful when reliability constraints play an
important role in the operation. It avoids the use of probabilistic fore-
casts thanks to an efficient selection of uncertainty scenarios [157] (in
general, worst-case scenarios are selected). Uncertainty is addressed
from a conservative point of view involving a study of the historical
performance of the forecast system.
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2.3.2.2 Reliability constrained unit commitment

Thanks to adequate constraints, EMS can protect the grid from unex-
pected events (generator contingency, sudden load increase, etc.) by
implementing the concept of spinning reserve, the N+1 rule, or even
an aggregated indicator for a frequency shift.

Reliability constrained unit commitment are proposed in [175] and
[176] to address generator contingencies thanks to the "N+1" rule
which allocates an additional fossil generator to cover the loss the
largest unit. These formulations only handle the power balances
before and after and contingencies but do not take the grid dynamics
into account.

The resiliency of the grid and its ability to maintain grid frequency
within satisfying limits during a unplanned event (generator con-
tingency) can be handle by frequency constrained unit commitment
(FCUC). This is proposed in [177] where the equation of motion is
used to integrate frequency deviation constraints in the optimization
problem. The authors in [168] propose a two-stage stochastic MILP
formulation to calculate both unit commitment and reserve schedul-
ing with 0-Hz and +/- 10 mHz of tolerance for frequency deviation.
In [165], the frequency control is integrated into the EMS, but this
significantly increases the complexity of the problem. A Benders
decomposition is therefore used to solve the problem. In reference
[135], the challenges of a frequency-constrained model are developed.
The possible options to directly integrate frequency shift mitigation
lead to either a non-linear problem or a sub-optimal solution (use of
minimum ramping capacity, minimum value of inertia, etc.).

The risk of frequency shift due to a loss of renewable production
must also be addressed to ensure grid reliability. This is discussed
in [178] where the wind production uncertainty is handled thanks
to the same constraints as generator contingencies. In [179], several
frequency constrained unit commitment formulation are proposed to
handle wind power variations and properly allocate the compensation
from the storage system. From this survey, it appears that the iden-
tification of renewable variability scenario is crucial and even more
challenging than the constraint’s mathematical formulation itself. In
[178, 179] worst cases wind drops have been chosen and considered
as sudden variation from an optimization time-step to another. In
the case of solar power, production drops may appear in a few sec-
onds which is lower than the optimization granularity. In addition,
fossil units have maximum ramp-rates that limit the flexibility of the
grid. The specificities of PV based industrial micro-grids have not
been addressed in previous work on FCUC which calls for deeper
investigations.
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2.3.2.3 Model predictive control for EMS

As pointed out in [169], a fully-integrated MILP model problem ac-
counting for uncertainties and reliability can be very hard to solve
due to the number of variables and constraints. This justifies the use
of model-predictive control (or a multi-layer approach) to address
both control and management of the microgrid. As presented in [172],
model predictive control for energy management consists of a predic-
tive model that plans optimal energy exchanges based on forecasts,
and a system model that performs the dispatch and controls the power
flux. The predictive model can be based on various management tech-
niques such as presented above. The level of accuracy of the system
model can be adapted to available information and may embed a very
detailed control scheme. Finally, MPC reproduces the hierarchical
relationship of the energy and power management system in real-life
conditions.
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Figure 2.29: Architecture of model predictive control for energy management.

In [51], a two-layer model predictive control is used to simulated
an off-grid O&G platform fed by a wind farm, two gas turbines and
battery storage. In [169, 170, 173], the high level optimization problem
is addressed using linear programming and therefore reproduces the
decision of an LP-based energy management system. The results
show that the method is able to handle forecast uncertainties, simu-
late dynamic behavior with accuracy, and improve both renewable
penetration and operational savings.
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2.4 sizing of industrial microgrids

The previous part (2.3) have shown that the performance and reli-
ability of engine highly depends on the real-time control strategy
and the commitment of each device of the microgrid. However, the
management of the plant is constrained by the units available on site.

At the sizing step, investment decisions are made for fossil units,
storage and PV systems while tracking one or several objectives (costs,
emissions) and satisfying a set of constrain (load, reliability, emissions
etc.). Several tools are available to help designing the microgrid
architecture. HOMER is one of the main sizing tools dedicated to
microgrid. It allows evaluating multiple architecture thanks to a
simulation of operation over 1 year. Architectures are ranked by
lifecycle costs taking into account discount rate, derating factor of
units, emission penalties etc [86]. A MILP-based is integrated in the
DER-CAM software which therefore guarantee an optimal solution
[180].

Numerous studies dealing with sizing optimization are available
on the literature and several reviews have been recently published
[181–183]. In [184], the design of an offshore O&G hybrid power plant
is performed by successive runs of high-level models and detailed
models. The methodology uses genetic algorithm to converge to an
optimal solution. This approach allows using complex model that
directly addres power quality. However, they cannot guarantee a
global equilibrium and require running detailed simulation at each
step of the process.

From these reviews, linear programming formulation again appears
as a good way to optimize the sizing of industrial microgrid.

• Linear programming formulations allow a comprehensive and
flexible modelling of the microgrid

• Linear and mixed integer linear problems can be solved by
commercial solvers giving guaranty of optimality of the solution
and gap to the optimal solution.

• The process of reliability constraints have already been devel-
opped in similar problem and the use of endogeneous indicators
and constraints for the small time-scale reliability seems adapted
to industrial microgrids.

In [180, 185] , the proposed MILP sizing formulations consists in
coupling operational management and investment optimization (see
Fig. 2.30). The energy management model reproduces the behaviour of
the power plant thanks to typical time-indexed operational variables
and constraints. It is evaluated over a given time-horizon to reproduce
the plant’s lifetime. Operational variable are used in the objective
function to evaluate the overall OPEX. Meanwhile, sizing variable
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Sizing optimization

Operationnal optimization

Decision variables : Installed capacities

Decision variables : Unit commitment, power device production

Constrained by : installed capacity, resiliciency etc.

Objective function
CAPEX + OPEX

Figure 2.30: Principle of integrated sizing optimization [185].

account for the installed capacities of power units are are therefore not
time-indexed. They are associated to installation costs in the objective
function to calculate the plant’s CAPEX. Therefore, one of the main
challenge of MILP formulation for sizing lies in a proper formulation
of the management problem. On the other hand, the formulation of
both sizing and management problem forces to make assumptions on
the control strategy which can reduce the accuary of the method. Such
problem has been pointed out in [186] which pushes to carefully track
the feasibility of the final solution obtained at the sizing optimization
step.

2.4.1 Reliability-constrained sizing

To ensure the reliability of the system, the mathematical formulation
of the management problem needs to include reliability constraints
for contingencies or renewable variations.

Optimal sizing of micro-grid with redundancy constraints have
been proposed in [187, 188]. In [189, 190] kinetic indicator are used to
guarantee the system reliability while carrying the long-time planning
of the French electric grid.

In [191], spinning reserve constraints are used to ensure the load
balance in case of solar drops. The study uses probability of solar
drops based on historical data with a 15-minutes resolution. The
formulation is integrated in the DER-CAM tool which also integrated
redundancy constraints. In [192], the resiliency to sub-hourly solar
and load variability is addressed thanks to the gaps observed between
hourly averaged data and higher resolution timeseries.

In the studies mentioned above, the resiliency of the grid to power
unbalances (generator contingency or renewable power variations) is
handled thanks to spinning reserve constraints. They ensure that fossil
units and storage systems have enough power margin to compensate
power drops but do not address the problem of frequency variations.
To integrate these aspects, the energy management’s sub-problem
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must integrate FCUC constraints such as detailed in part 2.3.2.2. Such
approach has not been proposed in a MILP framework for short-term
solar drops resiliency.

2.4.2 Sizing under uncertainties

The long-term planning of microgrid is also subject to uncertainties
which are mainly related to generator losses, load profile, renewable
production and site’s yield.

Robust optimization is used in lots of references as it provides
much more guarantee on the system’ reliability. In [193], robust
planning of microgrid is carried with a two-stage optimization of
investments and operation under worst-case scenario. The formulation
of a robust optimization for a standalone system is well detailed in
[194] in order to tackle the risk of insufficient renewable production.
The results pointed out the advantages of dynamic programming
technique instead of linear programming for improving computational
time. In [195], a robust sizing of multi-energy system using MILP is
proposed. The authors addressed the load and renewable uncertainty
with either worst-cases scenarios (ensuring energy supply 100% of
the time) and robust scenario (allow small lacks of energy supply).
The result show that worst case scenario lead to high installation
costs and sub-optimal solutions whereas robust scenarios allow better
performing solution whilst keeping a good level of resiliency. This
pushes to consider a certain level of tolerance in reliability constraints
to avoid high installation costs.

An alternative to robust sizing is the formulation of a stochastic
optimization problem. In the context of industrial microgrid, such
approach are less relevant since they require a trade-off between
reliability and economic performance. Regardless of the strategy to
address uncertainties (stochastic or robust), a deep investigation of
load and resources profiles must be carried to generate representative
scenarios. This means collecting at least one year of data to suitably
address daily and seasonal variations.
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2.5 formulation of the scientific approach

2.5.1 Highlights of literature review

This chapter details the concept of industrial microgrids along with
some key characteristics. Industry brings a new field of application
for microgrids to add to those previously detailed in [14, 20, 21]. Ad-
ditionally, a review of renewable integration studies in O&G systems
illustrates the main challenges of industrial microgrids, which is a
topic that has not been addressed in existing review papers.

The need for continuous operation of industrial power plants re-
quires high availability of electrical generation. On the other hand,
the electrical system is more vulnerable due to its low inertia and
low flexibility compared to large grids or residential systems with
electrical loads that are likely to be shed or delayed. The integration of
highly variable and stochastic solar power challenges the performance
and reliability of power plants as the rapid power losses involved can
cause considerable electrical instabilities.

A particular feature of large-scale microgrids is their use of fossil
generators. The integration of renewable energy sources therefore
requires a change in the operational approach. Consequently, conven-
tional modeling and optimization tools that were designed for static
operations need to evolve, as fuel consumption, fatigue and emissions
could significantly diverge from historic benchmarks.

The need for reliability calls for a more extensive understanding of
the short-term behavior of renewable systems to anticipate extreme
events. Variability analysis techniques have been developed to quantify
solar ramps and can be coupled with a geographic smoothing model
in order to assess the power fluctuation of the overall solar plant.

Control and management schemes must be chosen in order to
correspond to this highly constrained framework. The large number of
non-linearities (solar ramps, electrical instabilities, fuel consumption,
etc.) as well as the role of the power quality call for the integration of a
detailed description of the electrical system in future techno-economic
studies. Optimization and simulation techniques should integrate
these phenomena to better address the relationship between power
control and energy management.

Finally, reliability of power system are the focus of lots of sizing
methodologies. Linear formulations show promising capabilities but
only provide constraints for the resiliency to generator contingency.
On the other hand, non-linear formulation and meta-heuristics allow
a more accurate description of electrical stability problem. However,
no study were found to address both solar variability and electrical
stability.
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2.5.2 Knowledge gaps

Thanks to this literature review, the knowledge gaps for the perfor-
mance evaluation and sizing optimization of industrial microgrids can
be identified with a brighter vision.

Industrial power systems can be considered as low inertia systems
which make them more sensitive to power fluctuations. Meanwhile,
their tolerance to power quality disturbances is very low due to the
level of reliability expected from operators. The impact of solar power
variations on the quality of electricity supply in a system featuring
large-scale fossil generators have not been addressed in the literature.

Solar short-term variability is characterized by its low temporal
granularity (from a few seconds to one minute) which forces to per-
form grid simulation with a small temporal resolution. Commercial
software and studies have proposed to integrate variable solar profiles
but the computational time limit was not addressed. Consequently,
available tools and models require large computational resources and
are not fitted to the needs of a preliminary assessment study.

Since expensive mitigation technologies can be purchased for man-
aging the solar variability, an accurate evaluation of PV power drops
is necessary. The power ratings of industrial power systems leads to
consider additional factors in the power PV profile generation such as
geographical smoothing. Such aspect have been rarely addressed in
the process of power quality evaluation of microgrids.

The operational strategy plays a important role in the economic and
environmental performance of the power plant which pushes to adopt
optimization techniques. However, this challenges the integration of
electrical assessment. Consequently, most of studies addressing the
performance evaluation of microgrid only cover a single aspect of the
problem (power quality control or operational optimization).

A large number of studies have addressed the optimal sizing of
microgrids while ensuring their resiliency to unplanned events such
as renewable variations or fossil generation breakdown. However, the
lack of dedicated frequency constraints for solar variability manage-
ment prevents a reliable investment planning.

Existing work on frequency constraint sizing and unit commitment
have highlighted the high computational complexity of models due to
the non-linearity of power system equations. Additionally, recent work
pointed out the risk of suboptimal solutions when using linearized for-
mulation for frequency constraints. The use of optimization technique
can be bypassed by performing a large number of grid simulations
but the computational time of such method remains a limit for their
use in the present application. This suggests taking advantage of both
methods and combine them to provide optimal and robust sizing in a
limited time.
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2.5.3 Research method

The objective of this thesis is to provide methods helping industrial de-
velopers with the preliminary decision-making process of microgrids.
The first problem is to accurately assess the electrical stability as well
as economic and environmental performances. The second problem is
to develop a sizing methodology for providing project engineers with
reliable and optimal investment decisions on PV and storage installed
capacities.

Thus, the main scientific objective of this thesis is to integrate the
relationship between short term solar variability and electrical stability
in the simulation of the optimal operational management of the plant
as well as in the power plant’s sizing optimization process. This
involves developing a set of simulation and optimization models
being able address the specificities of large-scale power generators and
to consider the different time-scales where operational management
and power control take place. The computational burden of the
methods should be kept minimal to ensure that they match the needs
of preliminary assessment phases. To reach this scientific objective, the
following method is proposed and developed throughout the thesis:

Step 1 : Generation of solar variability scenarios (Chapter 3)

First, the identification of solar input scenarios taking irradiance vari-
ability into account is investigated. The main objective is to provide
operational simulation and sizing with representative time series to
properly evaluate electrical perturbations. To cope with the lack of
available data, the use of worst-case irradiance dataset coupled with
WVM smoothing is preferred to the synthetic generation of solar time
series. Given the fact that solar ramps occur at low time-scales (several
seconds), high-resolution time series must be used which is compu-
tationally demanding. The proposed approach aims at reducing the
number of input solar time series for grid simulation. Additionally,
the identification of a set of worst-case solar ramps is explored to
integrate solar variability into energy-level optimization problems.

Step 2: Impact of solar variability on reliability (Chapter 4)

The impact of solar variability on the reliability of the power system
was found to be one of the main research question. This second step
aims at developing the proper model for the simulation of power
quality under solar variability scenarios. Despite the fact that ther-
modynamic models can accurately evaluate fuel consumption and
potential fatigue due to transient operation, their complexity of devel-
opment, adaptation and computation puts them out of the scope for
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the present method. Instead, dynamic electrical model formulated in
the Laplace domain are used.

Step 3 : Economic and environmental assessment (Chapter 4)

Economical and environmental performances are driven by EMS lay-
ers which take scheduling and dispatch decisions to minimize the fuel
consumption or CO2 emissions. This third step aims at reproducing
the management strategy of an industrial microgrid. An EMS opti-
mization problem is formulated based on MILP and decomposed into
two layers : A schedule optimization is performed once a day for fossil
unit commitment, and a dispatch layer recalculates optimal setpoints
without changing the units operating status. This hierarchical struc-
ture allows keeping a close similarity to currently operated plants in
TotalEnergies.

Step 4 : Integrated operational simulation (Chapter 4)

The electrical model and the energy management model are coupled
together to perform the technical, economic and environmental assess-
ment simultaneously. This allows considering the interconnections
between energy management and power quality control layers. To
reduce the computational burden, a scenario aggregation method is
employed: A worst-case scenario provides conservative evaluation
of electrical perturbations whereas days of varying variability and
irradiance are used for calculating yearly performance indicators.

Step 5 : Sizing optimization (Chapter 5)

Since operational simulation is computationally demanding, a sizing
optimization model is developed to find the best performing set of
installed capacities for PV and storage systems. A MILP approach
is used due to its many advantages in terms of formulation, solving
capabilities and guarantee of optimality. Linear frequency constraints
are formulated to ensure the system’s resiliency against short-term
solar drop. Worst-case solar ramp scenarios identified at step 1 are
integrated to fit the hourly time-decomposition.

Step 6 : Full sizing procedure (Chapter 5)

As highlighted in the literature, linear formulation of frequency con-
straint lead to sub-optimal solution and potentially a poor evaluation
of electrical perturbations. Thus the sizing optimization is coupled
with the operational simulation to provide optimal and robust solu-
tions.
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S O L A R I N P U T S C E N A R I O S A N D S H O RT- T E R M
VA R I A B I L I T Y

This chapter proposes a set of tools to characterize the short-term variability
of Global Horizontal Irradiance (GHI) profiles, simulate the geographical
smoothing effect of photovoltaic power plants and extract representative sce-
narios that will be taken as input in grid simulation and sizing. This work is
based on the conference paper presented at ICAE 2020 [196] and the study
published in the associated journal Applied Energy [197].

Ce chapitre propose un ensemble de méthodes pour caractériser la variabilité
à court terme des profils d’irradiation (GHI), simuler l’effet de lissage géo-
graphique des centrales photovoltaïques et extraire des scénarios représentatifs.
Ces scénarios seront utilisés comme données d’entrée pour la simulation et
le dimensionnement du micro-réseau. Ce travail est basé sur un article de
conférence présenté à ICAE 2020 : [196] et un article publié dans la revue
scientifique associée Applied Energy [197].

1 PRE-PROCESSING OF IRRADIANCE TIMESERIES

1.2. Quantifying solar variability

Identify and validate variability mertrics for 

short times scales

Contribution: 

Proposed gradient based ramp detection

algorithm

1.2. Reproduce the behavior of  MW scale

power plants

Apply Sandia Lab’s Wavelet Variability

method to reproduce MW-scale equivalent

irradiance profile.

2 VARIABILITY SCENARIO IDENTIFICATION

2.2. Day long scenarios

Typical days choosen thanks to global 

indicators:

- Worst case scenario to represent the most

variable day in the dataset

- Clustered set to evaluate the power plant in 

various situations 

Contribution: 

K-means clustering techniques based on 

global irradiance potential, mid-term

variability and short-term variability.

2.3. Isolated ramp scenarios

Set of  isolated solar ramp extracted thanks to 

ramp-detection algotithm. expressed as 

irradiance drop (in KW/m²) over time period

(in seconds).

Contributions: 

• Worst-case scenario identification from

ramp statistics

• Convex hull representation

PV

t
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nomenclature of chapter 3

indices

Symbol Description

t Timestamp of irradiance timeseries

d Day of year

σ Cluster number

j Clustering feature

r Ramp event within a set of ramps

sets

Symbol Description

R Set of detected ramps

R∆T Set of ramps of duration ∆T

Rmax Set of ramps with highest irradiance drop

Hmax Convex hull of detected ramps

variables

Symbol Description

GHIt Global Horizontal Irradiance at t

GHIt Clear sky Irradiance at t

VIstein Variability index proposed in [90]

VI Proposed variability index

LGHI Length of GHI curve

GHIh Hourly average irradiance

Nramp Number of ramp detected in a daily timeseries

∆I Irradiance drop during cloud passage

∆T Duration of cloud passage

GHIsimplant(t) GHI timeseries after WVM smoothing

GHInorm Normalized irradiance

ωt̄(k) Wavelet transform of GHI timeseries
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t Equivalent frequency

φ Top hat wavelet object

Dm,n Distance between WVM sites

A WVM correlation factor

Nσ Number of elements in cluster

ρ(dm,n Variability dependency of WVM sites

VR(t̄) WVM Variability reduction

EId Daily cumulative irradiance

RIhd Mid-term variability indicator for clustering

PL Electrical load power

Pgen Fossil generation power

Pbat Battery power

PPV PV system output power

Kθ PV Temperature derating factor

η PV global derating factor

QPV PV installed capacity

Pmaxgen Maximum power output of fossil generation

Pmaxbat Maximum Battery power output

RPVh PV spinning reserve margin

M Mechanical inertia constant

Ncluster Number of cluster for Kmeans

Gkj Coordinate of center of gravity in dimension j

Nk Number of element in cluster k

xk Element within cluster k

Dki Euclidean distance to center of gravity of cluster k

Xj
kmeans Weighted average value of kmeans feature j

Punmetload Power unbalance during cloud passage

rrgen Fossil generation ramp-rate

Υ Maximum power unbalance during cloud passage
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3.1 introduction

Integrating large scale PV system in industrial microgrids is a challeng-
ing task due to the level of reliability required by electrical consumers.
As stated in part 2.1.4, power plant developers must carry a detailed
assessment of each factor that may cause a loss of electricity supply.
In conventional systems, equipment faults and maintenance are the
main risk of electrical perturbations but hybrid systems now faces
new perturbations related to the short-term variability of renewable
resources. Due to cloud passage, MW-scale PV power plants may
loose almost all their production in several seconds. This power drop
must therefore be rapidly compensated to avoid large electrical insta-
bilities which requires either fast-response from fossil generation or
storage devices. To properly evaluate the economical performances of
the system and guarantee its safe operation, solar variability must be
deeply investigated.

In the process of sizing and simulating microgrids, solar input sce-
narios are necessary to provide an approximation of the system in
real-life conditions. Hourly-averaged irradiance profiles are generally
used by developers thanks to meteorological data. But this overlooks
the short-time behaviour of the PV plant and does not allows evaluat-
ing the risk of electrical perturbation in case of cloud passage. Hence,
new types of scenarios must be identified to take solar variability
into account when carrying the performance assessment of industrial
microgrids. One of the main challenge is that only high-resolution
time-series are able to capture short-term solar variability. For practi-
cal reasons related to simulation time and computational complexity,
it is not possible to simulate one year of 1-second irradiance data. This
calls for a selection of typical scenarios among the dataset.

This chapter presents a methodology to identify two types of so-
lar input scenarios taking solar variability into account: day-long
scenarios and isolated ramp scenarios.

First, a pre-treatment procedure is proposed which consists in quan-
tifying the level of variability of a 1-second GHI time series and
applying the Wavelet Variability Model (WVM) to reproduce the short
term behaviour of MW-scale power plants. Then, day-long scenarios
are extracted from the dataset thanks to timeseries clustering. Fi-
nally, a set of isolated ramp event is extracted to allow quicker grid
simulations and integrate solar variability in microgrid’s preliminary
assessment procedures.
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3.2 pre-treatment of global horizontal irradiance time-
series

3.2.1 Variability metrics to characterize daily time series

To simulate the PV power plant under different levels of variability,
quantifiers are necessary to identify and classify solar input scenarios.
Lots of indicators already exist to evaluate the solar variability and
provide an insight on the solar perturbation that the grid will face
(see 2.2.2). However, the sub-minute variability is rarely addressed in
the literature. Due to the low inertia of industrial microgrids, sharp
drops with a short duration may have a significant impact on the
grid stability. Thus, it is necessary to identify a variability indicator
adapted to small time scales. In this chapter, the Variability Index
(VI) proposed by Stein et. al [90] is used due to its simplicity of
calculation and its adaptability to time increments. A limitation of
such global indicator is that cloud passage is overlooked and that
it does not provide a decomposition of all the ramp events causing
solar variability. A second methodology is therefore proposed, which
consists in detecting each PV ramp-down thank to a gradient based
sliding window algorithm. The resulting daily number of ramps gives
a new global indicator that will be compared to the VI. This detection
approach also allows building useful ramp statistics that will be used
later in this chapter for isolated scenario identification.

3.2.1.1 The Variability Index

In their study, Stein et. al proposed a variability index calculated as
the ratio of the pyranometer global horizontal irradiance (GHI) mea-
surement curve length over the clear-sky irradiance (CSI) curve length
[90]. Clear sky irradiance can be computed thanks to clear-sky model
such as the Ineichen model [198]. For the sake of simplicity, hourly
averaged irradiance values are used in this work instead of clear-sky
irradiance. This avoids the use of clear-sky irradiance models and
simplifies the data preparation process for further use in preliminary
studies.

The original VI formualtion is expressed in Eq. 3.1 where GHIt is
the measured irradiance and CSIt is the clear sky irradiance.

VIstein =

∑tf
t=t0

√
(GHIt+1 −GHIt)2 +∆t2∑tf

t=t0

√
(CSIt+1 −CSIt)2 +∆t2

(3.1)

The VI calculation based on hourly averaged irradiance is expressed
in Eq. 3.2 where LGHI and LGHI are the curve lengths of the pyra-
nometer measurements and hourly averaged irradiance respectively.
Curve lengths calculations are expressed in Eq. 3.3 and 3.4 with GHIh
being the hourly averaged irradiance between h and h+ 1.
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Figure 3.1: Pyranometer measurements, clear-sky irradiance and hourly av-
eraged irradiance of a typical day in Hawaii.

VI =
LGHI
LGHI

(3.2)

LGHI =

tf∑
t=t0

√
(GHIt+1 −GHIt)2 +∆t2 (3.3)

LGHI =

hf∑
h=h0

√
(GHIh+1 −GHIh)2 + 36002 (3.4)

3.2.1.2 The Ramp Detection Algorithm

Thanks to the VI, the level of variability can be easily evaluated and
quantified with a global indicator. However, this method overlooks
the cloud-passage phenomenon by calculating global ratios of curve
length. In hybrid systems, only fast ramp-rates (exceeding storage and
fossil response capacity) will impact the stability of the system. Thus,
a more comprehensive quantification method is useful to decompose
solar drop events individually.

Numerous methods can be implemented to extract solar drops
with varying levels of complexity. In [95], the solar profile 1-second
derivative is used to evaluate the ramp rate. This method can be
extended to a larger fixed-time window, but this leads to neglect
irradiance changes occurring within the time interval. In this case,
such a method cannot be implemented because the time scale of the
solar ramp is expected to vary between raw pyranometer data and
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PV production data (up to 60% of irradiance change reduction is
expected for 1-second resolution data due to geographical smoothing
[94]). In [199], a recognition method for irradiance transition was
proposed based on moving averaged variations but the algorithm was
not provided in the study. This pushed to propose a similar method
in this work to detect solar ramps.

Algorithm 1 Ramp detection algorithm.

1: A← 0.009 . Initialization
2: Nramp ← 0

3: while i < NTS do
4: P ′ ← I(i) − I(i− 1)

5: k← 0

6: if P ′ < A then
7: nramp ← nramp + 1

8: I ′2 ← I ′

9: while i+ k < NTS & I ′ ∗ I ′2 > 0 do
10: I ′2 ← I(i+ k) − I(i+ k− 1)

11: k← k+ 1

12: TR(nramp)← k

13: ∆I(nramp)← I(i− 1) − I(i+ k− 1)

14: if k = 0 then
15: i← i+ 1

16: else
17: i← i+ k

18: Nramp ← nramp

The algorithm’s pseudo-code is presented in Alg. 1. The RDA starts
detecting an irradiance ramp if its gradient is higher than the trigger
value A (in W.m−2.s−1) 1. The duration of the ramp k starts at 1

second and increases until the irradiance curve’s derivative changes
its sign or if the last element of the timeseries is reached (i+ k = NTS).
When the end of the ramp is reached, the ramp duration k is stored
in TR(nramp) and the irradiance change is stored in ∆IR(nramp) .
nramp is the ramp number counter variable which gives the total
number ramps at the end of the iterations. The time increments of the
methods (denoted as i in Alg. 1) corresponds to the sampling time of
the timeseries ( 1 second in this work). The length of the timeseries
NTS corresponds to the number of samples in the timeseries (54000 in
this work).

Figure 3.2 shows an example of RDA application on a 100 second
time-window. As shown in the figure, only ramp-down events are
tracked. This is justified by the fact that fossil generation have higher

1 This value was tested graphically to capture the beginning and end of ramps. The
results are naturally sensitive to this value : if A is too low, a ramp could be detected
too late which would underestimate its final slope.
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Figure 3.2: Solar drops detected thanks to the detailed algorithm. Green
dashed line show the beginning of the solar drop, red lines show
the end of the solar drop.

ramp-down capabilities than ramp-up. The total number of ramps
obtained Nramp provides another quantifier for the daily level of
variability. This quantifier will be compared to the VI in the following
part.

Finally, as shown in Fig 3.3, the RDA can characterize isolated
events by storing the pairs ∆Ii and Ti. This allows extracting worst-
case isolated ramp scenarios and simulate an equivalent perturbation
of the system which will be investigated in part 3.3.2.

ΔI1

ΔT1

ΔI2

ΔT2

Figure 3.3: Evaluation of each ramp feature : ∆Ii the irradiance lost within
the interval Ti.
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3.2.1.3 Application on daily time series and comparison of indicators

VI and Nramps are compared by calculating daily values on the data
collected by NREL 2 in Oahu [89]. Thanks to the work carried out
in [92], where solar variability zones were evaluated from a set of
measurements of nine power plants, the area of Hawaii was found to
be one of the most variable in the world in terms of solar irradiance.
This is also confirmed by the results presented in [200]. Hence, the
analysis carried using this dataset can also be considered as a worst-
case benchmark for future studies. The dataset is composed of 365

daily time series covering 5 am to 8 pm with a 1-second sampling
time 3.

               

  

 

   

   

   

   

    

    

    

 
 
 
 
 

Figure 3.4: VI and Nramp index for 3 days in the Hawaii data-set.

VI and Nramp have been evaluated on each day of the data-set
between 2011-10-01 and 2011-09-30

4. Figure 3.4 shows as example
of three irradiance profiles and Tab. 3.1 reports their corresponding
VI and Nramps. The 19th of January shows a smooth irradiance
profile which is consistent with low variability metrics (VI = 14.3 and
Nramp = 111). On the right side of the figure, the 16th of march
shows the highest variability metrics (VI = 223.8 and Nramp = 1214)
which is consistent with its highly variable profile. The trends of
variability metrics are therefore visually confirmed by the shapes of
irradiance profiles.

2 National Renewable Energy Laboratory
3 Uncertainties in the measurement of solar irradiance have been neglected since the

information was not made available by NREL
4 The range value of the VI are different from the indexes processed by Stein et. al. in

[90], which range from 0 to 15. This is because 1-min resolution data are used in [90],
whereas 1-second data are used in this study, which gives a longer GHI curve
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Date VI Nramps

2011-01-09 14.3 111

2011-03-28 104.6 606

2011-03-16 223.8 1214

Table 3.1: VI and Nramp for the 3 days shown in Fig. 3.4.

In Fig 3.5, VI is plotted against Nramp. The figure shows that the
two metrics are similarly distributed. A correlation factor of 0.96 is
found between VI and Nramp. From these results, it appears that the
VI is consistent with ramp statistics processed at sub-minute levels.
Thus, VI and Nramp seems to equally success at describing the daily
level of variability.

Figure 3.5: Repartition of VI andNramp with colors depending on the month.
A zoom for low variability index is shown in the right-hand side
figure.

The main advantage of the VI is its straightforward mathematical
formulation, allowing fast calculation and easy comparison between
independent datasets. On the other hand, the ramp detection is
sensitive to the gradient trigger value A. This means that a parameter
calibration could be necessary before applying the ramp detection
over another dataset. The VI seems more suited to assess the global
level of variability of a timeseries.

On the other hand, running the RDA provides more quantitative
results such as the number of ramp exceeding a certain limit of irra-
diance drop, PV ramp-rate etc. Thanks to the decomposition of the
timeseries into isolated events, the RDA is able to extract variability
scenarios for use is dynamic simulation. This will be investigated in
the next parts of this chapter.
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3.2.2 PV plant geographical variability smoothing

In the assessment process of microgrids, only irradiance timeseries
measured by sensors are available. But as highlighted in Chapter 2,
the irradiance variations captured by pyranometers or solar cells are
significantly higher than the power changes observed at the output of a
large scale PV plant. This effect is called "geographical smoothing" and
is explained by the fact that large scale power plants experience partial
shadings of clouds due to their large surface (see Fig 3.6). During the
cloud passage, irradiance sensors will capture the effect of the cloud
at their specific locations whereas the output power behaviour is the
result of all irradiance changes over the surface.

If the irradiance sensor’s variability is considered in the dynamic as-
sessment of microgrids, electrical perturbations will be over-estimated.
This will result in a costly over-sizing of the battery or even a PV plant
reduction to limit electrical perturbation. Therefore, the modelling of
the geographical smoothing effect is a crucial step before performing
the dynamic analysis.

Cloud at 𝑡 Cloud at t+Δ𝑡
Cloud velocity

Sensor
Irradiance

Plant power

Figure 3.6: Partial shading of PV plant is responsible for the geographical
smoothing effect of solar variability.

A methodology based on the wavelet control signal theory has
been developed by Lave and Kleissl [98] to simulate the equivalent
irradiance profile of a MW-scale power plant and therefore smooth
out the single-sensor irradiance. A strong advantage of this method
is that the temporal resolution of the simulated power output is the
same as the measured irradiance. The WVM has been implemented
in Matlab and Python and its libraries are freely available on Sandia
National Lab website [99]. The following parts briefly introduce the
main steps of the WVM and show how the model will be integrated
for the generation of solar input scenarios.
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3.2.2.1 The wavelet variability model

The main steps of the WVM are summarized in this paragraph but the
reader may refer to reference [201] for an extended description of the
methodology. The objective of the method is to convert single sensor
irradiance timerseries GHI(t) into the equivalent plant’s irradiance
timeseries GHIsimplant(t).

First, a wavelet transform is applied to a normalized series GHInorm
computed using clear sky irradiance and GHI profiles. Wavelet trans-
form ωt̄(k) consists in describing a signal using a series of wavelet
objects φ (see Fig 3.7) varying in scale t̄ (equivalent frequency) and
time-shifts k. Eq. 3.5 expressed the GHI signal’s wavelet transform.

ωt̄(k) =

∫tend
tstart

GHInorm(t ′)
1√
t̄
φ(
t ′ − k

t̄
)dt ′ (3.5)

Where tstart ,tend denote the starting and ending times of the
timeseries and t ′ the time-integration variable.

Figure 3.7: Top hat transform used in the WVM.

Figure 3.8: Effect of scale t̄ and shift k on wavelet objects.

The WVM method decomposes the GHInorm signal into 12 wavelet
modes in order to account for dynamics at different timescales (from
21 seconds to 212 = 4096 seconds, where j = 12 was found to be
the limit above which the smoothing effect in insignificant). Eq. 3.6



90 chapter 3 : solar variability

expresses the property stating that the sum of wavelet modes is equal
to the original input signal.

12∑
j=1

ωt̄=2j(t) = GHInorm(t) (3.6)

The PV power plant is discretized into N “sites” representing a small
amount of PV modules. Then, distances between sites are calculated.

The correlation ρ expresses the strength of the variability depen-
dency between two sites is and calculated as a function of the distance
Dm,n between sites n and m and timescale t̄.

ρ(Dm,n, t̄) = exp(−
dm,n

A.t̄
) (3.7)

Where A is a correlation factor that mostly depend on the cloud
dynamics and therefore changes with meteorological conditions and
locations. More details on the calculation of A are provided in [98].
It is important to notice that cloud dynamics effect is assumed to be
isotropic which means that the effect of the plant size and shape is
independent from the direction of the clouds.

Variability reduction VR is defined as the ratio of variance of point
sensor irradiance by variance of the entire PV power plant at each
timescale (Eq. 3.8). If VR = N, sites and entirely independent from
each other whereas they are fully dependant if VR = 1.

VR(t̄) =
N2∑N

m=1

∑N
n=1 ρ(Dm,n, t̄)

(3.8)

The calculation of the variability reduction allows evaluating the
PV plant equivalent wavelet modes ωsim

t̄
by dividing original wavelet

modes ωt̄(t) by the VR. Eq. 3.9 shows that the more independent
the sites are, the lower the impact on the variability reduction will
become.

ωsimt̄ =
ωt̄(t)√
VR(t)

(3.9)

Then, an inverse wavelet transform is used to build the averaged
irradiance over the PV plant 〈GHIsimnorm〉plant.

〈GHIsimnorm〉plant(t) =
12∑
j=1

ωsimt̄=2j(t) (3.10)

The equivalent GHI values of the plant are finally scaled back to
obtain the final equivalent irradiance GHIsimplant.
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3.2.2.2 Application on daily time series

To validate the interest of pre-treating irradiance timeseries by the
WVM, the procedure is applied on the Oahu’s dataset. As recom-
mended in [99], a conservative cloud speed of 20 m.s−1 is considered.

Figure 3.9 compares the equivalent GHI timeseries of a 50MW power
plant GHIsim50MW , a 0.5MW power plant GHIsim0.5kW and the raw profile
GHI. The figure suggest that the geographical smoothing effect may
be neglected for small PV power plant since small differences are ob-
served between GHIsim0.5kW and GHI. However, significant differences
are obtained for a large scale power plant with an irradiance change
of less than 100 W.m−2 at 12:57 for the 50 MW power plant against
more than 500 W.m−2 for the raw profile. The duration of the ramp
is also impacted with a ramp duration of 1 minute for the 50MW PV
plant against 25 seconds for the raw profile.
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Figure 3.9: Impact of power plant size on short-term behaviour of GHI time-
series.

The VI and Nramps of GHIsim50MW and GHI are calculated for each
day of the dataset and reported in Fig 3.10. For the raw timeseries,
a maximum Nramp of 1359 and a maximum VI of 238 are observed.
On the other had, the maximum values for Nramp and VI after WVM
smoothing are 74 and 257 respectively. These results highlight that the
WVM has a strong impact on variability metrics.
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Figure 3.10: Nramp and VI for each day of the dataset. Upper figure shows
raw pyranometer values and lower figure shows 50MW WVM
filtered values.

Finally, Fig 3.11 shows that the model is also sensitive to the cloud
speed parameter which is difficult to evaluate. Hence, the conservative
value of 20 m.s−1 will be used when applying the WVM in the next
part of this work.
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Figure 3.11: Impact of cloud speed on short-term behaviour of GHI timeseries
(for a PV power plant of 50 MW).

By significantly modifying the dynamic behaviour of the timeseries
at short-time scales, the WVM reveals that MW-scale power plant will
experience smoother solar drops than the ones captured by sensors.
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Since the WVM provides timeseries with the same temporal granu-
larity as the input data, the simulated irradiance profile can be easily
integrated in the simulation process of the power plant. Therefore, so-
lar variability will be addressed with more accuracy which will avoid
the over-estimation of electrical perturbations during cloud passage.
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3.3 identification of representative scenarios events

thanks to ramp detection and variability metrics

The previous section developed two quantifiers for sub-minute solar
variability; Then, WVM has been employed to simulate the geographi-
cal smoothing effect and obtain the equivalent irradiance timeseries of
a MW-scale PV power plant.

In this section, two types of scenario will be identified to address
sub-minute variability in grid simulations ( Fig 3.12, 3.13) : day-long
scenario and isolated scenarios.

Cumulated solar energy
used for techno-
economic analysis

Day long scenario

Covers the whole day ( > 5 ∗ 104 seconds ) 

Daily power variations 
on selected granularity

Figure 3.12: Day-long scenarios characteristics.

Day-long scenarios are widely employed in microgrid studies. They
consist in using a daily timeseries of a given granularity (generally
hourly averaged profile are used as presented in [86, 180] to reproduce
the PV power plant behaviour and calculate global performances such
as the total injected solar energy or CO2 reduction. In the context of
this work, grid dynamics must be accurately taken into account which
forces to use high-resolution input data and dynamic electrical model.
Consequently, computational time is increased as compared to hourly
models and does allow simulating the 365 days of the year. If only
power quality is of interest, worst-case day-long scenario can be used
to account for the highest level of perturbation. The identification of
worst-case daily scenario thanks to the VI will be covered in part 3.3.1.1.
On the other hand, to fulfil the need of lifetime equivalent indicators
such as renewable penetration rate and CO2 emission, worst-case
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scenario is not sufficient. Part 3.3.1.2 will present the identification
process of a set of representative days.

Isolated scenario

Covers only the worst-case ramp (< 300 seconds )

Allows linear
simplification

Irradiance drop 
integrated as equivalent
perturbation in dynamic
model

Figure 3.13: Isolated scenarios characteristics.

An alternative to day-long scenarios consists in using isolated ramp
event accounting for the largest PV perturbation. This significantly
reduces the computation time since the duration of a short-term solar
drop does not exceeds 3 minutes. This is particularly useful when
dynamic models are too complex to be simulated over a day-long
timeseries or for the fast evaluation of mitigation needs such as done in
[95]. Another advantage of this approach is that it aggregates the short-
term variability and allows its integration in high-level formulation
with larger temporal granularity. Such approach is used for generator
contingency simulation where the loss of a generator is reduced to
a load step. The identification of isolated ramp as input variability
scenario will be covered in part 3.3.2.

3.3.1 Day-long time-series as scenarios

3.3.1.1 The worst-case approach

The worst-case approach consists in identifying the day during which
the operation of the microgrid is likely to be the most difficult. Since
this work focuses on reliability against cloud passage, worst-case
identification is based on variability metrics (VI and Nramp). Tab. 3.2
shows the highest Nramp and VI of the Hawaii dataset before and
after applying the WVM procedure for a 50MW power plant.
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Nramp and VI point at the same worst-case day for the raw data
(2011-07-08). Two different days are obtained for the wvm-filtered
dataset (2011-03-16 and 2011-07-08). The timeseries of 2011-03-16

shows larger VI than 2011-07-08 (74.6 against 52) whereas only a small
differences are reported for Nramp (250 against 257) which suggests
higher short-term variability for 2011-03-16.

From these results, the worst-case scenarios in terms of short-term
variability appears to be 2011-07-08 for raw pyranometer timeseries
and 2011-03-16 for MW-scale simulated timeseries.

Data type / Qualification method Ramp Detection Variability Index

Pyranometer data Date of worst case 2011-07-08

VI 238.97

Number of ramps 1359

WVM filtered data Date of worst case 2011-07-08 2011-03-16

VI 52.13 74.60

Number of ramps 257 250

Table 3.2: Solar variability indexes of the worst cases for pyranometer data
and WVM-smoothed data.

3.3.1.2 A clustering technique to identify representative time-series based
on variability characteristics

Worst-case approaches allow a robust sizing but may also lead to costly
architectures. The optimization process for architecture sizing benefits
from considering more than one worst-case scenarios and account for
various situation such as cloudy days with low solar penetration.

As highlighted in [202], identifying a set of typical days of irradiance
allow increasing the level of accuracy of the results while keeping
the computation time to a reasonable value. The authors proposed
to aggregate representative days to capture solar and load seasonal
variations. Artificial intelligence (AI) clustering techniques were used.
They aimed at forming a group of data called “cluster” in which
all the elements share similar characteristics called “features”. In
their analysis, the authors used the hourly averaged PV profile to
generate input scenarios. However, in the present analysis, short-term
characteristics are expected to have a large impact on architectures.
This leads to add new criteria into the aggregation process. In [203],
a scenario reduction method has been proposed to account for solar
profile stochastic behaviour. The authors used the clearness index
(ratio between measured irradiance and clear-sky irradiance) to qualify
daily profiles and applied the K-means clustering method to generate
representative scenarios. However, the clearness index does not fully
represent the short-term variability because it does not address the
sharpness of the solar drops. Hence, the variability index detailed in
the previous section will be used as a feature for scenario generation.
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This will allow considering short-term variability in the clustering
process.

The first step of the process is to identify daily indicators by analysing
how solar timeseries characteristics impact the objectives and con-
straints of the power plant :

1. The daily cumulated irradiance is used to calculate and maxi-
mize fuel savings in most sizing and operational management
formulation [86, 167]

2. The variations of irradiance within hourly interval is used to
calculate the spinning reserve requirement. Due to minimum
and maximum power ratings of engines, spinning reserve re-
quirement force to limit the PV penetration which reduce the
profitability of the system. [204]

3. The magnitude and gradient of solar drops impact the real-
time system’s stability by adding electrical perturbation within
the power system’s equation of motion [126]. The sizing of
mitigation technologies (storage, fast-responding fossil units,
load sheddings etc.) directly depends on frequency deviations.

Table 3.3 sums up the selected indicators.

System objective/constraint Time series characteristic Indicator

Minimization of fuel consumption Daily cumulative irradiance EId

Spinning reserve requirement
Maximum gap between hourly averaged

irradiance and real irradiance value
RIhd

Frequency deviation Sharpness of the timeseries VId

Table 3.3: System constraints and daily indicators.

cumulative irradiance

In sizing and operational management formulations, fossil units, stor-
age system and renewable resources must balance the hourly electrical
load demand PLh (Eq. 3.11). From, 3.12, we can see that the higher is
the irradiance, the lower is the fuel consumption and battery require-
ment.

∀h PLh = Pgenh + Pbath + PPVh (3.11)

PPVh =WPV ∗GHId,h ∗ [1−Kθ(θ− 25)] (3.12)

In the objective function, the fossil generation fuel costs are cal-
culated as the sum of hourly fuel cost

∑
h FCh. At a first order the

cumulative irradiance can be considered as the main factor for fuel
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cost reduction. Thus, the daily cumulative irradiance EId (expressed in
Eq. 3.14) provides a first indicator for the timeseries clustering where
GHId,h denotes the mean value (in kW/m2) between h and h+ 1 for
a day d.

EId =

24∑
h=0

GHId,h (3.13)

GHId,h =

∑3600
t=1 GHId,h,t

3600
(3.14)

mid-term variability

When performing the power plant schedule, operators must allocate
sufficient power margin to cover the difference between hourly PV
forecast PPVh and the real-time PV production PPVt . If PV power
variations are larger than the total operational margin of fossil units
and storage system, the stability of the system and the continuity of
electricity supply cannot be guaranteed. Eq. 3.15 shows the spinning
reserve requirement calculation5. Where RPVh accounts for the risk of
PV variation within the hourly time interval h6.

∑
gen

Pmaxgen − Pgenh + P
max
bat − Pbath > RPVh (3.15)

RPV can be evaluated by estimating the highest difference between
the forecast value and the real value PPVt at each timestep t (Eq. 3.16).
In a deterministic approach, the PV forecast is assumed to be known
and corresponds to the hourly averaged PV production PPVh.

RPVh = max
t

(PPVh − PPVt) (3.16)

Consequently, the spinning reserve requirement dedicated to the
PV mid-term variability can be expressed as a function of irradiance
variations (Eq. 3.17) as illustrated in Fig. 3.14.

RId,h = max
t∈[h,h+3600]

(GHId,h −GHId,t) (3.17)

The daily mean value of RId,h is selected for mid-term variability
indicator and expressed in Eq. 3.18. h0 and hf are the daylight starting
and ending time (5am and 8pm in this case).

5 Note that a second equation ensures similar margin between generators power output
and minimum power ratings. This equation is not detailed for the sake of conciseness

6 In this work, the uncertainties related to a prediction tool are not directly taken into
account. The problem is deterministic in the sense that the hourly production is
considered known (average value). The uncertainty interval is also known since it is
calculated from a historical irradiance data set.
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𝑅𝐼ℎ

Minimum irradiance

Figure 3.14: Calculation of RIh in an hourly interval.

RIhd =

∑hf
h0 RId,h

hf − h0
(3.18)

risk of power quality degradation

Finally, the relationship between power quality degradation and irra-
diance variability must be investigated. Equation 3.19 expresses the
frequency shift as a function of incremental power variation ∆P where
M is the inertia constant of the system (defined in chapter 2). From
this equation, we can see that the variation ∆PPV over a short period
dt will have an impact on the power quality.

d∆f

dt
=

∑
gen∆Pgen +∆PPV +∆Pbat −∆PL

M
(3.19)

In the previous section, a clear correlation between daily VI and
solar ramps have been observed. Therefore, the VI will be used as
daily indicator to characterise the level of sub-minute variability.

application of kmeans clustering

Daily indicators have been calculated and reported in Fig 3.15. Since
no clear separation appear in the data, AI technique can be used to
generate clusters and extract representative scenarios. In [202, 205],
Kmeans algorithm was used to aggregate yearly demand data for
microgrid optimization with good performances in representing the
full dataset. This motivates the use of the same technique for PV input
data reduction. The Kmeans algorithms relies on a minimization of
the distances between the element of a group and the center of gravity
of the group.
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Figure 3.15: Repartitions of each day of the dataset over the selected features.

The first step is to normalize the feature so that distances in each
dimension are in the same order of magnitude. The normalized
indicator value Xnormd of a day d is calculated as follow:

Xnormd =
Xd
Xmaxd

(3.20)

Kmeans method divides the dataset in a defined number of clusters
Ncluster. Fig. 3.16 shows an example with Ncluster = 5.
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Figure 3.16: Five clusters categorized by Kmeans. Black dots highlight the
centers of gravity.

In this work, the reduced set of scenario is built by the closest
elements to centers of gravity. Eq. 3.22 defines the representative
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scenario yσ of cluster σ as the timeseries with the minimal distance
Dσi to its center of gravity.

Dσi =

√∑
j

(
xσi,j −G

σ
j

)
(3.21)

Dσy = min
i
Dσi (3.22)

Gσj denotes the coordinates of the center of gravity in dimension j
and is epressed by Eq. 3.23. Nσ denotes the number of elements in the
cluster k and xσi,j the coordinate of the element i in the dimension j.
Fig. 3.17 illustrates the centers of gravity of 5 clusters as well as their
closest elements labelled by their dates.

Gσj =

∑Nσ
i=1 x

σ
i,j

Nσ
(3.23)
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Figure 3.17: Five clusters categorized by Kmeans. Black dots highlight centers
of gravity and green dots show the clostest elements of the
cluster which are chosen as representative scenario.

selection of best performing setup

The process of Kmeans clustering requires a user defined number
of clusters Ncluster that should be chosen according to the simulation
needs (here a small number of cluster is more suitable to limit the
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computation time of future simulations) and in best compliance with
the behaviour of the whole dataset.

Feature Cumulative irradiance VI Mid-term variability indicator

Unit kWh/m2 - kW/m2

4 clusters 5.06 73.09 0.20

5 clusters 5.17 73.37 0.19

6 clusters 5.18 76.71 0.20

7 clusters 5.21 75.40 0.20

Average value of 365 days 5.19 74.54 0.20

Table 3.4: Comparison of weighted average values Xj
kmeans for number of

clusters varying from 4 to 7 against average values of the whole
dataset.

Tab. 3.4 reports the weighted average values Xj
kmeans(defined by

Eq. 3.24) for a number of clusters varying from 4 to 7 and compares it
to the averaged indicators value over 365 days. All results show good
compliance with less than 1% of error apart from the 4-cluster setup
which reports an error of 0.14kWh/m2 for the cumulative irradiance.

Xj
kmeans

=

∑
σ x
σ
j N

σ

365
(3.24)

Fig. 3.18 shows the repartition of clusters as function of normalized
VId and RIhd. In configurations with 6 and 7 clusters, areas of low
irradiance and low spinning reserve are mixed up which means that
the corresponding representative scenarios will be equivalent in terms
of variability. In this case, the kmeans setup with 5 clusters shows the
best compromise and will be used in the next parts.

3.3.1.3 Discussion on day-long scenario identification

By selecting the highest VI among the dataset, a worst case scenario
has been identified. Then, 5 representative days were selected thanks
to Kmeans clustering. Tab. 4.11 reports the characteristics of each
day of the set alongside with a brief description. Fig. 3.19 shows the
irradiance profile of all selected day-long scenarios.

Thanks to the worst-case scenario, robust approach may be under-
taken to evaluate the risk of power quality degradation. However this
scenario does not represent days with lower irradiance and results
will not be representative in terms of fuel savings.
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Figure 3.18: Group repartition for cluster numbers varying from 4 to 7.

Date Description Nσ VI Cumulative irradiance (kWh/m2)

1 2010-12-09 Overcast 40 21.31 2.63

2 2011-02-02 Medium production, low variability 98 30.90 4.92

3 2010-10-07 Medium production and variability 111 74.97 4.87

4 2011-09-02

High production, high variability

Medium sharpness
67 91.10 6.78

5 2011-06-11 High production and variability 49 172.71 6.20

wc 2011-03-16 Worst case variability n.a 238.97 5 .92

Table 3.5: Solar input scenarios resulting from the clustering and worst-case
identification of the Hawaii dataset.

On the other hand, the 5 days identified thanks to Kmeans provide
varying situations from overcast weather (VI = 21.31, EId = 2.63)
to high production and variability (VI = 171.72, EId = 6.20). The
occurrence associated to each scenario allows aggregating the result
of grid simulations to reconstruct yearly indicators.
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Combining worst-case identification and Kmeans allows reducing
the number of day-long scenarios from 365 to 6 timeseries which
significantly reduces the number of grid simulation to be performed.
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Figure 3.19: Days long scenarios: worst-case scenario and 5 days resulting
from Kmeans clustering.

3.3.2 Isolated ramp events as scenarios

As presented in section 3.2.1.2, the ramp-detection algorithm is able
to extract solar drop scenarios and provides two features : irradiance
drop ∆I and duration T . The solar perturbation I(t) is modelled
by a linear reduction of irradiation over T as expressed in Eq. 3.25

and shown in Fig. 3.20. If the linear drop represents the worst-case
irradiance drop over a given time-windows, it can be used to evaluate
the maximum electrical perturbation related to cloud passage. This
isolated scenarios can be of great interest to study electrical stability
using very short grid simulations.

I(t) =

I0 − ∆I
T t if 0 6 t 6 T

I0 −∆I otherwise
(3.25)
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Figure 3.20: Linear ramp approximation to model isolated solar drop sce-
nario.

The PV output power is calculated thanks to the rated installed
capacity WPV and PV plant efficiency ηPV as expressed in 3.26.

PPV(t) = GHI(t)WPVηPV (3.26)

One example of isolated scenario application is the evaluation of
the maximum power unbalance during a solar drop between fossil
generation, PV power and load. Eq. 3.32 shows how the maximum
power unbalance is calculated while respecting the ramping constraint
expressed by Eq. 3.34. By assuming a constant load power during a
cloud passage event, Eq. 3.29 expresses the maximum power unbalance
Υ. This provides a straightforward relationship between the electrical
perturbation and an isolated ramp scenario r=(T , ∆I).

Punmetload(t) = PL − Pgen(t) − PPV(t) (3.27)

Pgen(t+ 1) − Pgen(t) 6 rrgen (3.28)

Υ = max(Punmetload) = ∆I.ηPV .WPV − T .rrgen (3.29)

The electrical perturbation must now be evaluated with the proper
isolated scenarios. The set of solar drop R detected by RDA over the
full dataset is shown in Fig. 3.21. The envelope corresponding to 99%
of all events shows that extreme events are missing (> 1.1kW/m2). To
ensure a robust approach, the following analysis will be based the
worst-case ensemble gathering 100% of all detected ramp.
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Figure 3.21: Set of ramps, single dimension probability functions and en-
velopes gathering 90%, 97%, 99% and 100% of detected ramps.

3.3.2.1 Worst case ramp events

Due to the expression of power unbalance (Eq. 3.29), it is not possible
to consider a single event as worst-case isolated scenario. Tab. 3.6
shows an example withWPV = 50MW. With a total ramp-rate of 0.433
MW/s, the worst ramp rate is r2 with 47.6 MW of power unbalance.
However, with rrgen = 1.33 MW/s, the worst ramp is r1 with 42.2
of power unbalance. Hence, a set of isolated must be used for grid
simulations instead of a single ramp event.

Name r1 r2

Ramp features ∆I = 0.95kWm2, T = 4s ∆I = 1.06kWm2, T = 14s

rrgen = 0.433MW/s 45.8 MW 47.6 MW

rrgen = 1.33MW/s 42.2 MW 40.4 MW

Table 3.6: Comparison of maximum power unbalance for two ramp events
and two fossil ramp rates with a PV installed capacity of 50 MW.

The set RT gathers all ramps of duration T and is defined following
Eq. 3.30. Fig. 3.22 shows an example with R30.

RT = {(∆I, T) ∈ R} (3.30)
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Figure 3.22: R, R30 and Rmax for the Hawaii dataset.

Following Eq. 3.29, the power unbalance of every element within
RT will be lower or equal than the power unbalance resulting from
the element of highest irradiance drop within RT .

Hence, the maximum ramp set Rmax can be defined to reduce the
number of simulations (see Eq. 3.31)

Rmax =
⋃
T

{
(∆I, T) ∈ RT | ∆I = max

r∈RT
(∆I)r

}
(3.31)

Thanks to the identification of Rmax, the number of scenarios has
been significantly reduced (more than 120.103 ramps in R against 178
in Rmax). However, Fig. 3.22 suggests that some points within Rmax

may be equivalent or even useless in the calculation of the maximum
power unbalance (for example when the irradiance drop of a ramp is
lower than the irradiance drop of both neighbours).

3.3.2.2 Convex hull reduction

The convex envelope of Rmax allows reducing the set of events to con-
sider. The Carathéodory’s theorem [206] defines Hmax = conv(Rmax)

as follows :

All elements p ∈ Hmax can be written as a convex combination of
k points in Rmax with k 6 1+ dim(Rmax).

Since dim(Rmax) = 2, this gives p = r1t1 + ...rktk with
∑3
k=1 tk =

1 and rk ∈ Rmax
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Hmax provides two interesting properties leading to reduce the
number of elements necessary for grid simulations (see Fig. 3.23 for
graphical interpretation and Annex 7.1 for proofs of P1 and P2).

Let u1, u2 be two consecutive elements of Hmax and u ′ ∈ [u1,u2]
such as u ′ = τu1 + (1− τ)u2 with τ ∈ [0, 1]

Property 1 (P1) : The power imbalance Υ(u ′) of each point in the
segment [u1,u2] is higher or equal than the power imbalance Υ(r)
calculated from every element r of lower irradiance drop .
∀r = (Tu ′ ,∆Ir) | ∆Ir 6 ∆Iu ′

Υ(r) 6 Υ(u ′)

Property 2 (P2) : The power imbalance of each point of the segment
[u1,u2] is lower or equal than one of the two closely located point of
the convex hull (u1 or u2 )
Υ(u ′) 6 Υ(u1) or Υ(u ′) 6 Υ(u2)

𝑢1

𝑢2

𝑢′

𝑟

𝑷𝟏 ∶ Υ𝑟 < Υℎ′

𝑷𝟐 ∶
Υ𝑢′ < Υ𝑢1 or Υ𝑢′ < Υ𝑢2

Δ𝐼

T

Figure 3.23: Graphical interpretation of P1 and P2.

P1 and P2 demonstrate that grid simulations performed using ele-
ments of the convex envelope Hmax are more conservative than grid
simulation performed with Rmax. More importantly, the number
of elements in Rmax is significantly reduced such as highlighted in
Fig. 3.24 (9 elements against 178).

Finally, the same process can be done for WVM-smoothed irradi-
ance to account for the variability smoothing effect of the power plant.
In Fig. 3.25, the convex hull of 50MW equivalent irradiance ramps
is compared to the convex hull obtained from pyranometer measure-
ments 7. The figure highlights that the worst-case ramps have lower

7 In practice, the convex envelope is computed by a standard Matlab function
(https://fr.mathworks.com/help/matlab/ref/convhull.html)
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Figure 3.24: Rmax and convex hull Hmax (pyranometer data).

gradients and lower irradiance drops. Consequently, the WVM convex
hull avoids over-estimating the grid’s electrical perturbations.

To evaluate the worst-case electrical perturbations, the set Hmax

will be used in the next chapters and discussed in detail in Chapter 5.

0 50 100 150 200 250 300

T
R

 (s)

0

0.2

0.4

0.6

0.8

1

1.2

 I
R

 (
kW

/m
²)

Convex hull pyranometer data
convex hull 50MW wvm smoothed data

Figure 3.25: Convex hulls of worst case ensembles for pyranometer and 50-
MW wvm-smoothed data.

3.3.3 Comparison between day-long and isolated scenarios

Now that several methodologies for scenarios generation have been
presented, their relevance for electrical stability and techno-economic
evaluation must be discussed. Only day-long time series can be used
for techno-economic analysis since Isolated scenarios do not give
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any information on cumulative irradiance and therefore do not allow
calculating the fuel savings over the lifetime. However, the relevance
of performing electrical simulations over large time windows such
as day-long time series can be challenged since they require large
computational resources. Isolated scenarios are an opportunity to
perform quicker and more comprehensive electrical and power balance
analysis.

To ensure that isolated scenarios are a good alternative to day-long
time-series, a primary support storage system will be sized using both
types of scenarios. The resulting battery capacity will be compared.

3.3.3.1 Power adequacy for battery capacity sizing

A comprehensive and effective methodology for determining battery
capacity consists in detecting the maximum power gap between the
load and the generators. This method is based on the hypothesis that
a perfect adequacy between power production and consumption. This
method has been implemented in [207] where the power adequacy
methodology is used to compensate solar ramps when generators
have insufficient ramping capacity. More complex methods requiring
dynamic electrical simulation can be implemented such as proposed
in [47]. Following the analysis performed in this thesis, a comparison
between dynamic electrical modeling and power adequacy have been
proposed an published in [197].

Eq. 3.32 and 3.33 show how the capacity is calculated while respect-
ing the ramping constraint expressed by 3.34.

Punmetload(t) = PL − Pfossil(t) − PPV(t) (3.32)

Wbat = max
t

(Punmetload(t)) (3.33)

Pfossil(t+ 1) − Pfossil(t) 6 rrfossil (3.34)

Where PPV is the PV power, Pfossil is the power generated by fossil
units, PL is the load demand and Punmetload is the amount of power
that cannot be satisfied by the generating units. Wbat is the battery
power capacity obtained by filling the power gap Punmetload during
the PV power loss. The PV power PPV is calculated from the PV
plant’s rated capacity and GHI value. A large number of advanced
models exist to estimate PV plant performance based on optical and
thermal simulation, such as presented in [208], but require a detailed
description of the power plant (module types, electrical layout, etc.).
In the context of variability analysis, the precise estimation of power
absolute value is less important than the power dynamics. Hence, a
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linear model is used in this study as shown in Eq. 3.35 (a constant
value of 0.8 is set for ηPV ).

PPV(t) =
GHI

(1000W/m2)
PinstPV ηPV (3.35)

3.3.3.2 Application of variability scenarios

To compare the impact of variability scenario on the battery power
capacity sizing, the power adequacy method is used with the worst-
case day long scenario (2011-03-16) and the convex hull defined in the
previous section (Fig. 3.25). Iwvm and Ipyrano respectively denotes
raw pyranometer and wvm-filtered isolated scenarios while Dwvm

and Dpyrano respectively denotes raw pyranometer and wvm-filtered
day-long scenarios. Tab. 3.7 displays the parameters used for the
simulation.

Symbol Name Unit Value

PinstPV PV capacity MW 50

ηPV PV efficiency % 80

PL Electrical load MW 100

rrfossil Fossil generation ramp rate MW/sec 0.433

Table 3.7: Parameters for power adequacy sizing.

Figure 3.26 highlights the battery capacities associated to each sce-
narios. Battery capacities are very similar between isolated scenarios
and day-long scenarios. This shows that the ramp-detection method is
able to extract the worst event among the whole data-set and therefore
aggregate the risk of variability for a whole year of data. Moreover, the
difference in battery capacities between wvm-filtered scenarios and
pyranometer scenarios shows that the geographical smoothing has a
significant impact on the battery power requirements (43% of battery
reduction for both isolated and day-long scenarios) This shows the
interest of taking the geographical smoothing to avoid over-investment
in primary support storage.
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Figure 3.26: Battery capacities resulting from power adequacy simulation.

The choice of isolated or day-long scenarios will depend on the
needs of the simulation. In one hand, isolated scenarios are fast to
simulate and results do not require complex post treatment. On the
other side, day-long scenario are longer to simulate but also provide
insight of the cumulative irradiance and therefore the potential of fuel
savings. In preliminary study, isolated scenarios are a good way to
quickly evaluate the grid perturbation and assess the needs in battery
support or fast response generator.
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3.4 conclusion

This chapter provides a set of tools to pre-process a high-resolution
irradiance dataset and provide solar input scenarios accounting for
the sub-minute variability.

In the first part, variability indicators were investigated to qualify
daily GHI profiles. The Variability Index has been compared to the
number of detected solar ramps and was found to be well suited
for quantifying short term variability. The WVM was applied to
evaluate the equivalent variability of a MW-scale power plant. Results
showed that the plant size significantly reduces the variability of the
power plant ( variability index is reduced from 238 down to 74 in the
worst-case scenario).

Then, methodologies for solar input scenario generation were pro-
posed. First, a K-means time series clustering procedure was proposed
to identify a set of representative day-long scenarios. When associ-
ated to a worst-case, this set can be used to evaluate both electrical
perturbations and yearly averaged performances.

Then, a methodology to extract isolated solar drop events based
on the ramp detection procedure has been proposed. A convex hull
representation is used to gather a minimum number of worst-case
ramps (9 events selected among 120 10

3 ramps detected by the RDA).
These isolated ramp scenarios can be used for quick electrical analysis
since their durations vary between 15 to 200 seconds (instead of 5.4
10

5 for a day-long timeseries).
The performance of isolated scenarios and day-long scenarios has

been compared by evaluating the battery capacity needs for an iso-
lated microgrid. Results showed that isolated scenarios provide similar
battery capacity while significantly reducing the calculation and in-
terpretation complexity. Finally, it was found that the geographical
smoothing effect of the MW-scale power plant can reduce the battery
capacity needs by 43%.

Thanks to the scenario identification, grid simulations can be per-
formed with less computational resources. Simulation tools must
now be developed to evaluate the impact of such scenarios on the
performance of hybrid architectures.
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A M U LT I L AY E R A P P R O A C H F O R T H E
O P E R AT I O N A L S I M U L AT I O N O F A N I N D U S T R I A L
M I C R O G R I D

This chapter presents a novel methodology for the operational simulation of
industrial microgrids. The environmental, economic and electrical perfor-
mances are assessed thanks to combinations of energy-level optimizations and
short-term electrical simulations. The set of Day-long scenarios identified in
chapter 3 is used to construct yearly indicators and limit the computation
time. A patent claim covering the multi-layer simulation method and the
input data reduction has been submitted thanks to this work.

Ce chapitre présente une nouvelle méthode pour la simulation opéra-
tionnelle de micro-réseaux industriels. Les performances du systèmes sont
évaluées grâce au couplage d’optimisations énergétiques et de simulations
électriques détaillées. Les scénarios journaliers identifiés dans le chapitre 3
sont utilisés pour construire des indicateurs annuels et limiter le temps de cal-
cul. Une demande de brevet couvrant la méthode de simulation multicouche
et la réduction des données d’entrée a été déposée grâce à ce travail.

1 DYNAMIC ELECTRICAL MODELLING

Detailed electrical model Model reduction and adaptation

Model is reduced to single line active 

power flows. Ramp-rate constraints are 

included in the fossil controllers.

2 MULTI-LAYER SIMULATION

The detailed model provided by 

TotalEnergies is presented and the main 

limitations are highlighted

EMS

optimization

Short-term

power control

model

Reduced set of  day long 

scenarios

A multi-layer simulation framework reproduces the 

behaviour of   the plant at several timescales to 

guarantee optimal operation and evaluate power quality

Contributions:

- Simulatenous EMS/PMS modeling and simulation

- Evaluation of  lifetime performances thanks to 

scenario   aggregation method

3 CASE STUDY

The simulation framework is applied to evaluate the economic, environmental and electrical

performances of  an hybrid power plant:

- Calculation of  fuel consumption and PV penetration in various plant configurations

- Evaluation of  battery power requirements to maintain frequency stability

- Identification of  main levers for performance improvements
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nomenclature of chapter 4

Temporal indices

Symbol Description

h Hourly timeslice

k Secondary optimization timeslice (10 minute)

t short-term timeslice (1 second)

Other indices

Symbol Description

m Machine technology

i instance of machine of technology m

σ Day-long irradiance scenario

Sets

Symbol Description

MUC Available units for the schedule optimization

MDispatch Available units for the dispatch optimization

Kσ set of day-long irradiance scenarios

Optimization decision variables

Symbol Description

FC Fuel consumption

u, v Start-up and shut-down binary variable

ω Fossil unit binary operating status

P
inj
PV Averaged injected PV power

Wused
PV Available PV power capacity after curtailment

Plst,max Maximum power lost during contingency

∆Pcont Fossil unit power variation after contingency

∆P
avg
m,i,h Fossil unit power variation during PV variations
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Optimization parameters

Symbol Description

Winst
PV PV installed power capacity

Winst
bat Battery installed power capacity

ηPV PV derating factor ( %)

Nm Number of available fossil machines

cf Fuel price

cCO2 Equivalent CO2 emission penalty

cu, cv Start-up and shut-down costs

Pminm ,Pmaxm Fossil unit minimum and maximum power

Pl Load power

Iwvmh Hourly averaged wvm-filtered irradiance

cinstm installation cost of fossil unit

K Large scale constant

∆I
avg
h Max PV power variation within hourly interval

Mdn,Mup Minimum up and down time

Plst Power lost due to generator contingency

PN+1
bat Storage power capacity for N+1 redundancy

Power system variables and parameters

Name Description

f Grid frequency

f0 Grid nominal frequency

∆f Grid frequency shift

θ Rotor angle

θ̇ Rotor angle velocity

τm Mechanial Torque

τe Electrical Torque

M Inertia constant

Kp PID proportional parameters

Kd, Td PID derivative parameters

Ki PID integral parameters

Ks Fossil setpoint controller proportional parameter

PPV PV active power

QPV PV reactive power

Pbat Battery active power
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Power system variables and parameters

Qbat Battery reactive power

r(f) Battery frequency-dependant droop

Pk fossil generation setpoint from EMS

P∗setpoint Fossil setpoint controller output

P∗Θ Fossil frequency controller output

P∗mech Fossil controller output

rrup fossil generation ramp rate

nturb Number of operating turbines

Iwvmk 10 minute averaged WVM filtered irradiance

Iwvmt WVM filtered irradiance

Wss
bat Battery power capacity to maintain steady-state frequency

Wlimit
bat Battery power capacity to maintain transient frequency
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4.1 introduction

In the previous chapter, solar irradiance scenarios have been identified
to properly address solar variability in grid simulations. In this chapter,
solar scenarios will be taken as input to evaluate their impact on the
performance of an hybrid architecture composed of gas generators,
PV power plant and primary support storage system. The main
performance indicators are the CO2 annual emissions, operating costs
and net present costs, maximum frequency deviation and cumulated
time of frequency disturbances. Such evaluation raises challenges in
the preliminary assessment of the power system:

First, the management strategy of the power plant must be taken
into account to represent its economical and environmental perfor-
mance. As a matter of fact, scheduling decisions are made to allow
the integration of PV power and reduce the fuel consumption of fossil
units. As highlighted in Chapter 2, the operational optimization is
handled by the EMS1 during operations and is based on an high level
energy modelling with 15-minute to 1h time intervals. Due to these
time-scales, the impact on electrical stability cannot be addressed.

On the other hand, the quality of supply is a key aspect due to
the need of reliable and continuous electricity supply. If maximum
frequency and voltage deviations are met, architecture should be con-
sidered as unreliable and should be eliminated from the screening
process. This leads to build dynamic model capable of evaluating sev-
eral architectures in a limited amount of time. Additionally, technical
input necessary for electrical stability are not always available, leading
to limit the model complexity.

In the first part of this chapter, the problem of power quality eval-
uation is addressed. A detailed electrical model is reduced into a
single-line active power flow model to allow faster simulation of
daily time series. The second part introduces a multi-layer simulation
framework to link the electrical model with an energy management
optimization. By aggregating results from the set of day-long scenarios
previously identified, yearly performance indicators are calculated. A
worst-case scenario is used to ensure electrical stability and evaluate
the minimum required battery capacity. The operational simulation is
applied on a case study in the third part. The role of fossil generators
characteristics, redundancy constraints and PV installed capacity on
the electrical stability and profitability of the plant are investigated.

1 Energy Management System
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4.2 power quality evaluation in hybrid industrial mi-
crogrid

Dynamic simulation aims at tracking the quality of supply thanks
to two main electrical variables: grid frequency and voltage. The
objective of such simulation is to ensure the grid stability during cloud
passage and evaluate the need in primary storage support associated
with the PV penetration scenarios. The steady state and transient
operational limits of frequency and voltage have been formulated in
TotalEnergies internal specifications handbook 2. Following clarifica-
tions meeting with TotalEnergies electrical experts, grids codes for
PV cloud passage have been defined and are compared to unplanned
events grid codes in Tab. 4.1 and Tab. 4.2.

Following these specifications, an architecture can be qualified as :

• Fully reliable: No transient or unauthorized disturbance are ob-
served during cloud passage

• Acceptable with limited risks: Transient disturbances are observed
but remain below maximum transient limits

• Unstable: At least one unauthorized disturbance is observed due
to a PV variation.

Steady-state Transient disturbance Unauthorized disturbance

Grid code following

unplanned event

(Generator contingency

loss of load

load picking etc.)

∆f < 0.5%
∆f > 5%fn and recovery

to 3%fn within 3 seconds

∆f > 3%fn after 3 second

following the event

Grid code for PV

cloud passing)
∆f < 1%fn 1%fn 6 ∆f 6 5%fn ∆f > 5%fn

Table 4.1: Grid code for frequency variations, with fn = 50Hz.

Steady-state Transient disturbance Unauthorized disturbance

Grid code following

unplanned event

(Generator contingency

loss of load

load picking etc.)

∆f < 0.5%
∆V > 10%Vn and recovery

to 3%Vn within 1.5 seconds

∆f > 3%Vn after 1.5 second

following the event

Grid code for PV

cloud passing)
∆V < 1%Vn 1%Vn 6 ∆V 6 10%Vn ∆V > 10%Vn

Table 4.2: Grid code for voltage variations, with Vn = 11kV at generator and
load buses.

2 TotalEnergies. Exploration Production, "Electrical requirements for generating units ,
General Specification, GS_EP_ELE_013".
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4.2.1 3-phase electrical model of an industrial microgrid

An electrical model has been provided by TotalEnergies and describes
active and reactive power dynamics within a 3-phase network. All
components (fossil generators, PV system, battery system and load)
are connected to a single bus and ideal transmission lines are used.
Figure 4.1 shows the main blocks of the detailed electrical model as
provided. Table 4.3 shows the main grid characteristics.

Parameter Name Unit Value

Line to line voltage kV 11

Grid frequency Hz 50

Constant Load active power MW 140 - 170

Constant Load active power MVAR 28 - 34

Gas turbine maximum output power MW 48

Table 4.3: Summary of grid characteristics.

4.2.1.1 Model description

Figure 4.1: Overall view of the 3-phase industrial microgrid model.

synchronous machines and fossil generators

In AC microgrids, synchronous machine play a role of paramount
importance since they allow the conversion of mechanical power into
electrical power but also provide a reference for the grid frequency. In
the three-phase model, the synchronous machine is described thanks



4.2 power quality evaluation in hybrid industrial microgrid 123

to a Matlab Simulink standard block taken from the simscape special-
ized power system library [209] 3.

Under the assumption of synchronous system, all synchronous
machine and fossil engine’s shaft share the same angular velocity θ̇.
Consequently, current and voltage signal x(t) of the three lines a,b, c
also share the same phase θ̇ (see Eq. 4.1).

xa(t)xb(t)

xc(t)

 = A

 sin(δ0 + θ̇t)

sin(δ0 −
2
3πθ̇t)

sin(δ0 +
2
3πθ̇t)



(4.1)

dθ

dt
= θ̇ (4.2)

The variation of angular velocity depends on the equilibrium be-
tween the electrical torque τe and mechanical torque τm at both sides
of the synchronous machines as expressed by the mechanical swing
equation (Eq. 4.3). D an J respectively denote the load damping
parameters and the moment of inertia of the shaft (in kg.m2).

J
dθ̇

dt
= −Dθ̇+ τm − τe (4.3)

Eq. 4.4 expresses the inertia constant M (provided in the parameter
list in Annex 7.3 ) as a function of the moment of inertia J, nominal
rotor velocity θ̇0 and nominal unit real power MVApu.

M =
Jθ̇2010

−6

MVApu
(4.4)

3 For the sake of conciseness, the model is not described in this work but the reader
may refer to the user guide provided in the reference.
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𝐽

Figure 4.2: Principle of synchronous machine. ir and ur denotes the rotor
current and voltage; is denotes the stator current and vg the grid
voltage; Lθ refers to the inductance matrix

One key consideration of synchronous machine operation is the
control of field winding’s voltage and current. This is done thanks to
excitation systems called Automatic Voltage Regulators (AVR) which
adjusts the field current and voltage magnitude to maintain the grid
voltage within acceptable limits. A wide range of synchronous ma-
chine and AVR models can be found in the IEEE standards library.
The IEEE’s standardized AC7B excitation system has been chosen by
the manufacturers of the gas turbine which explains its use in this
three-phase model.

The mechanical torque generation is one of the most important part
of the fossil generation power conversion chain. Electrical models aim
at reproducing the reaction of fuel actuation and combustion chamber
to control signals. Here again, wide range of standardized models
can be found in the literature [64] among which the IEEE GGOV
model have been chosen (Fig. 4.3). In this three-phase representation,
the mechanical power is calculated instead of the mechanical torque.
Eq. 4.5 expresses the relationship between power and torque 4.

Pm = τmθ̇ (4.5)

4 Note that the swing equation can also be expressed as a function of the difference
between electrical power and mechanical power.
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Figure 4.3: The GGOV fossil generator model as implemented in Mat-
lab/Simulink (see annex 7.2 for wider picture).

The GGOV reproduces a conventional control scheme for fossil gen-
eration which consists in regulating the rotor velocity and reference
power using an PID-based controller. A low-value select block allows
considering mechanical and thermal limitations of the gas generator
to limit the control signal. On the other hand, a time-constant rep-
resentation reproduces the fuel actuation and combustion dynamics.
Figure 4.4 shows the overall fossil generation model composed of
synchronous machine model , automatic voltage regulation and tur-
bine blocks. Equation 4.6 expresses the power control setpoint y as a
function of the input signal u (calculated from rotor velocity).

y = Kpu+Kd
du

dt

1

Td
e
− t
Td +Ki

∫t
0

udt (4.6)
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Figure 4.4: AVR, GGOV and synchronous generator form the fossil genera-
tion block.

pv system model

The PV plant model assumes a balanced three-phase system with a
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constant unity power factor (no reactive power production). The DC to
AC conversion is assumed to be ideal (no losses due to inverter). These
assumptions allow expressing the 3 phase line voltage and current
following Eq. 4.7 and 4.8.

VaVb
Vc

 =

 Va1

α2Va1

αVa1



(4.7)

IaIb
Ic

 =

 Ia1

α2Ia1

αIa1



(4.8)

α = e
2
3Πj (4.9)

With Va1, Ia1 being the positive sequence component of phase
a, and α the phasor rotation operator5. From the measurement of
line-to-line voltage Vab and Vbc, the phase voltage are processed as
follows:

Va =
1

3
(Vab −α

2Vbc) (4.10)

By assuming a constant unity power factor, the apparent power
SPV the active power PPV and reactive power QPV can be expressed
following Eq. 4.11.

SPV = PPV + jQPV = PPV =
3

2
VaIa (4.11)

The PV power PPV is calculated thanks to the global horizontal
irradiance Irr, the PV rated capacity Winst

PV and the PV derating factor
ηPV .

PPV = Irr×Winst
PV × ηPV (4.12)

5 In this model, the method of symmetrical components was originally employed to
allow fault analysis. This will not be of use in this part since only solar irradiance
simulation will be covered.
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battery model

The battery electrical model is the same as the PV electrical model
(Eq 4.7 to 4.11). The battery active power is controlled thanks to the
frequency droop. In this model, the battery does not provide voltage
support thanks to reactive power supply. The voltage regulation is
solely handled by the gas generator thanks to AVR. Table 4.4 shows
the battery model parameters 6. Eq. 4.13 expresses the grid frequency
f from the angular velocity θ̇ whereas Eq. 4.14 expresses the power
control thanks to the frequency-dependant droop r(f).

f =
θ̇

2Π
(4.13)

Sbat = Pbat + jQbat = P
max
bat r(f)f (4.14)

The principle of the frequency-dependant droop r(f) is shown in
Fig. 4.5.

|r(f)| = |
∆P

∆f
| =

{ 0 if |f− f0| < f
droop
min

r1 if f
droop
min 6 |f− f0| < f

droop
1

r2 if |f− f0| > f
droop
1

(4.15)

Pminmax 6 Pbat 6 P
max
bat (4.16)

Parameter Name Symbol Unit Value

Battery maximal charging power Pmaxbat MW 50

Battery maximal discharging power Pminbat MW 50

Freuqency reference value f0 Hz 50

Frequency dead-band trigger value f
droop
min Hz 0.1

Frequency droop zone trigger value f
droop
1 Hz 0.25

Frequency droop zone 1 r1 % 1

Frequency droop zone 2 r2 % 1

Table 4.4: Battery model parameter.

6 The table reports a synthetic case initially developed with TotalEnergies to test the
dynamic models. The battery sizing is here voluntarily overestimated and will be
furtherly refined
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Figure 4.5: Principle of dual-zone droop control of battery active power.

4.2.1.2 Simulation of worst-case irradiance time series

To evaluate the impact of PV integration on the quality of supply, an
industrial microgrid composed of 4 gas turbines is taken as example
with two PV penetration rate scenarios (see Tab. 4.5). In case 1, the
maximum PV penetration rate reaches 50% against 80% for case 2.
These two scenario are simulated using the worst-case solar variability
timeseries identified in Chapter 3

7 and filtered using the WVM8.

Case Active Load Power (MW) Reactive Load Power (MVAR) PV (MW)

1 140 28 70

2 170 38 140

Table 4.5: Characteristics of two cases used for worst-case simulation using
the three-phase model.

Figure 4.6 and 4.7 report the results for case 1 and case 2 respectively.
The frequency fluctuations are larger for case 2 (-0.35Hz for case 2

against -0.20Hz for case 1) which shows higher PV penetration rates
increase electrical perturbation. The voltage specification limit ∆Vspec

( 0.5% of nominal value) is not reached in both cases which shows
the ability of the AVR system and gas generator to maintain voltage
fluctuation without external support.

Fig. 4.8 compares the battery active power supply for both cases. In
case 1, no power support from the battery is necessary which means
that the four GTs can solely handle the frequency control and maintain
frequency within the specifications. However, in case 2, PV fluctuation
become too large and the battery is used to compensate active power
unbalance and maintain the frequency within its limits. In case 2,
the battery active power reaches 3.51 MW. Bearing in mind that the
simulated time series constitutes a worst-case scenario in terms of

7 2011-03-06 in the dataset obtained from [89]
8 Wavelet Variability Model; Irradiance data which is filtered with installed PV power

parameters of 70MW for case 1 and 140MW for case 2
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variability, the maximum battery power supply gives the required
storage capacity for this architecture.
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Figure 4.6: Simulation results for case 1 (140 load, 70MW of installed PV
capacity).
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Figure 4.8: Comparison of battery active power supply for case 1 and 2.

4.2.1.3 Limitations of three-phase modelling approaches

The three-phase electrical model provided by TotalEnergies showed
its ability to simulate the hybrid power plant under solar variability
conditions. The results show that an active power supply from the
battery is necessary to ensure the frequency stability for high PV
penetration rates.

However, the three-phase electrical modelling showed several limi-
tations. First , the level of complexity of electrical model require large
computational resources. To simulate 15 hours of operation with a
1 second resolution PV profile, the computation time varies from 1

hour to 3.8 hours 9. Secondly, GGOV, AVR and Synchronous machines
models require lots of input parameters (list is provided in annex 7.3)
that are rarely available at preliminary assessment phases. Similarly,
line voltage and grid topology are rarely know at preliminary steps.
Such level of uncertainties challenges the interest of performing de-
tailed simulation (especially for line voltage10). Finally, the GGOV
model is designed to simulate emergency procedure such as load step
compensation. Hence, the physical limitation corresponding to the
normal load following operation are not considered. As a matter of
fact, ramp-rate limitation are often provided by manufacturer to limit
the ageing of the turbine. This is not considered in the GGOV mod-
elling although it might substantially alter the dynamical performance
of the system.

A reduced model will be proposed in the next part to simplify the
simulation process and better account for ramp-rate constraints.

9 3 hour using a 4cores 8go RAM Intel i5 CPU, 1h using an 20 core 128Go Ram Intel
Xeon CPU

10 As a matter of fact, proper voltage analysis require to solve the power flow equation.
To do so, accurate data on cabling configurations, transformers and inverters are
necessary. This explains why detailed electrical studies and power flow analysis are
not carried at preliminary phases
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4.2.2 The single-line active power model

4.2.2.1 Single-line simplification

The 3-phase detailed model presented in part 4.2.1 showed its ability
to provide accurate evaluation of frequency, voltage as well as power
supply from all devices. But its limitations in terms of complexity,
calculation time and accuracy pushes to adapt it.

The model adaptation consists in reducing the grid description to
a single line diagram accounting for active power flows only. The
cross dependencies between reactive power versus frequency stability
on one side, and active power balance versus voltage stability are
ignored (δVδP = 0 and δf

δQ = 0). This is motivated by the fact that no
large voltage drops have been observed during cloud passage even for
high penetration rates (see Fig. 4.7 where voltage fluctations remained
above 10.95kV ).

By neglecting voltage fluctuations, the individual synchronous ma-
chine models can be replaced by the equivalent mechanical equation
presented in Eq 4.17 (second-order approximation of the swing equa-
tion [126]).

d∆θ̇

dt
=
∆Pmech +∆PPV +∆Pbat −∆Pload −D∆θ̇

Meq
(4.17)

The equivalent mechanical equation uses the equivalent inertia
of the system Meq expressed in Eq. 4.18. Where Mi is the inertia
constant of the machine i expressed in the machine’s per-unit system
(see 7.3) and MVApui is the per-unit normalization factor (typically
the nominal real power of the unit). The load damping parameter D
is assumed to be zero since no data were provided by TotalEnergies
regarding the sensitivity of the load with regards to the frequency
variations.

Meq =
∑
i

MVA
pu
i Mi (4.18)

The GGOV is used to model the gas turbine’s mechanical power
and control system. Since the electrical power is not computed by the
synchronous machine model anymore, is is assumed to be equal to
the mechanical power at the GGOV input.

PV system is considered as an active power source following Eq. 4.12.
The battery systems follows the same equation as in the three-phase
model (Eq. 4.14 and 4.15). In order to account for the energy balance
of the storage system throughout the day, state-of-charge equations
are integrated (Eq. 4.19 and 4.20).

Ebat(t+ 1) = Ebat(t) + ηbatPbat
∆t

3600
(4.19)
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Emaxbat Soc
min 6 Ebat(t) 6 E

max
bat Soc

max (4.20)

Where Ebat is the energy stored in the battery in MWh, Soc is
the battery state of charge in % and ∆t is the time step used for the
simulation in seconds. ηbat denote the battery discharging efficiency
in % due to DC-AC conversion losses.

Fig. 4.9 shows the single-line model of the power system as imple-
mented in Matlab/Simulink where the 3-phase line representation is
replaced by single line active power flows.
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Figure 4.9: Single line model of the power system as implemented with
GGOV model for fossil power generation.

The three-phase and monoline models are compared in Fig. 4.10

with a PV ramp of 70% over 50 seconds and a constant load power
of 140MW. The monoline model shows a satisfying match with the
three-phase model. In this case, the battery supply reaches 2.4MW and
the frequency drops down to 49.88Hz with less than. The relatively
low battery power supply is explained by the fact that the system
stability is mainly ensured by the gas turbines and that no ramp-rate
constraints are considered. The computation time is substantially
reduced (51 seconds for the three-phase model against 2 seconds for
the simplified model).

ramp-rate controlled fossil generation

The single line simplification significantly reduces the computational
time. By removing the AVR and synchronous machine model, fewer
input parameters are now necessary. In the three-phase model, three
sets of parameters are necessary for GGOV (37 parameters), AVR (38
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Figure 4.10: Comparison between simulation results of three-phase and sim-
plified electrical model using GGOV model for fossil generation.

parameters) and synchronous machine (17). On the other hand, the
monoline model replaces AVR and synchronous machine block by the
swing equation and therefore only uses the inertia M and damping
constant D. However, the use of the GGOV model remains a challenge
if data are not available.

In most cases, only ramp-rates are publicly disclosed by manufac-
turers which leads to develop a dedicated ramp-constrained model. In
addition, the GGOV model was initially developed to simulate large
load picking which rarely occurs. Therefore, the response time of the
GGOV can be considered as an emergency response (see Tab. 4.6).
Since solar drops frequently occur due to cloud passage, fossil units
should be operated in emergency mode as less as possible and follow
the normal ramp-rate (also called load-following ramp-rate).

Name
Nominal Power

(MW)
Mode

Time to achieve 100%

of load increase (s)

Ramp rates

(MW/sec)

Industrial GT 54

Emergency 11 10

Normal 260 0.208

Gas ICE 9.3
Emergency 40 0.232

Normal 60 0.155

Table 4.6: Time to achieve 100% of load increase and corresponding ramp
rates for gas turbine and internal combustion engine in emergency
and normal modes.

The ramp rate control consists in replacing the fuel actuation and
turbine dynamics block by a slew rate saturation (Eq 4.21 and 4.22).
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du

dt
=
P∗mech(i) − P

∗
mech(i− 1)

t(i) − t(i− 1)
(4.21)

Pmech(t(i)) =

{ ∆t.rrup if du
dt > rrup

P∗mech(t(i)) if rrdown 6 du
dt 6 rrup

∆t.rrdown if du
dt < rrdown

(4.22)

Pmin 6 Pmech 6 Pmax (4.23)

Where P∗ is the controller power output, P is the ramp rate lim-
iter output, t(i) the time corresponding to the simulation step i and
rrdown, rrup the manufacturer’s ramp rate parameters.

To ensure the stability of the system during ramp event, the PID
control implemented in the GGOV is replaced tuned back (Eq. 4.24 and
Tab. 4.7). In addition, the unit power setpoint Pk obtained from the
EMS is tracked using proportional control (Eq. 4.25). The mechanical
control signal before ramp saturation P∗mech is given by Eq. 4.26.
The calculation steps of the final mechanical power output Pmech are
displayed in Fig. 4.11.

P∗θ(t) = Kp∆θ̇+Ki

∫t
0

∆θ̇dt+Kd
d∆θ̇

dt
(4.24)

P∗setpoint = Ks (Pk − P(i− 1)) (4.25)

P∗mech = P∗θ + P
∗
setpoint (4.26)

Parameter GGOV Ramp saturated (Emergency) Ramp saturated (Normal)

Kp 5.3 -0.5 -0.12

Ki 1.9 -0.016 -0.0315

Kd 4.9 -0.01 -0.01

Table 4.7: PID parameters for GGOV and ramp-saturated models.

Figure 4.12 displays the response of the GGOV model and ramp-
saturated model both in emergency (600MW/min) and normal oper-
ation (12.5MW/min) mode. The response rate of GGOV and ramp
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Figure 4.11: Ramp saturated model replacing the GGOV block in the Mono-
line model.

saturated model in emergency model are very similar thanks to the
PID tuning. The simulation time of the ramp-saturation model sightly
increases (10 seconds for a 150 seconds time-window). In normal
mode, the impact of the frequency become significant which forces
the battery to supply more than 20MW. This shows that considering
ramp saturation may substantially modify the electrical stability of
the system and the power quality. The similar response rate between
GGOV and emergency mode shows that the ramp-saturated model
remains accurate to evaluate the power quality.
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Figure 4.12: Comparison of system response to a PV drop of 50% over 35

seconds for GGOV model and ramp-saturated (RS) model in
emergency and normal operation mode using the simplified
model.

4.2.2.2 Simulation of daily irradiance timeseries and comparison with 3 -
phase model

The simplified model with and without ramp rate control is compared
to the three-phase model presented in section 4.2.1. The day-long time-
series (5.4 104 seconds ) is simulated in 1 hour with the three-phase
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model, against less than 3 seconds for the simplified model 11. The
two cases proposed in Tab. 4.5 are simulated and results are presented
in Tab. 4.8 and 4.9. For both cases, similar results are obtained for
three-phase model and simplified model without ramp-saturation. In
case 1, there is no battery power supply and the minimum frequency
is around 49.80 Hz. In case 2, the maximum battery power output
reach 3.51 MW and 3.71 MW for the three-phase and simplified model
respectively. This shows the consistency of the model simplification.
On the other hand, the simplified model with ramp saturation requires
much more battery power : 20.76 MW in case 1 and 32.3 MW in case 2.
Thanks to the battery supply, frequency is kept close to the steady-state
frequency variations (49.5 Hz). The impact of the ramp-rate control on
battery capacity requirement appears to be significant (0 MW without
ramp rate control against 20.76 MW with normal ramp-rate control
in case 1). This shows that if ramp-rate limitations are imposed by
manufacturers, a primary support storage system is necessary.

Parameter Max. Battery power Frequency MAE Minimum Frequency

Unit MW Hz Hz

3-phase model 0 0.01 49.85

Monoline model 0 0.05 49.80

Monoline model + ramp saturation 20.76 0.20 49.48

Table 4.8: Comparison of simulation results for 3-phase and simplified model
in case 1 (140 MW load + 70 MW PV)

12

Parameter Max. Battery power Frequency MAE Minimum Frequency

Unit MW Hz Hz

3-phase model 3.51 0.02 49.75

Monoline model 3.62 0.06 49.69

Monoline model + ramp saturation 32.3 0.49 49.47

Table 4.9: Comparison of simulation results for three-phase and simplified
model in case 2 (170 MW load + 120 MW PV).

4.2.3 Impact of schedule decisions on power quality

Thanks to power plant electrical modelling and simulation using
high-resolution timeserie, the impact of PV integration on power
quality can be assessed. However, several aspects of fossil generators
management are ignored in this approach. First of all, the minimal
power of gas generator is not taken into account in the GGOV models.
As a result, GTs operate bellow their minimal power rating in both
cases shown in Fig. 4.6 and 4.7. In real life conditions, a part of
the PV capacity should be curtailed to keep generators within their
operating range. Additionally, GTs have a lower efficiency at low load

11 Computer performances : 8 core and 64 Go Ram Intel Xeon CPU
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factors. This pushes to reduces the number of running turbines to
increase their power ratings and reduces their fuel consumption. These
considerations are at the center of planning optimization techniques
aiming at finding the best set of fossil units at each hour of the
day. In simple systems composed of a single type of generator, the
planning constraints can be expressed by Eq. 4.27 and 4.28 (for the
sake of simplicity, more complex constraints such as spinning reserve
or redundancy are ignored at this step and will be detailed in the next
sections of this chapter).

∑
m

Pm + PPV = PL (4.27)

Pminm 6 Pm 6 Pmaxm (4.28)

The number of operating turbines can be expressed following
Eq. 4.29 depending on the load demand PL. By considering PPV
as the averaged PV power in an hourly interval, the required number
of turbines for case 1 and 2 is calculated in Tab. 4.10.

Due to the high PV penetration, the number of turbine can vary
from 1 to 4. This will lead to a reduction of mechanical inertia in
the system (Eq. 4.18) and ramping capabilities (Eq. 4.30) from the gas
turbines which affects the stability of the system and therefore the
battery requirements.

nturb = E

(
PL − PPV
Pmaxm

)
+ 1 (4.29)

rrmax =

nturb∑
i=1

rri (4.30)

Hour 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Case 1

PPV 0 0,2 11,6 29,0 35,9 65,0 58,8 64,9 70,0 63,0 45,6 35,9 14,1 0,0

nturb 4 4 3 3 3 2 2 2 2 2 3 3 3 4

Case 2

PPV 0,0 0,5 23,2 57,9 71,9 130,1 117,5 129,8 140,1 126,0 91,2 71,8 28,1 0,0

nturb 4 4 4 3 3 1 2 1 1 1 2 3 4 4

Table 4.10: PV power and number of turbine for case 1 and 2 under 2011-03-
16 irradiance conditions.

electrical simulation of cloud passage

To evaluate the impact of planning decisions on power quality, PV
plants of various sizes are simulated for all isolated solar ramp scenar-
ios of the convex hull defined in Chapter 3. Figure 4.13 shows the grid
frequency profile with the largest deviations among all ramp events of
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the convex hull (observed for a ramp of 0.4 kW/m2 over 15 seconds).
Thanks to the battery support, the frequency is maintained within the
specified limitations (49.5Hz).
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Figure 4.13: Frequency simulation during the worst cloud passage of several
PV power plants (0.4 kW/m2 over 15 seconds) without ramp-
rate control.

Fig. 4.14 displays the required battery capacity to maintain the
frequency stability for several installed PV capacity. In Fig. 4.14 (A),
the maximum PV capacity at which no battery support is needed
depends on the number of connected turbines : 60 MW of installed
capacity for 2 turbines against 100 MW with 4 turbines connected.
This figure also highlights that for a given PV installed capacity, large
battery capacities are required to maintain frequency stability if a small
number of turbines are running : No battery supply for 4 turbines, 3.5
MW for 3 turbines and more than 11 MW for 2 turbines in the case of
a 100 MW PV plant. These observations are even more striking in the
case of ramp controlled turbines (In Fig. 4.14 (B)) with much larger
battery power supply : for a 70 MW PV plant, the battery support
raises from 16.22 MW with 4 turbines up to 21.5 MW with 2 turbines.

These results illustrate that battery size can be underestimated if a
fixed number of turbines is considered (for example 4 turbines along
the day). In practice, the power system would face high risks of
electrical instability when shutting down fossil units. Hence, to size
the battery system and meet the power quality constraints, hourly
schedule decisions should be considered as they impact the resiliency
of the system.
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Figure 4.14: Battery power support required to maintain frequency stabil-
ity for several power plant under their worst cloud passage
(0.4kW/m2 over 15 seconds). A : No ramp rate control on gas
turbines; B : ramp rate control at 12.5MW/min.

It can be concluded that detailed electrical modelling cannot solely
address the problem of power quality in hybrid systems. To maximize
the PV penetration, reduce the fuel consumption and keep the fossil
generator within their operational limits, schedule decisions need to
be made to reduce the number of running generator along the day.

This gives a wide range of configuration that depends on the load
profile and PV power production during the planning interval as well
as the performances of the generators. These planning decisions re-
duce the resiliency of the grid to electrical perturbation. To accurately
evaluate the performances of the power plant, the coupling effect be-
tween energy management optimization and power quality simulation
needs to be addressed.
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4.3 multi layer simulation of hybrid power plant

Now that dynamic models for the evaluation of power quality and
storage capacity evaluation have been proposed, economic and en-
vironmental performances must be integrated to perform an overall
preliminary assessment of the hybrid power plant.

To that end, an energy management model must be constructed to
reproduce the decision process as it would be conducted in real-life
applications. This consists in taking decisions on fossil generators
status and power output as well as PV curtailment. These decisions
are made to minimize the system’s fuel consumption (or a composite
function taking additional operational costs) and respect operational
constraints on fossil generators as well as resiliency constraints (PV
loss or generator failure).

As shown in part 4.2.3 the energy optimization may impact the
power plant’s configuration between each decision (number of con-
nected generators, proportion of connected PV array etc.). To en-
sure a reliable evaluation of battery needs and plant’s performances,
electrical simulations must be carried alongside energy management
optimization.

In this section, a novel methodological framework is formulated
to evaluate economic, environmental and electrical performance si-
multaneously. The principle of the method is to simulate the power
plant thanks to the simplified dynamic model after each decision of
the energy management. Such methods respects the industrial con-
straints on calculation time thanks to fast-solving models (both for
planning decisions and dynamic simulation) and the use of scenario
reduction method presented in Chapter 3. In the present work, the
energy management model is formulated as a Mixed Integer Linear
Programming (MILP) model.

In part 4.3.1, the principle of the simulation framework is detailed
and compared to the state-of-the art methods for hybrid power plant
simulations. In part 4.3.2, an energy management formulation includ-
ing resiliency constraints for cloud passage and generator outages
is detailed. The coupling process with the short term layer is then
presented in part 4.3.3. Finally, the strategy for scenario reduction and
aggregation is presented in part 4.3.4.

4.3.1 Approach

The reconciliation of energy management strategy at hourly time
scales and power quality control at short time scale is a challenge
that is still being investigated by the scientific community. The main
challenges of such reconciliation are summed up in Fig. 4.15 and may
be briefly listed as follows :
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• Different time-scales: Energy optimization aim at managing
generator schedule on a 10 min to 1 hour timescale which corre-
sponds to the time required to start of shut-down a generator. On
the contrary, frequency and voltage shift occur at low timescales
( few seconds).

• Calculation methods : As stated in part 2.3, Energy management
problems are formulated and solved thanks to optimization
techniques (heuristics, non linear or linear optimization) whilst
electrical simulation requires to solve differential power flow
equations (thanks to time-domain simulation and representation
in the Laplace domain).

• Opposite incentives : The energy management layer pushes to
integrate as much PV as possible to reduce the fuel consumption
whereas electrical analysis will tend to reduce the instability by
lowering PV penetration or increasing the number of running
generators.
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Figure 4.15: Main differences between energy management and control lay-
ers.

One solution is to integrate the power control problem within the
high level energy management optimization framework. This is inves-
tigated in [135, 165, 168, 210] where various strategies are implemented
to ensure the frequency stability thanks to linear or non-linear con-
straints. However, the size of the optimization problem forces to
reduce the level of accuracy of the short term representation to keep
the solving time reasonable. In addition, the use of integrated indica-
tors and constraints at hourly steps does not allow providing metrics
on the power quality and the occurrence of the disturbances observed.
Finally, as highlighted in [135], the aggregation of frequency stability
in linear constraints leads to suboptimal solution which reduces the
fuel savings.

The challenge of fully-integrated optimization problem justifies the
use of a multi-layer approach to reduce computational burden and
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provide more tangible power quality metrics. As shown in Fig. 4.16,
the energy management simulation will be handled in an hourly
interval thanks to a linear programming framework. This allows
developing a flexible and comprehensive optimization framework
whilst providing the guaranty of optimality of the proposed dispatch.
On the other side, the short term power control is simulated thanks to
the single-line model proposed in part 4.2.2.

Simultaneously taking into account energy management and power
control allows reproducing the operational decision scheme of the
power plant. For an industrial power plant, the day-ahead manage-
ment is expected to be conducted as follows13:

1. The schedule of the fossil generators is processed depending
of needs, availability and costs. Since large scale engine have a
quite long start-up time and non-negligible start-up costs, the
schedule covers several hours of operation. In this work, we
consider it done at the beginning of the day and for the next
24 hours. The decision made on start-up and shut down proce-
dures are only made at this step and cannot be modified during
the day (excepted emergency procedures related to equipment
contingency).

2. As the PV production and load demand vary over the day,
the commitment of each machines must be reprocessed with
updated values. These values are sent as new power setpoints
to the fossil generators.

3. The power output is finally re-adjusted in real time to ensure
adequacy between electrical generation and demand and keep
frequency and voltage within acceptable limits following the
primary, secondary and tertiary control. At this step, a battery
storage system is integrated to provide primary reserve support
in case of power unbalance.

To reproduce this process, two steps of optimization are imple-
mented and are interfaced with the short-term power control layer.
This is shown in Fig 4.16. The principle of each steps are the following:

1. The hourly forecast (or hourly mean irradiance value) of a day is
used to calculate the optimized schedule of the fossil generators
(block 1).

13 This process has been identified thanks to meetings with operators and power plants
experts in TotalEnergies and represents the current operational philosophy. The main
reason for not updating start-up ad shut-down decisions throughout the day is that
these procedure require complex preparation and potentially put the continuity of
supply at risk in case of failures. It could be argued that this operational strategy
is suboptimal when integrating PV power (for example, forecasts updates allow
recalculating the power balances with better economical performances). The potential
of more advanced strategies (such as model predictive control) should be evaluated
in the future and put into perspective with the implications in terms of reliability and
feasibility of implementation at sites.
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2. At every step of 10 minutes, a dispatch optimization is carried
out by considering the updated PV output power (block 2).

3. The schedule and new optimal dispatch are sent to a model-
based simulator that will simulate the plant with a 1 second
resolution during the 10 minute time-window (block 3). A 1-
second resolution irradiance profile is used to take PV cloud
passing into account. The power control model can adjust the
fossil generator and the battery power output.

4. Step 2 and 3 are repeated until the end of the day.

The optimization layers are modelled using the python-based Pyomo
library and solved thanks to Gurobi 9.1. As previously detailed, the
control layer is modelled thanks to Matlab/Simulink.
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Figure 4.16: Three layers of the simulation framework.

4.3.2 The generic energy management model

4.3.2.1 Objective function and decision variables

The aim of the energy management optimization is to minimize the
fuel consumption costs and the operational costs related to start-up
and shut-down procedures of fossil units (Eq. 4.31). The main decision
variables are the fossil generator status ωh,m,i, the fossil generator
output power Ph,m,i and the PV plant injected power PinjPVh . At this
step the primary support storage system is not considered since its role
is only to provide power support if instabilities occur. It is assumed
that (1) the cumulated energy supplied by the storage system can be
neglected compared to the consumption of the electrical load and (2)
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that its energy capacity is high enough to neglect the charging strategy
during the day.

min

H∑
h=1

∑
m,i

(FCm,i,h(cf + cCO2) + um,i,hcum + vm,i,hcvm) (4.31)

4.3.2.2 Constraints

Linear constraints of the management problem are detailed in this
section following formulation proposed in [167] . The contingency
constraints have been adapted from [188] to match with a single-bus
case and to a pool of generators of various technologies.

load balance

The load balance equation (Eq 5.6) ensures the equilibrium of power
during each time-step between PV, fossil generation and electrical
load.

∀h,
∑
m,i

Pm,i,h + PinjPVh − Plh > 0 (4.32)

fossil generation operational constraints

Eq. 5.8 and 5.9 ensure that minimum and maximum power output of
fossil generators are not violated.

∀h,m, i Pm,i,h 6 Pmaxm ωm,i,h (4.33)

∀h,m, i Pm,i,h > Pminm ωm,i,h (4.34)

Start-up and shut-down procedures are integrated using previous
state of the fossil generator ωm,h−1 ( Eq. 4.35). Equation 4.36 ensures
that a unit is not started and shut-down at the same time.

∀h,mi um,i,h − vm,h > ωm,i,h −ωm,h−1 (4.35)

∀h,mi um,i,h + vm,i,h 6 1 (4.36)

Minimum up and down time constraints express the minimum
amount of time during which a unit must stay on after being turned-
on (Eq. 4.37) or stay off after being turned off (Eq. 4.38).
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∀m, ∀h >Mupm ,
h−1∑

k=h−Mupm

ωm,k−Mupm ∗ vm,h > 0 (4.37)

∀m, ∀h >Mdnm , Mdnm ∗ (1−um,h) −

h−1∑
k=h−Mdnm

ωm,k > 0

(4.38)

Eq. 4.39 and 4.40 ensure that all machines of same types are equally
loaded (also called load sharing). The element p is defined by the
pair (m,i) which which refers to the ith engine of type m. Hence,
p = (m, i) belongs to the ensemble of available units MUC.
∀ h, ∀ p = (m, i), p ′ = (m ′, i ′) ∈MUC | i 6= i ′ and m =

m ′ :

Pp − Pp ′ 6 K(2− (wp +wp ′)) (4.39)

Pp − Pp ′ > K(2− (wp +wp ′)) (4.40)

contingency constraints

A key aspect in the reliability of the power system is the ability to pro-
vide power even in case of a loss of fossil generator. This is ensured
thanks to redundancy constraints which allocate enough spinning
reserve to cover the loss of the largest generator. In conventional sys-
tems, this results in running the system with an additional generator
(called "N+1 configuration") and leads to higher fuel consumption
because of lower part load efficiencies of GTs. Alternatively, a storage
system can ensure this spinning reserve to turn off the N+1 generator.
This configuration is called "N". The power capacity of such storage
system is denoted PN+1

bat and is considered as fixed since it is not a
decision variable of the problem.

Figure 4.17 illustrates how spinning reserve allocation and N+1

storage can cover the lost of the largest generator.
The operational margin of each unit is denoted ∆Pcontm,i,h and is

defined by Eq. 4.41.

∀h,m, i ∆Pcontm,i,h 6 Pmaxm − Pm,i,h (4.41)

Eq. 4.42 ensures that Pcontm,i,h is zero if the unit (m,i) is turned off.

∀h,m, i ∆Pcontm,i,h 6 K ·ωm,i,h (4.42)
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Figure 4.17: Contribution of units and storage to the post contingency state.

Plst refers to the power lost during the contingency and corresponds
to the largest power contribution following Eq. 4.43.

∀h,m, i Plsth > Pm,i,h (4.43)

Pmax,lst
m denotes the maximum output power of the lost unit follow-

ing Eq. 4.44, 4.45 and 4.46. ∆Plsth refers to the potential contribution
of the lost unit.

Plsth +∆Plsth = Pmax,lst
m (4.44)

∀h,m, i Plst,maxh 6
∑
m,i

∆Pcontm,i,h (4.45)

∀h,m, i Plst,maxh > Pmaxm ·ωm,i,h (4.46)

Finally, Eq. 4.47 ensures the load balance at post-contingency state
thanks to the cumulated participation of each unit and the potential
N+1 storage system. This formulation slightly differs from [188] since
the lost unit can be a partially operating unit. Note that the ramp-rate
of the fossil units during contingency events is considered as large
enough to neglect the grid dynamics.

∀h Plsth 6
∑
m,i

∆Pcontm,i,h −∆Plsth + PN+1
bat (4.47)

pv integration and curtailment

The PV system output power depends on Ih and ηPV which accounts
for the global horizontal irradiance profile as well as optical and ther-
mal effects affecting the system performance. The injected power PinjPVh
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therefore depends on the available capacity after potential curtailment
Wused
PVh

. This lets a possibility of reducing the availble capacity if re-
serve requirement becomes too large or if the minimum load of fossil
units is reached.

∀h,Wused
PVh

6Winst
PV (4.48)

∀h,PinjPVh 6Wused
PVh

∗ Iwvmh ∗ ηPV (4.49)

fuel consumption linear interpolation

The fossil unit’s fuel consumption is calculated thanks to a linear
relationship (see fig 4.18). am and bm denotes the coefficient of the
fuel curve for the machine of type m.
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Figure 4.18: Siemens SGT800 fuel consumption for 1h of operation at load.

∀h,m, i

FCh,m,i = amPh,m,i + bm (4.50)

cloud passing spinning reserve

The spinning reserve constraint (Eq. 4.51) ensures that the operational
margin of all units can cover the PV variation.

∀h ∆I
avg
h Wused

PVh
6
∑
m,i

∆P
avg
m,i,h (4.51)

∆P
avg
m,i,h refers to the contribution of each engine to the PV spinning

reserve and is defined following Eq. 4.52. Eq. 4.53 ensures that this
contribution is zero if the unit is turned off.
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∀h,m, i ∆P
avg
m,i,h 6 Pmaxm − Pm,i,h (4.52)

∀h,m, i ∆P
avg
m,i,h 6 K ·ωm,i,h (4.53)

4.3.2.3 Implementation of energy optimization for the schedule and dispatch
problem

At the schedule step, decision are made on the status of fossil units
which is not possible at the dispatch step.

In the schedule problem, the optimization is processed over 24

hourly time-step. The ensemble of generators MUC is composed of all
available units.

In the dispatch optimization, the status variables ωk,m,i become
parameters of the problem. The optimization adjusts the power output
of generators within the ensembles M

Dispatch
h = {(m, i) | ωh,m,i =

1}. All constraint of the schedule optimization problem are applied
excepted Eqs. 4.36, 4.37 and 4.38 since no start-up and shut down
decisions are made.

The dispatch optimization is done over a single time step k (a single
independent optimization at each 10 minute time-slice k ∈ [1, .., 6]).

The load profile is considered constant within each hourly interval
for the schedule optimization and is interpolated at each 10 min
time-slice for the dispatch optimization.

PL(h,k) = PLh + k
PLh+1 − PLh

6
(4.54)

4.3.3 Short term control layer

The short term simulation layer simulates the behaviour of the power
plant by tracking optimal setpoints of fossil generators Pm,i,k obtained
from the upper optimization layer and adjusts the production of
generating devices to keep the power quality within the specifications.
The model proposed in part 4.2.2 implemented in Matlab/Simulink is
interfaced with the optimization layers.

Figure 4.19 shows the inputs and outputs of the control layer. The
PV production is calculated thanks to the 1 second irradiance profile
IWVMt and the available capacity after curtailment Wused

PVh
. Equa-

tion 4.12 becomes:

PPV(t) =W
used
PVh

∗ IWVMt ∗ ηPV (4.55)

The status decisions of fossil generator ωh,m,i, uh,m,i, vh,m,i are
sent as parameters to the control layer to force the shut-down and
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start-up of units as planned by the first optimization layer. The fossil
generation setpoint Pk,m,i processed by the 2nd optimization layer
feeds the unit’s setpoint in Eq.4.25.

The load profile is interpolated thanks to the values of the upper
optimization layer:

PL(t) = PLk + t ∗
PLk+1 − PLk

600
(4.56)
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Figure 4.19: Inputs and outputs of the short-term layer. The real time simu-
lation block refers to the single-line electrical model previously
detailed (see Fig. 4.9)

4.3.4 Scenario aggregation for performance evaluation

4.3.4.1 Aggregation method

As presented in the previous part, energy management optimisation
(implemented using python’s Pyomo library) is interfaced with the
power control layer modelled thanks to Matlab/Simulink. Due to the
time required by the optimization solver, API14 and data manage-
ment, the simulation of an entire daily timeseries from 7:00am to
8:00pm requires approximately 40 minutes (regardless of the com-
puter’s performances). An evaluation using 365 daily timeseries does
not match the objective of fast calculation stated in the introduction
since it would require more than 240h to simulate a single architecture.
Therefore, the scenario reduction method proposed in Chapter 3 is
used. This provides representative results in terms of global solar
yield and solar variability. To ensure the robustness of the results, a

14 Application Programming Interface
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worst case scenario is also simulated and verifies the operability of the
system. This gives a set of 6 scenarios : 5 clusters + 1 worst case (in
the case of Hawaii solar data). By implementing a parallel computing
method, the 6 scenario can be simulated simultaneously in 40 minutes
by a standard computer 15.

Scenario 1

Occurrence  : 𝑁1

Multi-layer simulation

Set of clusters

Scenario k

Occurrence  : 𝑁𝑘

Worst case
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Figure 4.20: Procedure for scenario aggregation.

The scenario aggregation procedure is presented in Fig. 4.20. The
fuel consumption, grid frequency and battery power output of each
scenario are collected at the end of the simulation and are respectively
denoted as Pm,i(t), f(t) and Pbat(t) with m, i referring to the ith
generator of type m . The ensemble of scenario Kσ is defined as
Kσ = {1, ...,nσ}∪ {wc} where {1, ...σ} are the clustered scenario and wc
refers to the worst case scenario. Table 4.11 presents the ensemble
obtained from worst-case identification and scenario clustering of the
Hawaii dataset [89]. It should be noticed that the number of cluster is
not a fixed parameter and should be adapted to have the better match
between results from cluster scenarios and 365 days aggregation. It
should also be kept in mind that to fully take advantage of the parallel
computing, the number of cluster should be lower than the number
of cores of the computer. This allows performing a full analysis of an
architecture in 40 minutes.

15 Note that the computation time of a single irradiance scenario does not significantly
changes with a more powerful computer. However, having more cores available
allows running multiple scenarios in parallel
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Scenario Date Description Occurence VI Cumulative irradiance (kWh)

1 2010-12-09 Very Cloudy 40 21.31 2.63

2 2011-02-02 Medium production, low variability 98 30.90 4.92

3 2010-10-07 Medium production and variability 111 74.97 4.87

4 2011-09-02

High production, high variability

Medium sharpness
67 91.10 6.78

5 2011-06-11 High production and variability 49 172.71 6.20

wc 2011-03-16 Worst case variability 0 238.97 5 .92

Table 4.11: Solar input scenarios resulting from the clustering and worst-case
identification of the Hawaii dataset.

4.3.4.2 Indicators calculation

yearly performance indicators

Thanks to the numbers occurrences corresponding to each scenario,
yearly performance indicators can be calculated. The global fuel con-
sumption (in kJ) and CO2 emission (in tons) are calculated according
to Eq. 4.57 and 4.58 with am,bm being the coefficients of the fuel
curve and fCO2 the CO2 emission factor (tCO2/kJ). In the following
equations, Pσm,i(t) and fσ(t) denote the short-term simulation results
corresponding to scenario σ

FCglobal =
∑
σ∈Kσ

Nσ
∑

(m,i)∈M

tf∑
t=0

Pσm,i(t)am + bm (4.57)

CO
global
2 = FCglobal ∗ fCO2 (4.58)

The overall operating costs OC ($/year) of the system are expressed
in Eq. 4.59 with cfuel the fuel costs ($/kJ) and cCO2 the CO2 emission
tax ($/tons).

OC = FCglobalcfuel +CO
global
2 cCO2 (4.59)

In addition to these economic and environmental indicators, yearly
reliability indicators are calculated. The TFD (Time of Frequency
Disturbances in sec/year) refers to the cumulated time during which
transient disturbances have been observed (|∆f| > ∆fss with ∆fss =
0.5%f0 according to Tab. 4.1). The calculation of TFD is expressed in
Eq. 4.60 and 4.61.

TFDglobal =
∑
σ∈Kσ

Nσ
tf∑
t=0

µσf (t)δt (4.60)

µf(t) =

{1 if |∆f| > ∆fss

0 if |∆f| < ∆fss
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(4.61)

To evaluate the risk of generator degradation due to ramping ex-
ceeding the normal ramp-rates (in case of simulations considering
emergency ramp-rates in the fossil generation model), the TONRR
(Time Over Normal Ramp Rate, in sec/year) is proposed and refers to
the cumulated time during which the unit have been operated above
its normal-operation ramp-rate (∆Pm,i

∆t > rrnormalup ). This is expressed
in Eq. 4.62, 4.63 and 4.64. As shown in Fig. 4.20, the worst case is
not considered in the calculation of yearly indicators which is why its
occurrence is set to zero in Tab. 4.11.

TONRRm,i =

tf∑
t=0

µrr(t)δt (4.62)

µrr(t) =

{1 if
∆Pm,i(t)
∆t > rrnormalup

0 if
∆Pm,i(t)
∆t < rrnormalup

(4.63)

TONRRglobalm =
∑
σ∈Kσ

TONRRσmN
σ (4.64)

macro scale sizing-related indicators

The indicators listed above are able to quantify the performance of the
power plant thanks to the aggregation of "close-up" shots of the plant
behaviour. But macro scale indicator are also necessary to qualify the
feasibility of an architecture. These indicators consider both cluster
scenarios and the worst-case scenario to provide a robust evaluation.
In this work, two type of macro-scale indicators are proposed :

• Architecture stability : True if no unauthorized disturbance due
to PV cloud passing are observed ( if ∀t, |∆f(t)| < ∆fmax with
∆fmax = 5%f0 according to Tab. 4.1)

• Battery Saturation : True if the maximum battery output power
observed during the set of scenario Kσ is equal to the maximum
capacity of the storage system.

These qualifiers are useful in the primary storage capacity evalua-
tion process. For a given architecture, the minimum required capacity



4.3 multi layer simulation of hybrid power plant 153

leading to a stable architecture is denoted as Wlimit
bat . In these config-

uration the battery is saturated and a frequency disturbance appears
due to the gap between battery support, generator ramp-up and PV
production.

When the battery is not saturated, the grid frequency will be main-
tained within the steady-state limits thanks to the frequency droop con-
troller. The maximum output power of the battery observed through-
out all scenarios is therefore the minimum battery capacity to maintain
the grid frequency within steady-state limits Wss

bat.
In practice, Wss

bat can be obtained by simulating an architecture
with a very big storage capacity (for instance the same value as the PV
rated capacity). Wlimit

bat is obtained by carrying a sensitivity analysis
on the storage capacity and evaluating the architecture stability from
∆f.

4.3.4.3 Input profiles

solar input profile

Thanks to the scenario identification developed in the previous chapter,
a few scenarios are taken as input in the simulator (5 clusters + 1 worst-
case). The WVM filtered 1-second irradiance GHI 16 timeseries of each
scenario is pre-process according to the needs of each of the 3 layers.
In this work, a deterministic approach is used to handle solar data.
This means that both averaged production and minimum production
within the hourly interval is assumed to be known by the EMS system.
The analysis could be enriched by the integration of uncertainties
resulting from forecast systems which requires a deep investigation of
their performances and a stochastic or robust MILP formulation.

Since the first layer performs a day-ahead hourly schedule, an hourly
forecast is generated by calculating the hourly averaged irradiance
Iwvmh . To evaluate the need in spinning reserve requirement (see eq
4.51, the maximum difference between the averaged value and the
1 second profile is calculated following 4.65.

∆Iavg = max
t

(Iwvmh − Iwvmt ) (4.65)

The secondary layer, which adjusts the power rating of fossil gener-
ators every 10 minutes, is based on the 10 minute averaged irradiation
Iwvmk (Eq. 4.66).

Iwvmk =
1

600

600∑
t=0

Iwvmt (4.66)

The control layer includes the PV profiles calculated from 10 minutes
slices of 1 second wvm filtered data. Figure 4.22 shows the solar input
data for the three layers.

16 Global Horizontal Irradiance
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Figure 4.21: Example of deterministic spinning reserve generation.
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Figure 4.22: Example of GHI input profiles.

load input profile

Intra-hourly load variation are neglected due to the stability of the
processes. Figure 4.23 shows the ensemble of daily load profile for an
LNG processing plant. The hourly averaged load profile of each daily
profile is used in the schedule layer. 10 minutes interpolation is used
for the secondary dispatch layer and 1 second interpolation is used
and the power control layer. Table 4.12 sums up the solar and load
input profiles used by the three layers of the simulator.

Schedule Dispatch Real-time control

Load Hourly averaged (raw data) 10-minute interpolation 1-second interpolation

GHI Hourly averaged 10 minute averaged 1-second profile (raw data)

Table 4.12: Summary of input data profiles for each step of the simulation.
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Figure 4.23: Load profiles of the LNG facility. Grey lines show all daily load
profiles registered, colored lines show the maximum, minimum
and averaged demand profiles.

Now that the theoretical framework of the multi-layer operational
simulation has been developed, the next section will present an ap-
plication on an industrial case study. This will give an example of
the simulation capabilities and discuss the interests of this tool for
preliminary assessment of hybrid architectures.
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4.4 hybrid power simulation for an lng processing plant

The simulation framework proposed in the previous section has been
designed to evaluate the performance and battery requirements of
an hybrid architecture. The simulator should provide representative
results regarding:

• The economical and environmental performances of the system
such as the global fuel consumption, the total CO2 emission and
the total operating costs.

• The reliability of system : a guarantee of operability by ensur-
ing that no unauthorized disturbances where observed and the
cumulated time of frequency disturbances TFDglobal.

• The optimal size of the storage system to maintain the frequency
within steady-state limits Wss

bat and the minimal size of the stor-
age to guarantee stability with authorized transient disturbances
Wlimit
bat

In the first part of this section, a base case will be simulated. To
test the relevance of the aggregation method, results will be compared
with a full year simulation resulting from the 365 daily scenarios.

Then, the question of the impact of operating philosophy of indus-
trial microgrid will be addressed. Operating choices mainly consists
in imposing the redundancy constraint on fossil generation and in
considering GT manufacturer’s normal operation ramp-rate. The im-
pact of such choices on the performance of the hybrid power plant
will be studied.

Finally, the architectural levers to reduce the carbon footprint and
improve economical performance of hybrid power plant will be stud-
ied. This consists in running a sensitivity analysis on the installed PV
capacity, installed primary system storage and fossil power plant.

The case study represents an LNG facility where solar PV must be
integrated to an existing fossil power plant. Several size of PV and
ESS17 will be studied to investigate the electrical and economical per-
formance of the system. Table 4.13 shows the different configurations
of the system. The load profile of the system is displayed in Fig. 4.23.
The averaged power demand profile is used as input to the simulator.
The five clusters and the worst case scenario identified in Chapter 3

are used as input (see previous section for more details on solar input
management). Tab. 4.15 reports the main parameters related to fossil
generators.

17 Energy Storage System
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- Base case Range studied

Number of gas turbines 5 [ 0 - 5 ]

Number of gas engines 0 [0- 16]

PV installed capacity (MW) 70 [50 - 100]

ESS installed capacity (MW) 20 [0 - 25]

Table 4.13: System configurations.

Parameter Unit Value

PV CAPEX €/kW 600

Storage CAPEX €/kW 400

CO2 Tax €/tCO2 40

CO2 emission factor tCO2/tfuel 2.7

Fuel Costs €/mmbtu 10

PCI fuel MJ/mmbtu 38.1

Project lifetime years 20

Discount rate % 0

Table 4.14: Parameters for costs analysis and optimization.

Parameter Symbol Unit GT ICE

Power range Pminm , Pmaxm MW 22.5 - 45 2.7 - 9.3

Fuel curve coef. am kJ/kWh 6.8 10
3

7.2 10
3

Fuel curve intercept bm kJ 139 10
6

7.3 10
6

Start-up & shut down cost cum , cvm $ 979 165

Minimum up time Mup h 6 1

Minimum down time Mdn h 6 1

Inertia constant M s 5.51 0.5

Table 4.15: Fossil generation parameters for gas turbine SGT800 (GT) and gas
engine W20V34SG (ICE).
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4.4.1 Base case

4.4.1.1 Results with scenario aggregation method

The base architecture in the GT-PV-ESS configuration consists in 5

gas turbines and a PV installed capacity of 70 MW. Redundancy
constrainst are not considered which means that the plant is operated
in "N" configuration. The size of ESS is to be defined thanks to the
power quality analysis. Therefore, infinite power and energy capacity
are set. The maximum battery power supply over the 6 daily scenarios
will be considered as the required storage for the architecture. The
gas turbine maximum ramp rate corresponds to the normal operation
ramp rate of 12.5 MW/min.
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Figure 4.24: Daily PV plant output power profiles.

Figure 4.24 displays the PV plant output power. Due to the gas
turbine minimum load factor of 50%, the PV output power is curtailed
which limits the renewable penetration (especially during scenarios
2 and 3). The frequency shift is maintained within +/- 0.5% of the
nominal frequency as shown in Fig. 4.25. This shows the ability of gas
turbine and storage system to compensate for the cloud passage.

In Fig. 4.26, the gas turbine and battery output power are displayed.
It can be seen that only 3 gas turbine are operating thanks to the
fuel consumption optimization which is the minimum achievable
considering spinning reserve constraints. Throughout the 6 days, the
battery output power reaches a maximum of 20.5 MW. TONRR is zero
because the normal operation ramp rate is set in the rate limiter of
the fossil generation block. The TFD is also zero because because the
battery is large enough to cover every cloud passage.
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Figure 4.25: Daily frequency profiles.
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Figure 4.26: Simulation results of scenario 5 for the base case. "GT" denotes
Gas turbines power output.
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Scenario Max. battery power TFD Fuel consumption Battery energy supply

- MW sec kJ MWh

1 19.9 0 11.58 10
6

0.05

2 18.3 0 12.47 10
6

0.34

3 3.70 0 13.40 10
6

2.17

4 18.0 0 12.80 10
6

2.5

5 14.2 0 13.01 10
6

1.6

wc 20.5 0 12.10 10
6

7.6

Table 4.16: Summary of main metrics resulting from base case simulation.

One of the main assumption for building the energy optimization
model was to neglect the battery energy flows in the hourly power
balance (see part. 4.3.2.1). The energy supplied by the battery over
each daily scenarios is reported in Tab. 4.16. The maximum energy is
supplied during the wc scenario with 7.6 MWh. This represents 0.8%
of the 852 MWh supplied during the time-window (7:00am - 8:00pm)
and confirms that battery energy flows can be neglected in hourly
load balance.

Most of battery systems are characterized by their ratio of maximum
power delivery capacity over energy capacity at full charge (denoted
as C-rate). The worst-case scenario shows that a battery with a C-rate
of 2.9 would be sufficient to cover the whole day without needing
intermediary charging.

4.4.1.2 Comparison with full year simulation

To validate the use of the reduced set of day-long scenarios, the
aggregated indicators are compared with values resulting from the
simulation of the whole year (365 solar irradiance scenarios). Table 4.17

compares indicators obtained from the aggregation of clusters scenar-
ios and worst case (Clusters + worst case) and indicators obtained
by running the simulator over the whole dataset (Full year). Results
show very similar results for lifetime OPEX (-0.3%). This shows that
the set of scenarios is representative in terms of fuel savings. Since
no battery power limitation were considered, both configuration gives
a TFD of zero and a minimum frequency of -0.25Hz. However, the
maximum battery power is higher for the full year configuration (25.2
MW against 20.5 MW) which shows that the worst-case scenario is not
fully conservative and that more extreme events happen throughout
the year.
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Simulation Clusters + worst case Full year

Maximum battery power (MW) 20.5 25.2

TDF (s) 0 0

Lifetime OPEX (€) 3.09 10
9

3.08 10
9

PV curtailment (%) 3.4 4.3

Minimum frequency (Hz) -0.025 -0.025

Table 4.17: Comparison of aggregated indicators for cluster + worst case and
full year simulation with infinite battery power capacity.

The difference in battery sizing between full year and cluster simu-
lations suggest that an inadequate battery sizing could be obtained
leading to instabilities when facing extreme solar drops. When sim-
ulating the full year with a maximum battery capacity of 20.5 MW,
a TFD of 74 seconds have been observed (0.0002% of the total time
of operation). Therefore, this can be taken as an opportunity to re-
duce the costs of the sizing by neglecting most extreme events while
ensuring the reliability of the system in more than 99.99% of the time.

The aggregation of cluster scenarios and worst case significantly re-
duces the simulation time (7.3 hour for the full year against 40 minutes
for cluster + worst case aggregation) while successfully providing per-
formance indicators regarding economics, power quality and battery
sizing.

4.4.2 Impact of operational philosophy on performances

4.4.2.1 Redundancy constraints

To ensure the continuity of supply in case of generator contigency,
redudancy constraints can be activated in the schedule optimization
formulation (see Eq. 4.41, 4.42, 4.45). These constraints ensure that
enough spinning reserve is available to supply the lost of the largest
contribution form fossil generation. This spinning reserve can be
ensured by all connected fossil units which generally leads to start
an additional unit (N+1 operating philosophy) but also causes higher
fuel consumption since the load factor is reduced. An alternative is to
use a dedicated storage system to ensure the spinning reserve, keeps
a minimal number of connected fossil units and improves the overall
efficiency of the fossil generation (N operating philosophy).

In part 4.4.1.1, the power plant is operated in N philosophy whereas
in this part, redundancy constraints are activated to investigate their
impact on the plant’s performances.

Fig. 4.29 displays the fossil dispatch over irradiance scenario n°2

(2011-02-02). As expected, an additional unit is turned-on which forces
the system to operate with 3 running GTs. This lets a smaller margin
for PV integration due to the minimum load factor of 50%.
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Figure 4.27: Fossil generation output for base case in N philosophy.
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Figure 4.28: Fossil generation output for base case in N+1 philosophy.

Fig. 4.29 shows the PV injected power over the 5 clustered scenarios.
In the 2

nd scenario, PV capacity is curtailed from 10am to 4pm in
N+1 against 1pm to 4pm in the N philosophy leading to an overall
curtailment of 8.23% (+4.4% as compared to N). On the other hand,
the additional N+1 units increases the ramping capability of the power
plant which leads to a reduction of storage requirement (14.67 MW
against 20.5 MW).

The costs difference between N and N+1 reaches 12.81 m€ (10.81 m€
from fuel savings and 2 m€ from battery capacity reduction, following
costs hypothesis detailed in 4.14). However, switching from N+1

to N configuration shall require the investment of a storage system
dedicated to redundancy. Therefore , these costs reductions should
be put into perspective with the investment costs of the N+1 storage
system. This will be further investigated in the new chapter.
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Figure 4.29: Injected PV power for base case in N+1 philosophy.

4.4.2.2 Fossil units operated in emergency ramp-rate

Fossil generation ramp-rate plays a major role in PV drop compensa-
tion. In most of the cases, manufacturers force to operate in normal
ramp-rate conditions. In this section, the fossil generation ramp rate
is set to 600 MW/min (against 12.5 MW/min in normal load mode).

Figure 4.30 shows the operation of the power plant with 70 MW
installed PV capacity. It appears that no battery support is necessary
to maintain the grid frequency within the specification limits thanks to
the high flexibility of gas turbines. The TONRR is evaluated at 56.62

hour/year (0.64% of the year).

0

25

50

PV
 (M

W
)

50

100

G
T 

(M
W

) ('SGT800', 0)
('SGT800', 1)
('SGT800', 2)
('SGT800', 3)

0.000

0.002

f v
ar

 (H
z)

11 12:00

11 12:15

11 12:30

11 12:45

11 13:00

11 13:15

11 13:30

11 13:45

11 14:00
0.05

0.00

0.05

B
at

 (M
W

)

Figure 4.30: GT power operated with emergency ramp-rate (scenario 2).
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Unfortunately, it is not possible to draw conclusions on the impact
of this scenario of operation on ageing and maintenance effect due to
the lack of knowledge on transient operation of gas turbines. However,
this could bring some useful piece of information for technical discus-
sion with manufacturers in order to settle on a suitable ramp-rate that
will guarantee safe operation of the gas turbine.

4.4.3 Levers for power plant performance improvements

In this section, the impact of PV installed capacity and fossil generation
technology on costs and fuel savings will be investigated.

4.4.3.1 Sensitivity over PV and storage capacity
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Figure 4.31: Relative fuel savings (compared to no PV penetration).

The impact of battery and PV installed capacities on relative fuel
savings is displayed in In Fig. 4.31 whereas its impact on net present
costs (NPC) is highlighted in Fig. 4.32. It appears that architectures
with low battery capacities and high PV power have better economical
performances but the reliability must be considered.
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Figure 4.32: Net present costs of architecture with varying PV and Battery
capacities (PV costs : 600$/kW, Battery costs : 400$/kWh).
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The simulator has been ran for PV capacities varying from 60 MW
to 100 MW and battery capacities varying from 14 to 30 MW. In
Fig. 4.33, the TFD highlights the degradation of power quality for
low installed battery capacities (yellow area). This reports an inverse
trend as compared to 4.32 : best economics lead to poor electrical
performances.

The green area shows configurations that ensure TFD = 0 which
means the frequency shift is kept above 49.5Hz. On the contrary, red
area shows that in some configuration, the frequency reaches 47.5Hz
which is unacceptable with regards to power quality constraints. The
red area can be understood as a feasibility limitation for architecture
sizing whereas green area reports architectures with oversized battery.
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Figure 4.33: Time of frequency disturbances (TFD) and stability zones for
varying architectures. Wssbat can be read at the lower border of
the green zone and Wlimitbat can be read at the higher border of
the red zone.

Taking the case of a 70 MW PV plant as example, the lower bound-
ary Wss

bat for battery power to ensure a fully reliable architecture is
20.5MW (lower bound of green area). By allowing small disturbances
(0.25Hz < |∆f| < 2.5Hz), the storage capacity can be reduced down to
18MW (upper bound of red area) which provides a value for Wlimit

bat .
Table 4.18 summarizes these results for all architecture considered in
N and N+1 configurations.
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The evaluation of Wss
bat allows calculating the economical perfor-

mances of a fully reliable power plant. When considering larger
frequency deviations tolerances, the battery power can be refined and
reduced ( -2.5 MW with 60 MW of PV, -8.7 MW with 100 MW of PV).
Thus, the best economical performances can be evaluated thanks to
the simulator by minimizing the battery investment costs for a given
PV installed capacity.

PV installed capacity (MW) 60 70 80 90 100

Available PV energy (MWh) 1.25E+05 1.46E+05 1.66E+05 1.87E+05 2.08E+05

N

Used PV energy (MWh) 1.23E+05 1.40E+05 1.55E+05 1.67E+05 1.76E+05

PV energy curtailment (%) 1.44 3.83 7.12 10.70 15.23

Fuel savings (%) 4.02 4.62 5.10 5.46 5.65

Wss
bat (MW) 17.5 20.6 23.1 26.9 30.7

Wlimit
bat (MW) 15 18 18 20 22

N+1

Used PV energy (MWh) 1.20E+05 1.34E+05 1.50E+05 1.59E+05 1.69E+05

PV energy curtailment (%) 3.68 8.23 9.71 14.86 18.62

Fuel savings (%) 3.86 4.27 4.87 5.06 5.27

Wss
bat (MW) 14.88 14.67 19.08 20.19 20.91

Table 4.18: Summary of power plant performances for 5GT architecture.

4.4.3.2 Smaller generators to improve the PV integration

In Tab. 4.18, the performances of GT-PV-ESS architecture are reported
under N and N+1 operational philosophy. Due to the PV power
curtailment imposed by minimum power output and spinning reserve
constraints, CO2 savings and injected PV energy are not increasing
proportionally to the installed PV capacity. The PV curtailment is
higher in N+1 philosophy since an additional generator is connected
which reduces even more the potential of PV integration. The required
storage capacity for cloud passing management is slightly lower in
N+1 philosophy since the cumulated ramping capacity is increased by
the redundancy.

The limitation of using such types of generator in hybrid power
plant appears. First, the insufficient difference between minimum and
maximum power output as well as long minimum down times limits
the integration of PV power. This results in PV power curtailment at
hours of high irradiance (see 2

nd scenario in Fig. 4.24). This signif-
icantly limits the optimization potential of the energy management
layer and pushes to use a higher number of fossil generator with better
operational margin and lower minimum down time constraints.

In Fig. 4.34, the efficiencies of the 45 MW gas turbine and a 9.3 MW
gas engine (GE) are compared. Gas engines outperform large turbines
for every load factor which will improve the fuel savings. According
to Tab. 4.19, the dynamics of gas engines may also give more flexibility
to the system thanks to lower minimum up and down time and better
ramp-rates. In this section, the performance of a GE-PV-ESS system
will be simulated and compared with GT-PV-ESS architectures.
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Figure 4.34: Comparison of fossil generators heat-rate as function of load
factor.

Rated power Range of operation Ramp-rate Min. up-time Min. Down time

MW %max %max/sec h h

GT 45 50 0.39 6 6

GE 9.3 70 1.67 1 1

Table 4.19: Comparison of GT and GE characteristics.

Table 4.20 reports the results of the simulation with 16 gas engines
and a PV capacity varying from 60 to 100WM both in configurations
N and N+1. Thanks to the lower minimum load factor, a higher
proportion of solar energy is used as compared to the GT case. For a
100 MW power plant with GE, only 3.11% of PV energy is lost due to
curtailment against 15.23% for the GT case. This naturally results in
higher fuel savings (11.16% against 5.65%).

PV installed capacity (MW) 60 70 80 90 100

Available PV energy (MWh) 1,25E+05 1,46E+05 1,66E+05 1,87E+05 2,08E+05

N

Used PV energy (MWh) 1,25E+05 1,45E+05 1,66E+05 1,84E+05 2,01E+05

PV energy curtailment (%) 0,21 0,21 0,38 1,60 3,11

Fuel savings (%) 6,14 7,43 8,82 9,85 11,16

Wss
bat (MW) 3.99 7.50 8.97 12.2 13.0

Wlimit
bat (MW) 0 5 5.5 8 8.5

N+1

Used PV energy (MWh) 1,25E+05 1,45E+05 1,66E+05 1,84E+05 2,02E+05

PV energy curtailment (%) 0,21 0,21 0,32 1,55 3,01

Fuel savings (%) 6,09 7,37 8,65 9,77 10,84

Wss
bat (MW) 2,77 3,53 5,17 7,81 11,46

Table 4.20: Summary of power plant performances for 16 engine configura-
tion.

The smaller size of gas generator also reduces the spinning reserve
for contingency (9.3 MW against 45 MW). The additional engine
ensuring the redundancy has less impact on the fuel consumption (GE
have better performance at low load factor). This results in a lower gap
between the PV production curtailment in N and N+1 configuration :
+0.1% for GE against +3.39% for GT.
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Finally, the stability map in Fig. 4.35 shows that storage require-
ments are much smaller for GE configurations (Wss

bat =13 MW for 100

MW of PV against 30.7MW with GT ). With small transient distur-
bances tolerance (between 0.5% and 5% of the nominal frequency), no
storage is required for a 60 MW PV plant (Wlimit

bat =0). For all installed
PV capacity, the TDF is less than 25000 sec/year which represents
0.007% of the year.
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Figure 4.35: TFD and stability zones over varying PV and Battery capacity
for a GE-PV-ESS architecture. Wssbat can be read at the lower
border of the green zone and Wlimitbat can be read at the higher
border of the red zone.

4.4.4 Discussion

A sensitivity analysis on operational philosophy (N+1 rule and rap-
rate), PV and battery installed capacity and fossil generation technol-
ogy allowed to evaluate their costs and technical impacts.

Switching from gas turbines to internal combustion engines reduces
CO2 emissions by 30% regardless of the share of PV power (see
Fig. 4.36 and 4.37). This incentives to choose smaller engines with
better part-load performances. However, the costs of this solution is
difficult to evaluate since a higher number of engines leads to higher
shipment and maintenance costs.

In case of gas turbines, the integration of PV system reduces CO2
emission by 4% with a 60 MW power plant an 5.65% for a 100MW
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Figure 4.36: Relative fuel savings.
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Figure 4.37: CO2 emissions.

power plant which gives an average of 0.04% of CO2 reduction per
MWp installed. In case of gas engines, CO2 reduction raises from 6%
for a 60 MW PV plant up to 11% for a 100 MW power plant, giving an
average 0.125% of CO2 reduction MWp installed (see Fig. 4.37). The
better performance of gas engines at reducing CO2 emission is due to
the higher share of injected PV electricity thanks to higher flexibility
of start-up procedure and operational margin (see Fig. 4.38)

The requirements in storage capacity to maintain the frequency
within specification limits are evaluated thanks to the grid simulation.
GE architecture require less storage (2.5 MW against 15 MW for a
60 MW power plant) thanks to their higher ramping capabilities.
However, the storage requirement are less sensitive to the PV capacity
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Figure 4.38: Used solar energy.

for GT architecture than for GE architecture. This is due to the lower
mechanical inertia of GE which makes the grid more sensitive to PV
fluctuations.

Thanks to the evaluation of TFD and minimum frequency, a poten-
tial for capex reduction is introduced by allowing transient frequency
variation between 1% and 5%. The storage capacity can be reduced
from 30.7 MW down to 22 MW for GT and from 13 MW down to 8.5
for GE (with 100 MW of PV capacity). According to the TFD, transient
variation represent 0.003% and 0.007% of the total time of operation
respectively for GT and GE. Such results give confidence that Wlimit

bat

can be used without putting the grid stability in danger.
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4.5 conclusion

In this chapter, a methodology for the evaluation of economical, envi-
ronmental and technical performances of an industrial hybrid power
plant has been proposed.

At first, electrical modelling of industrial microgrid was investi-
gated to allow irradiance time series simulations. State of the art
techniques for GT and grid modelling [64] showed limitations for the
preliminary assessment of the system: (1) a high number of input
parameters are required, (2) computational time reach 3 hours for
a daily irradiance timeseries, (3) the ramping constraints of fossil
generation are not considered. In the same philosophy as in [47], a
simplified single-line model is been proposed in this chapter and an
equivalent ramp-constrained model is designed to account for ramp-
ing constraints. This allows simulating timeseries 200 times faster,
reducing the number of inputs to the minimum possible (from 92

down to 10) and taking into account larger frequency deviations due
to limited ramping capabilities of gas turbines.

In the second part, the electrical model is coupled with a two-layer
energy optimization to reproduce the operational strategy of the power
system and the coupling effect of EMS and PMS layers. To handle the
differences between day-ahead hourly forecasts and real-time power
data, a two-layer optimization is implemented as proposed in [170].
The simulation framework is able to simulate the power plant under
high-resolution irradiance timeseries, reproduce optimal decision as
they would be made by operators, and evaluate the impact on the
reliability of the system. This aspect has been covered for real-time
applications using hardware in the loop [211] but never in a generic
framework allowing preliminary assessment of hybrid architecture.

To allow a fast and representative assessment of the power plant
performance over its lifetime, the scenario reduction procedure de-
tailed in chapter 3 was used. Thanks to 5 days resulting from the
timeseries clustering, fuel consumption, CO2 savings and cumulated
time of frequency disturbances are evaluated and aggregated to re-
construct yearly performance indicators. Additionally, the worst-case
scenario ensures that the system is stable under highly variable ir-
radiance conditions and provides a conservative assessment of the
battery requirements. This reduces the number of simulation for a
given architecture by 60. Using parallel computing, the simultaneous
simulation of the 6 scenarios requires 40 minutes with a standard
personal computer 18.

An hybrid power plant powering an LNG facility is used as a case
study in the third part of this chapter. first, the simulation framework

18 8 cores and 64 Go Ram Intel CPU
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is used to evaluate the performance of a 70 MW PV power plant with
5 gas turbines. Grid simulations highlight the need of 20.5 MW of
storage capacity to maintain the frequency deviation bellow 0.25 Hz.
The aggregation of reduced irradiance scenario is compared to a full
year simulation for validation. Similar results are obtained in terms
of environmental and economic performances. The battery capacity
provided by the aggregation method was proven to be reliable more
than 99.99% of the time.

The simulation framework is used to screen several configurations
of hybrid power plants with varying installed PV capacities and two
types of fossil generators (gas turbines and gas engines). A stability
map is drawn to evaluate the reliability of a system for a given pair
of PV and battery installed capacity. The stability map shows that
increasing the PV installed capacity forces to install more and more
storage capacity which modifies the techno-economic equilibrium
(+5.1 MW of storage for a 100 MW PV system as compared to a 70 PV
system). Considering frequency deviations tolerances can reduce the
battery requirements up to 26%.

Lifetime CO2 emission and battery requirements show that that
architectures with a large number of small-size generator are better
performing at integrating PV electricity (-30% of CO2 emissions).

In the EMS optimization, a deterministic approach is used for the
integration of PV production profile and spinning reserves. This may
lead to an over-estimation of the power plant performance. Integrating
forecast system data and prediction uncertainties may represent the
power plant behaviour with more accuracy. An adaptation of the
proposed MILP formulation using robust and stochastic approaches
is promising perspectives for this work.

In the last part of this chapter, the simulation framework was used
in a preliminary sizing philosophy. The methodology allows sooner
integrating reliability considerations and therefore increases the con-
fidence of developers in the sizing process. Despite the fact that
simulation time of a given architecture have been significantly re-
duced, the screening potential remain limited when a large number
of scenarios must be studied ( a stability map like Fig. 4.33 takes
more than 15 hours of simulation using a 40 cores computer). This
is mainly due to the short-term power control layer and its API. To
allow a faster preliminary sizing, high level optimization approaches
are necessary. One option is to endogenize grid reliability constraints
instead of using time-domain simulations. In the next chapter, a MILP
formulation for sizing optimization will be proposed and combined
to the simulation framework detailed in this chapter.
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O P T I M A L A N D R O B U S T S I Z I N G O F I N D U S T R I A L
M I C R O G R I D S

This chapter presents a procedure for the study of PV integration in indus-
trial power plants. This procedure embeds the contributions of chapters 3
and 4 as well as a preliminary optimization based on Mixed Integer Linear
Programming ensuring the resiliency to fast cloud passage. The formulation
of frequency-constrained optimization problem results from the collaboration
with NTNU’s Department of Electric Power Engineering and more specifi-
cally Erick Alves to whom I am very grateful. This work has been submitted
to Elsevier’s Applied Energy Journal in March 2022 and presented at the
ROADEF 2022 conference.

Ce chapitre présente une procédure pour l’étude de l’intégration de génétareurs
photovoltaïques dans les centrales électriques industrielles. Cette procédure
intègre les contributions des chapitres 3 et 4 ainsi qu’une optimisation prélim-
inaire basée sur la programmation linéaire en nombres entiers assurant la
résilience aux passages nuageux. La formulation du problème d’optimisation
sous contrainte de fréquence résulte d’une collaboration avec le département
d’ingénierie électrique de NTNU et plus particulièrement Erick Alves. Ce
travail a été présenté à la conférence ROADEF 2022 et soumis au journal
IEEE Access.

1 MILP FORMULATION FOR OPTIMAL SIZING 

MILP formulation for optimal sizing of  PV and battery capacities thanks to resiliency

constraints on fossil contigency and PV cloud passage

2 FULL SIZING PROCESS

Contributions:

- Formulation of  linear frequency constraints for PV cloud passage resiliency

- Integration of  PV ramp isolated scenarios as convex hull

Data preparation

(see Chap. 3)

WVM, timeseries

clustering and convex

hull generation)

Contributions:

- Method for robust and optimal sizing of  hybrid power plant with feasibility check  

3 CASE STUDY
Sizing of  a PV power plant, N+1 battery and cloud passage battery for an LNG facility with power 

quality constraints

Selection of  optimal architecture under 6 economic scenarios.

Preliminary

sizing optimization

Multi-layer simulation 

(see Chap 4)

Verification of  pre-

optimized archietcture and 

costs recalculation
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nomenclature of chapter 5

Indices

Symbol Description

h Hourly optimization time-slice

y Year

σ Day-long irradiance scenario

m Fossil unit type

i ith installed fossil unit of type m

r Ramp event

sets

Symbol Description

Rmax Ensemble of worst detected ramps

Hmax Worst-case convex hull of detected ramps

Electrical and power system Variables

Symbol Description

∆f Frequency shift

∆fmin Maximum frequency shift

M Mechanical inertia constant

∆Pfossil Fossil power variation

∆Pbat Battery power variation

∆PPV PV power variation

∆PL Load power variation

DL Load damping constant

rrPV PV power ramp rate

rrfossil Fossil normal power ramp rate

∆P
setpoint
fossil Fossil power variation from setpoint control

∆P
droop
fossil Battery power variation from droop control

kfossil Fossil droop parameter

rbat Battery droop parameter

kd Total system damping

dr Total system ramp

dbHz Fossil unit droop deadband

TFD Time of frequency disturbances
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Optimization decision variables

Symbol Description

OCAPEX CAPEX part of objective function

OOPEX OPEX part of objective function

Winst
bat Installed battery power capacity

Winst
PV Installed PV power capacity

FCm,i,h Fuel consumption

um,i,h Fossil unit startup binary decision

vm,i,h Fossil unit shut down binary decision

ωm,i,h Fossil unit operating status binary decision

Wused
PVh

PV used power capacity after curtailment

PN+1
bat,h Installed battery power capacity for N+1 resiliency

Pm,i,h Fossil unit power

P
inj
PVh

Injected PV power

∆P
avg
m,i,h Spinning reserve for mid-term solar variations

∆Pcontm,i,h Spinning reserve for N+1 resiliency

Plst,maxh Maximum lost power in case of contingency

PN+1
bat,h,r Battery power required for N+1 resiliency

∆PfcPV Fast cloud PV power variation

Wfc
bat Installed battery power capacity for cloud passage

Pfcbat Battery power required for cloud passage resiliency

∆PDCh,m,i,r Spinning reserve at the end of cloud passage

∆PPCh,m,i,r Spinning reserve after recovery to cloud passage

Optimization economic parameters

Symbol Description

d Discount rate (%)

Yinst Project lifetime

cPV PV installation costs

cbat Battery installation costs

cf Fuel costs

cCO2 CO2 penalty

cum Start-up costs

cvm Shut down costs

Optimization technical parameters parameters
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Symbol Description Unit/Set

Nσ Occurence of day-long scenario σ

ηPV PV derating factor

Ih Hourly averaged irradiance

PLh Hourly load demand

Pmaxm Maximum fossil unit power

Pminm Minimum fossil unit power

am Fossil unit fuel curve slope

bm Fossil unit fuel curve intercept

Mupm Maximum fossil unit up-time

Mdnm Maximum fossil unit down-time

K Large scale constant

∆I
avg
h Maximum irradiance variation within 1h

Plh Load power

∆Tfc Duration of fast cloud ramp

∆Ifc Irradiance drop of fast cloud ramp
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5.1 introduction

In the previous chapter, a methodology for the simulation of industrial
micro-grids have been proposed. Thanks to the coupling of optimal
energy management and power control, technical, economical and
environmental performances of hybrid architectures can be evaluated.
The results showed that the performances of industrial micro-grids
are highly dependant on architectural choices made at the sizing
steps. The needs of primary support storage system for cloud passage
and contingency resilience can outweigh the benefits of lifetime fuel
savings which leads to a non-trivial techno-economic optimization
problem. Despite the reduction of simulation time, the use of the
simulator for a large screening with several economic scenarios will
be undoubtedly too long. This pushes to investigate high-level techno-
economic sizing methods for industrial microgrids allowing faster
assessment of the power plant’s performances.

This chapter will present a methodology for the robust and op-
timal sizing of industrial microgrid. The methodology is based on
two main steps : (1) a preliminary optimization of the sizing with
resiliency constraints based on Mixed Integer Linear Programming
(MILP) formulation and (2), the operational simulation presented in
Chapter 4.

To help power plants architects, the sizing method must identify the
best performing hybrid architecture while accurately reproducing the
power plant behaviour. The need for reliability must be integrated as
constraints in the optimization formulation to ensure electrical stability
in case of generator contingency and fast cloud passage. The sizing
method should quickly provide solutions to allow a large screening of
architecture. Therefore, the computational complexity and calculation
time is a key indicator in the performance evaluation of this method.

5.2 a robust sizing optimization model with resiliency

constraints

The integration of resiliency constraints brings challenges for the for-
mulation of a MILP problem. Solar variability scenarios must be
integrated in a high-level energy formulation despite their low gran-
ularity. Then, the relationship between frequency shift and power
imbalance must be integrated within a linear constraint which gen-
erally leads to suboptimal solutions. Finally, resiliency constraints
for contingency events brings additional reserve requirements which
needs to be handled by fossil units or storage systems. A cost-effective
strategy for reserve allocation must be defined to properly size storage
systems.
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5.2.1 Mathematical formulation of the sizing problem

The optimization model is based on the operational model developed
in Chapter 4. Capacity investment variables for PV and storage devices
are now integrated in the objective function (Eq. 5.1) to evaluate the
CAPEX. This allows making the right trade off between CAPEX and
OPEX savings.

The optimization is performed over a fixed time-horizon covering
the 5 clustered days identified in chapter 3 following the same aggre-
gation technique as in chapter 4. A continuous time horizon composed
of the 5 day-long timeseries is built to generate the irradiance input
parameters. Nσ(h) denotes the occurrence of the timestep h when
h ∈ [hσo ,hσf ] with σ being the day-long irradiance scenario.

Objective function:

min OCAPEX +

Yinst∑
y=0

∑
hN

σ(h)OOPEXh

(1+ d)y
(5.1)

OCAPEX =Winst
PV ∗ cPV +Winst

bat ∗ cbat (5.2)

OOPEXh =
∑
m,i

(FCm,i,h ∗ (cf + cCO2) + um,i,h ∗ cum + vm,i,h ∗ cvm)

(5.3)

Eq. 5.6 to 5.17 express the system operational constraints as for-
mulated and detailed in [167]. Eq. 5.6 ensures that the hourly load
demand Pl is satisfied. The injected PV power is calculated in Eq. 5.7
thanks to the hourly averaged irradiance Ih and PV derating factor
ηPV . Eq. 5.4 ensures that the hourly curtailed PV capacity is lower that
the PV installed capacity. Eq. 5.8 to 5.12 express the fossil generators
operational constraints where Pmaxm and Pminm denote the parameters
for maximum and minimum power ratings and Mup

m and Mdn
m de-

note the parameters for minimum up and down time of the fossil unit.
The fuel consumption is evaluated thanks to the fuel curve’s linear
interpolation parameters am and bm in Eq. 5.10.

∀h, Wused
PVh

6Winst
PV (5.4)

∀h, Winst
bat > PN+1

bat,h (5.5)

Load balance (equilibrium of power):



180 optimal sizing of industrial microgrids

∀h,
∑
m,i

Pm,i,h + PinjPVh − PLh > 0 (5.6)

∀h, P
inj
PVh

6Wused
PVh

∗ Ih ∗ ηPV (5.7)

Fossil power limits

∀h,m, i Pm,i,h 6 Pmaxm (5.8)

∀h,m, i Pm,i,h > Pminm ∗ωm,i,h (5.9)

Fuel interpolation

∀h,m, i FCh,m,i = amPh,m,i + bm (5.10)

Fossil generator status change

∀h,m, i um,i,h − vm,h > ωm,i,h −ωm,h−1 (5.11)

∀h,m, i um,i,h + vm,i,h 6 1 (5.12)

Fossil generator minimum up and down time

∀m ∀h >Mupm ,
h−1∑

k=h−Mupm

ωm,k −Mupm ∗ vm,h > 0 (5.13)

∀m ∀h >Mdnm ,Mdnm ∗ (1−um,h) −

h−1∑
k=h−Mdnm

ωm,k > 0 (5.14)

Fossil load sharing
∀ t, ∀ p(m, i),p ′(m ′, i ′) ∈M | i 6= i ′ and m = m ′ :

Pp − Pp ′ 6 K(2− (wp +wp ′)) (5.15)

Pp − Pp ′ > K(2− (ωp +ωp ′)) (5.16)

Eq. 5.17 and 5.18 ensure that fossil generators can compensate the
maximum variations ∆Iavgh between the hourly average PV power and
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its minimum value over the hourly interval. The decision variable
∆P
avg
h,m denotes the generator spinning reserve allocated to cover these

variations.

∀h, ∆I
avg
h ηPVW

used
PVh

6
∑
m,i

∆P
avg
m,i,h (5.17)

∀h,m, i, ∆P
avg
m,i,h 6 Pmaxm − Pm,i,h (5.18)

∀h,m, i, ∆P
avg
m,i,h 6 K ·ωm,i,h (5.19)

5.2.2 Contingency resilience constraints

In this work, the grids dynamics during generator trip is neglected.
It is assumed that ensuring enough spinning reserve to cover the
loss of a fossil unit is enough to protect the grid from large instabili-
ties. More advanced constraints can be integrated but require further
investigations for handling the non-linearity [212]. Eq. 5.21 to 5.24

express the system constraints for contingency resilience and allow
calculating the storage capacity necessary PN+1

bat,h to cover the loss of a
gas turbine that might happen within the hour h. Figure 5.1 illustrates
how generators spinning reserve and N+1 storage unit contribute to
the post-contingency power balance.

𝑡

𝑃𝑚,1 = 𝑃𝑚
𝑚𝑎𝑥

𝑡 + 1

Δ𝑃𝑚,1 = 0

Δ𝑃𝑚,2
Δ𝑃𝑚,4𝑃𝑚,2

𝑃𝑚,3

𝑃𝑚,4

𝑃𝑙𝑠𝑡

𝑃𝑏𝑎𝑡
𝑁+1

Fossil contingency

Figure 5.1: Power balance during contingency and post-contingency state

∀h,m, i Plsth > Pm,i,h (5.20)

∀h,m, i ∆Pcontm,i,h 6 Pmaxm − Pm,i,h (5.21)
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∀h,m, i ∆Pcontm,i,h 6 K ·ωm,i,h (5.22)

∀h, Plst,maxh 6
∑
m,i

∆Pcontm,i,h + PN+1
bat,h (5.23)

∀h,m, i Plst,maxh > Pmaxm ·ωm,i,h (5.24)

5.2.3 Cloud passage resiliency constraints

As seen in chapter 4, hybrid architectures may not meet the power
quality constraints during cloud passage above a certain limit of PV
penetration without the use of a primary support storage system. The
aim of cloud passage stability constraint is to ensure that the power
quality constraint (∆f 6 ∆fmin) is respected during a solar power
drop. Given the system’s equation of motion (Eq. 5.25), frequency
drops are expected to happen if PV generation variations are not
balanced by dispatchable units (fossil generators and storage system).

d∆f

dt
=
∆Pfossil +∆Pbat +∆PPV −∆PL +DL∆f

M
(5.25)

Solar power variations are assumed to be linear drops with two
features: duration ∆Tfc and power drop ∆PfcPV (see Fig. 5.2). During
cloud passage, the PV power supply is expressed by Eq. 5.26.

PPV(t) = rrPVt =
∆PfcPV
∆Tfc

t (5.26)

Δ𝐼
𝑓𝑐

Δ𝑇
𝑓𝑐

𝑡(𝑠)

𝐼

Irradiance profile

Ramp Approximation

Figure 5.2: Linear approximation of short-term solar drop.
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The fossil unit power supply is composed of a frequency droop com-
ponent and a setpoint component (Eq 5.27). The setpoint component
consists in the normal load following response and is limited by the
load following ramp-rate (Eq. 5.29).

∆Pfossil(t) = ∆P
setpoint
fossil (t) +∆Pdroopfossil (t) (5.27)

∆P
droop
fossil (t) = −kfossil∆f(t) (5.28)

∆P
setpoint
fossil (t) 6 rrfossil(t) (5.29)

According to the droop controlled battery model proposed in Chap-
ter 4, the battery power supply is defined by Eq. 5.30. Where rbat
denotes the droop coefficient of the battery in % of rated capacity per
unit of change of frequency).

∆Pbat(t) =
−Wfc

bat

rbat
∆f(t) (5.30)

As previously sated, industrial loads are expected to have negligible
short term variations. During the cloud passage, the load power is
considered as constant (∆PL = 0). During large frequency variations,
the gas turbine is operated using its emergency ramp rate. Therefore,
the setpoint component is considered to be saturated (∆Psetpointfossil (t) =

rrfossil(t)). This allows reformulating Eq. 5.25 into Eq. 5.31.

d∆f

dt
=
drt− kd∆f

M
(5.31)

With kd the total system damping:

kd =
Wfc
bat

rbat
+ kfossil +DL (5.32)

The term dr denotes the difference between PV and fossil ramp
rates :

dr = rrfossil − rrpv (5.33)

The solution of this equation with ∆f(0) = 0 is given by Eq. 5.34.
This provides a complex and non-linear relationship between ∆f and
Wfc
bat which prevents its use within a MILP formulation 1.

∆f(t) =
drt

kd
−
Mdr −Mdre

−
kd∗t
M

k2d
(5.34)

1 Note that in practice dr and kd are calculated thanks to manufacturer’s data and
worst-case solar drop. The influence of these parameters has not been studied since
the aim of this paragraph is mainly to justify the linear optimization approach.
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The formulation of a non-linear optimization model for the unit
commitment with stability condition at the point of minimum fre-
quency has been extensively covered in [135] 2. The authors high-
lighted the sub-optimality of linear frequency constraint problems
but also pointed out the computational complexity of solving non-
linear models (notably using Benders decomposition). In the present
work, solutions of the MILP model will be refined by the operational
simulator which handles the non linearity of the frequency deviation.
Therefore, the use of a linear frequency constraint model is a good
solution to quickly evaluate investment decisions related to the PV
and primary support storage systems.

5.2.3.1 Static frequency constraint (∆f = 0)

The first approach for frequency constraint consists in considering no
frequency drop during the cloud passage. The following assumptions
are made :

• Constant load power : ∆PL = 0

• No power supply from the battery at t=0 : (Pcloudbat (t0) = 0)

• No load damping effect : D∆f = 0

• No initial frequency drop : ∆f0 = 0)

Additionally, this constraint considers that fossil generators can only
supply power according to their ramp rates (kfossil = 0).

To ensure that the frequency will remain constant, the battery supply
must follow the difference between PV and fossil generation at each
time of the cloud passage leading to Eq. 5.35.

rrfossilt− rrPVt+ Pbat = 0 (5.35)

The maximum power supply is reached at t = ∆Tfc which gives
a lower bound for the battery power capacity Wfc

bat (Eq. 5.36). This
constraint will be referred to as "static" in the following sections.

Wfc
bat > ∆P

fc
PV −∆Tfc ∗ rrfossil (5.36)

This formulation gives a simple and straightforward relationship
between the ramp capabilities of the turbines, the solar perturbations
and the battery requirement. However, the battery requirement are
likely to be over-estimated for two main reasons : (1) the grid operator
allows a frequency tolerance ∆fmin which lets a flexibility for the
power unbalances, (2) gas turbines can excess their nominal ramp rate
according to their droop characteristics if frequency shift reaches the
operator’s tolerance.

2 Note that the work was focused on contingency events which are considered as load
step whereas is the present study, solar drop are considered as load ramps.
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5.2.3.2 Dynamic frequency constraint (|∆f| 6 ∆fmin) with gas turbine
droop response

To evaluate the storage requirement with more accuracy, a second
frequency constraint is introduced.

By setting deadband dbHz = ∆fmin on the fossil droop component
(Eq. 5.38) , the unit response exceeds the normal ramp rate only
during unauthorized frequency shifts (Eq. 5.37).

∆Pfossil,max = ∆Psetpointfossil +∆Pdroopfossil (5.37)

∆P
droop
fossil =

{kfossil∆f if ∆f 6 dbHz

0 if if ∆f > dbHz

(5.38)

∆P
setpoint
fossil 6 rrfossil (5.39)

As soon as the frequency drops below the deadband value, the fossil
unit will supply power according to the droop term kfossildbHz and
will re-establish a positive power balance to drive the frequency up
to a suitable equilibrium. Thus, kfossildbHz can be considered as a
supplementary power reserve ensuring the frequency stability as soon
as ∆fmin is reached. The total reserve is obtained by subtracting this
droop component leading to Eq. 5.40.This constraint will be referred
to as "dynamic" in the following sections.

Wbat > ∆P
fc
PV −∆Tfcrrfossil − dbHz ∗Dfossil (5.40)

Dfossil =
∑
m

km (5.41)

In this case, the ramping capabilities of the turbines are not fully
respected, but the battery supply limits the fossil droop response to
a small proportion of the ramp event. Therefore, the impact on unit
ageing will be limited.



186 optimal sizing of industrial microgrids

5.2.4 Cloud passage scenarios

robust solar variability scenarios

In the frequency constraints formulated above, linear ramp events
are used to evaluate the storage power that must be available to
guarantee the system stability. Robust scenarios for such ramp must
now be evaluated. The challenge of this task is to aggregate and extract
isolated ramp events from daily timeseries to allow their integration
in a high level energy model.

In section 3.3.2, worst-case irradiance drops have been selected
among all ramps detected throughout the year. The convex hull
shown in Fig. 5.3 gathers the set of worst case events. To provide a
robust evaluation of the battery needs, frequency constraints must be
evaluated for all elements r = (∆Ifcr , ∆Tfcr ) of the set as expressed
in Eq. 5.42.

Wbat > max
r∈Hmax

Pfcbatr (5.42)
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Figure 5.3: Global convex hull Hmax of detected ramps among the whole
Hawaii dataset with a graphical interpretation of a ramp event r.

As shown in Fig. 5.3, the maximum drop observed reaches 1.09 kW/m2

which will cause the loss of almost all of the PV power when running
at its full power supply capability. Therefore, this situation should
only occur during hour of high irradiance. If the frequency constraints
are similarly evaluated for each hour of the day using Hmax, risk of
solar drop will be highly overestimated for hours of low irradiance.
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An alternative to global convex hull consists in using hourly convex
hulls Hmaxh (see Fig. 5.4 and 5.5). Eq. 5.43 and 5.44 defines the
maximum ramp set Rmaxh .

Rh,δt = {(∆I, δt) | h < t 6 h+ 1} (5.43)

Rmaxh =
⋃
δt

{
(∆I, δt) | ∆I = max

r∈Rh,δt
(∆I)r

}
(5.44)

The hourly hull Hmaxh is defined such as :

∀ r(∆I,∆T) ∈ Rmaxh ,∀ ε ∈ [0, 1],

ε∆T + (1− ε)∆I ∈ Hmaxh
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Figure 5.4: Hourly convex hulls Hh of detected ramps among the whole
Hawaii dataset between 7am and 12am and global convex hull
Hmaxh (in black ) gathering all ramp events.
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Figure 5.5: Hourly convex hulls Hh of detected ramps among the whole
Hawaii dataset between 12am and 8pm and global convex hull
Hmaxh (in black ) gathering all ramp events.

solar power drop calculation

Now that irradiance drop scenarios have been defined, the correspond-
ing solar power ∆PfcPVr drop must be calculated. A first option consists
in calculating the power drop thanks to the PV installed capacity .
This is expressed in Eq. 5.45 where ηPV denotes the PV plant derating
factor (in %). This approach is highly conservative since it does not
consider the capacity reduction due to curtailment which is expected
to reduce the risk of PV drop.

∆PfcPV =Winst
PV ∆Ifch,r ∗ ηPV (5.45)

An alternative to Eq. 5.45 consists in calculating the power drop
thanks to the PV remaining capacity after curtailmentWused

PVh
(Eq. 5.45).

Therefore, when PV power is curtailed, the risk of PV drop is reduced
which lets more flexibility to the optimization. The principle of this
calculation is shown in Fig. 5.6. Following Eq. 5.45, PV curtailment
can be driven by fast cloud passage to protect the grid or avoid large
storage investment. This operational rule should be reproduced by
the power plant’s EMS to avoid discrepancies between pre-sizing and
operational simulation.

∆PfcPV =Wused
PVh

∆Ifch,r ∗ ηPV (5.46)

The power plant sizing will be performed using these two oper-
ational strategies which will be referred to as "installed" for sizing
following Eq. 5.45 and "curtailed" for sizing following 5.46.
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Figure 5.6: Principle of PV curtailment and implications in terms of produced
power and solar drops. Note that in practice, the curtailed PV
surface would be more homogeneous.

5.2.5 Integration within MILP formulation

A static frequency constraint (Eq. 5.36) and a dynamic frequency
constraint (Eq. 5.40) have been proposed in the previous section. They
must now be integrated in the optimization problem to ensure the
system’s resiliency to cloud passage. Decision variables are introduced
to size the cloud-passage storage system : Wfc

bat refers to the total
storage capacity dedicated to fast-cloud (fc) compensation and Pfcbath
denotes the power that must be available at each hour h to ensure the
system’s stability. The index r refers to a ramp event within the convex
hull’s set Hmax. The duration and solar power drop associated to this
ramp events are now denoted ∆Tfch,r and ∆PfcPVh,r

.
To integrate the frequency constraints in the MILP formulation, the

cloud passage event is divided in two main steps : the cloud passage
(DC) and post-cloud state (PC) as shown in Fig. 5.7.
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Figure 5.7: Cloud passage decomposition.
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cloud passage phase

In the cloud passage phase (denoted as DC), the frequency constraint
must be satisfied thanks to either static (eq 5.47 ) or dynamic formula-
tion (eq 5.48 ). ∆PDCh,m,i,r denotes the contribution of fossil generator
(m, i) at the end of the cloud passage 3.

∀h, r, ∆PfcPVh,r
6 Pfcbat,h +

∑
m,i

∆PDCh,m,i,r (5.47)

∀h, r, ∆PfcPVh,r
6 Pfcbat,h +

∑
m,i

∆PDCh,m,i,r + dbHzDfossil (5.48)

In case of dynamic frequency constraint, Eq. 5.49 evaluates the
fossil generation damping capacity with kfossil,m,i being the fossil
generator’s droop parameter.

∀h, Dfossil =
∑
m,i

ωh,m,ikfossil,m,i (5.49)

Eq. 5.50 ensures that fossil generators do not meet their maximum
power ratings at the end of the cloud passage whereas Eq. 5.51 ensures
that the fossil generation does not violate its maximum ramp-rate.

∀h,m, i, r, ∆PDCh,m,i,r 6 P
max
m − Pm,i,h (5.50)

∀h,m, i, r, ∆PDCh,m,i,r 6 ∆T
fc
r ∗ rrm (5.51)

Eq. 5.52 ensures that a shut-down unit cannot contribute to the
cloud passing compensation.

∀h,m, i, r, ∆PDCh,m,i,r 6 K ∗ωh,m,i (5.52)

post-cloud passage phase

At the end of the post-cloud step, the battery should not provide any
support and fossil generator must keep increasing to reach a new
equilibrium (secondary frequency support). The PV gap ∆PPV must
be solely filled by the fossil generation leading to Eq. 5.53. ∆PPCm,i,h,r
denotes the contribution of the machine to the cloud compensation at
the end of the post-cloud state. Eq. 5.54 and 5.55 ensure that enough
spinning reserve is available.

3 Note that constraint 5.47 is intended to ensure power balance during a cloudy passage
by taking into account the dynamics during the downward ramp. The calculation of
the turbine references only takes into account the available margin. Thanks to this
process, the margin is involved in the calculation of the gas turbine power setpoint.
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∀h,m, i, r ∆PfcPVh,r
6
∑
m,i

∆PPCm,i (5.53)

∀h,m, i, r ∆PPCm,i,h,r 6 P
max
m,i − Pm,i,h (5.54)

∀h,m, i, r ∆PPCm,i,h,r 6 K ∗ωm,i,h (5.55)

storage capacity investment variables

The cost of cloud passage storage is integrated in the objective function
thanks to the total storage investment variable Winst

bat . According to
5.56, the total storage capacity is higher than the sum of N+1 battery
requirement and fast-cloud battery requirement at each optimization
timestep h.

∀h Winst
bat > Pfcbat,h + PN+1

bat,h (5.56)

5.2.5.1 Synthesis

In section 5.2.3, two frequency constraints have been formulated
whereas several possibilities for cloud passage scenarios evaluation
have been explored in section 5.2.4. The resulting optimization setups
are summarized in Tab. 5.1 before evaluating the proposed formulation
with a case study in the following section.

Category Name Description Equation

Frequency constraint
Static No frequency drop 5.47

Dynamic Frequency drop within specification 5.48

Irradiance drop scenario
Global

A single convex ramp hull gives

irradiance drop worst-cases

for every timestep

∀h, r ∈ Hmax

Hourly
Hourly convex hulls gathering

worst-cases related to the

specific timestep

∀h, r ∈ Hmaxh

PV drop calculation
Installed

Power drops calculated from the

total PV installed capacity
5.45

Curtailed
Power drops calculated

from the hourly remaining

PV capacity after curtailment

5.46

Table 5.1: Summary of optimization setups for the sizing.

5.2.6 Validation and application

In this section, the robust and optimal pre-sizing procedure will be
tested on a case study with two objectives: (1) validate the resiliency
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of the architecture thanks to dynamic electrical simulations, (2) in-
vestigate the impact of the proposed constraints on the resulting
architectures. Input parameters used in this section are listed in
Tab. 5.2.

Type Name Symbol Unit Value

Project Lifetime Yinst Year 20

Fossil Gen. Ramp rate rrm kW.s−1 208

Fuel slope am m3.h−1.kW−1
13782

Fuel intercept bm m3 5523

Fuel price cfuel $ .mbtu−1 20

PV system Capex cPV $ .kW−1
600

Derating factor ηPV % 80

Battery system Capex cbat $ .kW−1
400

Table 5.2: Input parameters for case study application.

5.2.6.1 Validation of frequency constraints

The first step of the validation consists in simulating isolated cloud
passage thanks to dynamic models and compare the results with
the battery requirements obtained thanks to static and dynamic con-
straints.

The ramp constrained dynamic model developed in part 4.2.2 is
used for this validation with 4 SGT800 gas turbines and a PV installed
capacity of 75 MW. Static and dynamic calculation are performed
using the convex hull in Fig. 5.3 and reported in Tab. 5.3.

Ramp Duration Irr. drop PV drop Static bat. Dynamic bat.

r ∆Tfcr ∆Ifcr ∆PfcPVr Pstatbatr
P
dyn
batr

- s kW.m−2 MW MW MW

r1 2 0.097 5.82 4.16 0.56

r2 12 0.37 22.52 12.54 8.94

r3 23 0.65 39.31 20.17 16.57

r4 39 0.85 51.06 18.61 15.01

r5 82 1.02 60.85 0 0

r6 123 1.06 63.97 0 0

Table 5.3: Results of static and dynamic battery calculations for the first 6

elements of the global convex hull Hmax (see Fig. 5.3).

The maximum power requirements among all events of Hmax are
found for r3 with a PV power drop of 39.31 MW over 23 seconds. The
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resulting battery requirements are 20.17 MW and 16.57 MW according
to static and dynamic constraints respectively.

The solar ramp r3 constitutes the worst-case event in the present
configuration and is simulated using the dynamic model. Figure 5.8
shows the resulting battery and fossil generation power as well as
grid frequency. Thanks to the battery power support, the frequency
drop reaches 49.8 Hz which meets the constraints of 1% of maximum
frequency deviation. The maximum battery power supply (14.6 MW)
remains below the dynamic and static battery requirements. Since
the minimum frequency of 49.5 Hz is not reached, the gas turbine
response remains below the nominal ramp rate and the droop response
is not used. The gap between linear frequency constraint results and
simulation results can mainly be explained by the fact that the role of
inertia has been neglected.
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Figure 5.8: Simulation of worst-case solar ramp r3 with a PV plant of 75 MW.

The second step of validation aims at comparing the battery power
supply obtained from the simulation of a real irradiance timeseries
against the battery requirements obtained from the convex hulls. The
worst-case day long scenario of the Hawaii dataset (2011-03-06, see
chapter 3) is taken as an example. Figure 5.9 shows the simulation
results between 11am and 12am. As expected, the maximum simu-
lated battery power supply reaches 12.01 MW which is lower than
P
dyn
batr

(16.57 MW) and Pstatbatr
(20.17 MW). These results corroborate

the outcome of Fig 5.8 which gives confidence that linear frequency
constraints provide conservative battery requirements during a cloud
passage event.
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Figure 5.9: Simulation of worst case variability irradiance profile (2011-03-06)
between 11am and 12am.

In Fig. 5.10, the hourly power requirements from hourly hulls are
reported as well as the maximum power supply observed at each hour
of the worst-case day-long timeseries. The simulated battery power
is always lower than Pdynbat and Pstatbar which shows the ability of the
convex hulls to provide conservative scenarios for the battery sizing.

5.2.6.2 Application and constraint comparison

The formulation of a frequency-constrained optimization problem
has let several possibilities for computing risks of solar drops and
ensuring the load balance during cloud passage (see 5.1). PV drops
computed from installed capacity, global convex hull and static stabil-
ity constraints are expected to give more expensive solutions than the
ones computed thanks to curtailed PV capacity, hourly convex hulls
and dynamic frequency constraints.

Optimal solutions are calculated for each configurations based on
economical parameters listed in Tab. 5.2. Table 5.4 reports the results
of the optimization 4. The base case denotes the solution of the prob-
lem without PV and battery installation whereas in the No-FC case,
frequency constraints are deactivated.

reference cases : base and no-fc

The highest costs are obtained in the base case configuration whereas

4 The optimization were performed using the Gurobi by a 20 intel Xeon Cores computer
with 128Go of RAM. A time limit of 1h and an optimality gap of 1% have been set
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Figure 5.10: Hourly maximum battery power from dynamic simulation of
2011-03-06 and battery requirements (Pdynbat , Pstatbat ) from hourly
hulls Hmaxh .

the maximum cost and CO2 savings are achieved by the NO-FC case
with 196.9 MW of installed PV capacity. Since no frequency constraint
are applied, the cloud storage installed capacity is zero. Due to the
spinning reserve constraints (Eq. 5.17 and 5.18), a large share of solar
energy is curtailed as shown in Fig. 5.11. Between 8am to 4pm, the
injected PV power is 62 MW. In this configuration, a solar ramp like
r3 (see Tab. 5.3) would cause a power drop of at least 46 MW after 23

seconds and undoubtedly lead to a loss of the grid’s stability.

impact of global/hourly hulls and pv capacity refer-
ence

As reported in Fig 5.12 and Tab. 5.4, computing stability constraints
with global convex hull and installed capacity leads to a very small
PV penetration and cost savings (-0.30%). This is due to the constantly
high risk of cloud passage even at hours of low irradiance. The
integration of hourly convex hulls with installed capacity as reference
for the PV drop calculation significantly increase the potential for PV
integration (67.1 MW) as highlighted in Fig. 5.13. This leads to a costs
reduction of 3.8% and CO2 reduction of 4.81% which is more than
half of the reduction obtained by the NO-FC case (which is expected
since the PV capacity is much larger in the NO-FC case).

Computing solar drops with PV curtailed capacity increases the
PV installed capacity up to 88.3 MW leading to a total cost reduction
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Figure 5.11: Available and injected PV profile for the "NO-FC" case.
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Figure 5.12: Hourly power profiles of available PV, injected PV and battery
requirements with global hull.

of 4.18% and CO2 reduction of 5.5%. As shown in Fig. 5.12 and
5.13, the combination of hourly hulls and curtailed PV capacity as
reference increases the potential for PV integration (with PV power
at 45 MW from 9am to 4pm against less than 40 MW between 10am
and 3pm with installed capacity as reference). A power plant in
hourly+curtailed configuration leads to saving 5.9% of overall costs
and 7.37% of total CO2 emissions.

However, calculating PV drop from curtailed PV capacity lets a
potential for the optimization to drive the PV curtailment as a function
of the PV risk. This means that the PV curtailment decision at each
timestep depends both on the solar power forecast and the solar
variability scenario. This strategy should be reproduced within the
power plant’s EMS to ensure consistency with sizing results. In the
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Figure 5.13: Hourly power profiles of available PV, injected PV and battery
requirements with hourly hulls.

next section, the simulator’s EMS strategy will be modified to include
variability-driven curtailment and further evaluate the profitability of
such operational strategy.

impact of static and dynamic frequency constraints

The integration of static frequency constraint has shown a clear im-
pact on optimal solution as previously detailed. From the dynamic
frequency constraint formulation (Eq. 5.40), the battery requirement
are expected to be lower for the same risk of PV drop. This is verified
in Fig. 5.14 and 5.15. In the curtailed + hourly hull configuration,
101.2 MW of PV capacity is installed regardless of the type of the fre-
quency constraint. However, Tab. 5.4 reports that the battery require-
ment is reduced by 2.7 MW (-9.8 % as compared to static constraint).
This results in lower CAPEX (-1.2%) for the same CO2 savings. On
the other hand, the impact on overall costs in insignificant since no
discount rate have been considered in this case. Integrating discount
rate may further highlight the interest of the dynamic formulation as
it mostly impacts the capital expenditures.

Base Case No FC Global hourly

FC type - - Static Dynamic Static Dynamic

Risk reference - - Inst. Curtailed Inst. Curt. Inst. Curt. Inst. Curt.

Total costs (E+09 $) 4.96 4.25 4.95 4.76 4.95 4.75 4.77 4.67 4.77 4.67

CAPEX (E+07$) 1.76 13.4 1.86 8.11 1.86 8.05 6.57 8.79 7.26 8.68

Fuel OPEX (E+08 $) 2.47 2.06 2.46 2.34 2.46 2.34 2.35 2.29 2.35 2.29

CO2 (E+05 kt) 8.04 6.69 8.01 7.60 8.01 7.59 7.65 7.45 7.64 7.45

Installed PV (MW) 0.0 196.9 2.6 88.3 2.6 89.2 67.1 101.2 76.3 101.2

Cloud battery (MW) 0.0 0.0 0.0 27.7 0.0 24.7 23.2 27.4 26.7 24.7

N+1 Battery (MW) 44.0 40.4 42.7 42.7 42.7 42.7 40.4 40.4 40.4 40.4

Optimality gap (%) 0 0.85 1.88 1.29 1.57 1.22 3.34 1.08 2.87 0.99

Table 5.4: Comparison of optimal solution for several constraints setups.
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Figure 5.14: Comparison of PV installed capacity for several constraints
setup.
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Figure 5.15: Comparison of battery installed capacity for several constraints
setup.

5.2.7 Discussion

Based on the work of [167], this section proposed an optimal sizing
formulation for PV integration in industrial microgrids. The resiliency
to fossil generators contingency is ensured thanks to a similar spinning
reserve calculation as expressed in [213]. The main contribution of this
work was to develop linear frequency constraints for the resiliency
to cloud passage. Isolated ramp scenarios extracted from convex
hulls are used to evaluate battery requirements. This constitutes
a new contribution to the previous work on frequency constraints
formulations such as [177] which only covered risks of fossil generator
contingency and [179] which included the variability of wind resources
but did not addressed short-term solar variability. The impact of short
term solar variability on the sizing of microgrids was covered in
[191] which included solar drop scenarios from statistical analysis of
historical data. The method proposed in this work allows addressing
solar ramp event with a smaller temporal granularity and variable
duration as opposed to [191] which considered fixed time increments
of 15 minutes. Therefore, the short-term grid dynamics leading to
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frequency variation are addressed by a robust approach and takes
place into a linear optimization framework allowing fast calculation
of optimal solution.

When compared with dynamic simulation results, static and dy-
namic frequency constraints appears to over-estimate the need in
power compensations. This leads in higher capital expenditure or
lower PV penetration. The sub-optimality problem of linear frequency
constraints formulations have been highlighted in [135]. To improve
the solution and reduce the battery costs, non linear formulation
or blenders decomposition were proposed. However, this should
be put into perspective with the good performing optimality gaps
of the present solution (1% for the dynamic+curtailed+hourly con-
figuration reported in Tab. 5.4). Integrating non linear formulation
would certainly improve the accuracy of the solution but also increase
the computational burden, leading to higher computational times or
higher optimality gaps.

Nevertheless, dynamic simulation results suggest that the optimal
solution found by preliminary optimization should be refined to
improve the capital expenditures related to the storage system. This
justifies the use of the multi-layer simulation of Chapter 4 as an
additional step of the sizing process to obtain optimal and robust
solution for PV integration in industrial microgrid. The full process of
optimization will be developed in the next section.
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5.3 procedure for optimal and robust sizing

5.3.1 Procedure presentation

Bearing in mind the simulation time of the solution developed in
Chapter 4 ( approximately 40 minutes per architecture), covering a
wide range of PV and storage systems while running a sensitivity
analysis on economic parameters would undoubtedly take too long.
Therefore, the preliminary optimization presented above is coupled
with the simulation framework to refine the architecture and guarantee
their operability. Figure 5.16 shows the three main steps of the process.

2 Preliminary sizing optimization

Screening of PV and battery interval
Sensitivity analysis on economic parameters

𝑃𝑉1, 𝑊𝑏𝑎𝑡,1
𝑖𝑛𝑠𝑡

…

Optimal solution for each economic scenario (1,2, …, n)

…
Validated architectures with refined battery size

Set of day-long 
scenarios

Convex hulls

3 Operational Simulation

Feasability check
Battery size & costs recalculation

1 Solar data pre-processing

Variability smoothing on whole data set with pre-defined PV power
Calculation of hourly average and spinning reserve profiles
Timeseries clustering
Isolated scenario generation

𝑃𝑉2, 𝑊𝑏𝑎𝑡,2
𝑖𝑛𝑠𝑡

𝑃𝑉1, 𝑊𝑏𝑎𝑡,1
𝑖𝑛𝑠𝑡

𝑃𝑉2, 𝑊𝑏𝑎𝑡,2
𝑖𝑛𝑠𝑡

WVM smoothing of reduced day-long set with updated PV power
Calculation of hourly average and spinning reserve profiles

Figure 5.16: Full process of hybrid architecture sizing.
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5.3.2 Solar data-pre-treatment

At the first step, the equivalent irradiance of a MW-scale PV plant
is calculated for each day of the year. Then, hourly convex hulls are
calculated thanks to ramp detection. The reduced set of day-long
scenarios is also identified thanks to solar timeseries clustering.

The irradiance data pre-processing has been extensively covered in
Chapter 3. The main challenge related to irradiance treatment during
the sizing process is that the power plant size is unknown before the
preliminary optimization. This forces to make an "educated guess"
to start the procedure (for example in the next section, a PV power
of 50MW is used for the initial WVM irradiance smoothing). The
reduced set of day-long scenarios is shown in Tab. 5.5.

Scenario Date Description Occurence VI Daily irradiance (kWh)

1 2010-12-09 Very Cloudy 40 21.31 2.63

2 2011-02-02 Medium production, low variability 98 30.90 4.92

3 2010-10-07 Medium production and variability 111 74.97 4.87

4 2011-09-02

High production, high variability

Medium sharpness
67 91.10 6.78

5 2011-06-11 High production and variability 49 172.71 6.20

wc 2011-03-16 Worst case variability 0 238.97 5 .92

Table 5.5: Solar input scenarios resulting from the clustering and worst-case
identification of the Hawaii dataset.

Figure 5.17 illustrates that the size of the power plant has an impact
on short-term solar perturbations. Thus, the irradiance input profiles
for the simulation step will be reprocessed by the WVM with the PV
power resulting from preliminary optimization. This is expected to
correct the potential biais brought by the uncertainty of the initial PV
power value.
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Figure 5.17: Convex ramp hulls after from WVM-smoothed irradiance of
several PV power.
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5.3.3 Preliminary sizing optimization

At the second step, a preliminary optimization is performed thanks to
the model developed in section 5.2. The optimization is ran over the
lifetime of the plant with a time horizon composed of 5 consecutive
timeseries (each day of the reduced day-long set). If several technical
setups and economic scenarios are studied, the preliminary sizing
provides a set of architectures composed of a PV capacity, a cloud
passage battery and a N+1 battery for each economic scenarios.

5.3.4 Operational simulation

Finally, architectures found at the preliminary optimization step are
simulated over each day of the reduced set of day-long timeseries.
Due to the linearization of the frequency constraint and the use of the
worst-case convex hull, the cloud battery capacity are expected to be
larger than necessary. Thus, the architecture cost is re-processed using
the refined battery size and fuel consumption data.

Figure 5.18 describes the principle of architecture validation and
battery capacity recalculation thanks to the operational simulator.

Architecture from pre-optimization

𝑊𝑃𝑉
𝑜𝑝𝑡

,𝑊𝑏𝑎𝑡
𝑜𝑝𝑡

Multi-layer simulation

Is the minimum frequency reached? 

Inoperable layout

(increase battery capacity)

Is the maximum battery power reached? 

Calculate TFD

𝑊𝑏𝑎𝑡
𝑓𝑖𝑛𝑎𝑙

= 𝑊𝑏𝑎𝑡
𝑜𝑝𝑡

TFD = 0

𝑊𝑏𝑎𝑡
𝑓𝑖𝑛𝑎𝑙

= max( 𝑃𝑏𝑎𝑡
𝑠𝑖𝑚)

Recalculate economics with fuel consumption and new battery capacity

Yes No

Yes
No

Figure 5.18: Procedure for layout validation and battery capacity calculation
at simulation step.

The aim of the simulation step can be summed up as follows:

1. Validate de pre-optimized architecture if no large frequency drop
happens over the 6 irradiance timeseries selected

2. Evaluate the actual required power capacity thanks to the maxi-
mum battery power supply over the 6 timeseries
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3. Recalculate the overall costs of the system thank to refined bat-
tery capacity and fuel consumption.

Case of optimization with PV drop based on curtailed capacity

To ensure the consistency between the preliminary optimization sizing
results and the operational simulation, the frequency constraint using
the curtailed PV capacity must be integrated within the optimization
layer (Eq. 5.46 and Eq. 5.49 to 5.52.). Since the battery capacity is not
a decision variable in the operational management problem, Eq. 5.48

becomes :

∆PfcPVh,r
6Wfc

bat +
∑
m,i

∆PDCh,m,i,r + dbHzDfossil (5.57)

Where Wfc
bat denotes the battery installed capacity determined at

the preliminary optimization step.
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5.4 sizing of hybrid power plant for an lng facility

5.4.1 Case study description

In this section, the method for optimal and robust sizing presented
in Section 5.3.1 will be applied for the solar-power integration in a
Liquefied Natural Gas (LNG) processing plant. The architecture and
data were provided by TotalEnergies from a real project carried by the
R&D teams.

As illustrated in Fig. 5.19, the LNG processing plant mainly consists
in several trains of liquefaction systems consuming both torque and
electricity. The total electrical load of the system reaches 150 MW and
vary over the day depending on the offloading procedure to LNG
cargos. In Fig. 5.20, the daily load profiles provided by TotalEnergies
are reported with maximum, minimum and average load profile.

Gas arrival

from pipeline

Gas liquefaction

Gaz pre-treatment
(Mercury and acid gas

removal, Liquiefied gas

recovery)

PR : Propane refregirant compressor

MR : Mix refregirant compressor

Offloading

(10MW)

PR 42MW 

PR 42MW 

MR 42MW 

MR 42MW 

MR 42MW 

Total Load : 240 - 270 MW (Torque and Electricity)

Total Electrical Load : 110-150MW

Electricity Torque Electricity Electricity

Utilities 

(20MW)

LiquidGas

Figure 5.19: Working principle and main energy consumers of an LNG pro-
cessing plant.

Since leakage may happen at every point of the gas treatment, lique-
faction and loading process, safety equipments must be continuously
supplied. If a motor is disconnected due to grid instabilities or a loss
of electricity supply, the plant’s safe operation is endangered. Ad-
ditionally, economic penalty would result from delaying the loading
schedule. Thus, the same frequency and voltage deviations constraints
as presented in chapter 4 are applied:

• Steady-state voltage and frequency variation (including variation
caused by PV cloud passage) : +/- 1% of nominal value
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• Maximum transient deviations : +/- 5% of nominal frequency
and +/- 10% of nominal voltage at load bus
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Figure 5.20: Load profiles of the LNG facility.

The power generation consists in an existing set of gas turbines as
shown in the left part of Fig. 5.21. In the initial configuration, the plant
is operated in "N+1" which means that an additional unit is turned on
to cover the loss of a gas turbine. This results in lower load ratio of
running turbines and therefore lower thermal efficiencies. The aim of
hybrid power plant is to install a PV power plant to reduce the carbon
emission and fuel costs of the system. Additionally, the "N+1" GT
can be replaced by a storage system to increase the overall efficiency
of the system. Since the five gas turbines are already installed, their
installation costs will not be considered.

GT SM

GT SM

GT SM

GT SM

GT SM

45MW

45MW

45MW

45MW

45MW
N+1 redundancy

Cloud passage storage?

?

?

N+1 Storage

Load 150MW

Figure 5.21: Description of electrical power plant.

The costs considered for the project are reported in Tab. 5.6 with
references values and variation range. The range of variation for PV
and battery are chosen according to market outlooks presented in
[214, 215] while ranges for discount rates, fuel costs and CO2 penalty
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were provided by TotalEnergies. Aggregated fuel costs (in $/MJ) are
considered to gather the CO2 penalty and fuel cost.

In section 5.4.2, the sizing procedure will be applied with economic
parameters at their reference values. In section 5.4.3, a sensitivity anal-
ysis will be carried to investigate the impact of economic parameters
on optimal architectures.

- Unit Reference value Range

Fuel cost $/mmbtu 20 [5 - 25]

CO2 Penalty $/ton 40 [20 - 80]

PV installation cost $/kW 600 [400 - 1000]

Battery installation cost $/kW 400 [300 - 600]

Discount rate % 0 [0 - 6]

Table 5.6: Economic parameters for case study analysis.

5.4.2 The reference cost scenario

5.4.2.1 Sizing optimization

In this section, the sizing procedure is applied with all economic
parameters at their reference values (see Tab. 5.6). Two configurations
will be investigated for the integration of PV power in the LNG facility
(both setups integrate PV, N+1 storage and cloud passage storage):

1. PV-dyn-inst: Dynamic cloud passage constraint based on in-
stalled capacity by activating Eq. 5.45.

2. PV-dyn-curt: Dynamic cloud passage constraint based on hourly
curtailed capacity by activating Eq. 5.46 (this configuration
implies modifying the management strategy to account for the
stability constraint in the planning decisions).

To compare the economical and environmental benefits of the N+1

storage and PV integration, it is necessary to perform 3 additional
optimizations:

1. Base case: Neither PV nor N+1 battery are considered to calcu-
late the system performance before hybrid integration

2. N1: No PV considered to evaluate the impact of the N+1 storage
system separately.

3. PV-NC: No cloud passage constraints are set to evaluate the PV
capacity and CO2 savings in a same manner as a conventional
sizing tool.
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Total costs CAPEX OPEX CO2 PV Cloud Battery N+1 Battery

Scenario/Unit B$ m$ m$/year kt/year MW MW MW

Base-case 5.5 0.0 274.1 890.5 0.0 0.0 0.0

PV-NC 4.3 134.3 206.8 672.0 196.9 0.0 40.4

N1 5.0 17.6 247.3 803.8 0.0 0.0 44.0

PV-dyn-inst 4.8 72.6 235.0 763.6 76.3 26.7 40.4

PV-dyn-curt 4.7 86.8 229.1 744.5 101.2 24.7 40.4

Table 5.7: Optimization results for each optimization setups.

Table 5.7 reports the results of the optimization whereas Fig. 5.22

and 5.23 display the additional relative CO2 and costs savings for each
of optimization setups as compared to the base-case.

As expected, the base-case provides the highest costs and the PV-NC
leads to the highest PV capacity (196.9 MW) which provides an upper
bound for the costs and CO2 reduction (highlighted in dashed lines
in Fig. 5.22 and 5.23).

Interestingly, the N+1 storage system is the main lever for CO2
reduction since it reduces the emission by 87.5kt/year as compared to
the base-case. On the other hand, the difference between PV-dyn-curt
and N1 is 59kt/year which shows that the PV integration has less
impact than the N+1 storage integration.

The comparison between PV-dyn-inst and PV-dyn-curt highlights
the interest of integrating hourly curtailed capacity in the PV drop
calculation since it reduces the CO2 emissions by 19.1 kt/year thanks
to higher PV capacity. The impact on costs is less significant (-0.1 B$
which represents 1.89% of additional savings as compared to base case)
since this solution requires more investments on PV system (+25 MW).

Another interest of the PV-dyn-curt setup is the significant reduction
of the cloud passage battery capacity (-2 MW as compared to PV-dyn-
inst for +25 MW of PV). However, the feasibility of such operational
strategy must be verified by the simulator to ensure the electrical
stability.
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Figure 5.22: Relative CO2 reduction for several optimisation setups.
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Figure 5.23: Relative costs reduction for several optimization setups.

5.4.2.2 Operational simulation

Now that optimal size for PV and battery capacities have been obtained
thanks to the preliminary optimization, the operational simulator is
used to validate the feasibility and refine the costs. Tab. 5.8 reports
the results of the operational simulation for the PV-dyn-inst and PV-
dyn-curt setups.

- PV Battery TFD Max. Power supply Min. Frequency

Scenario / Unit MW MW s MW Hz

PV-dyn-inst 76.3 26.7 0 19.7 49.88

PV-dyn-curt 101.2 24.7 0 24.7 49.72

Table 5.8: Comparison of grid simulation results between PV-dyn-inst and
PV-dyn-curt.

Both architecture are validated since the minimum frequency is
higher that the transient frequency limitation (47.5Hz). In the case
of PV-dyn-inst, the battery is not saturated and a maximum power of
19.7 MW is supplied. This significantly reduces the size of the storage
system (-7 MW). An example of simulation results is displayed in Fig.
5.24 and 5.25

In the case of PV-dyn-curt, the simulation results for the PV produc-
tion highlights that the cloud passage constraint has a very limited
impact on the curtailment (the PV power remains limited at 72MW
from 10 am to 4 pm). This shows that the cloud passage constraint
does not penalize the PV integration and only affects the size of the
battery.
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Figure 5.24: PV, frequency and battery profiles during worst-case day (2011-
03-16) for the reference costs (RC) scenarios in PV-dyn-inst setup.
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Figure 5.25: PV, frequency and battery profiles during worst-case day (2011-
03-16) for the reference costs (RC) scenarios in PV-dyn-curt setup.

5.4.2.3 Final Architecture

Now that architectures have been validated, the total costs and CO2
emissions can be refined thanks to the battery maximum power sup-
ply provided in Tab. 5.8 and the fuel consumption provided by the
simulator.
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Table 5.15 reports the final architectures characteristics, costs and
emissions both in PV dyn inst and PV dyn curt configuration.

PV Cloud Bat N1 Bat CAPEX OPEX Total Costs CO2

Scenario/Unit MW MW MW m$ m$/year B$ kt/year

PV dyn inst 76.3 19.7 40.4 69.8 229.3 4.7 746.3

PV dyn curt 101.2 24.7 40.4 86.8 219.3 4.5 713.8

Table 5.9: Final architecture and economic performances for the reference
cost scenario.

Figure 5.26 shows how CO2 is reduced along the sizing process.
As compared to pre-optimization results, the simulation reduces the
CO2 emission by considering smaller time-step (-23.3 kt/year). When
compared to the base-case results, this brings additional relative sav-
ings of 1.94%. This should be put into perspective with the maximum
boundary of -24% for the CO2 reduction (PV-NC setup) and with the
4.52% of relative savings already obtained by PV at the preliminary
optimization. A similar trend is observed for the costs reduction as
shown in Fig. 5.27 with -2.23% of costs reduction added up to the ini-
tial costs reduction of -3.48% obtained by the preliminary optimization.
The simulation step significantly improves the performance of this
configuration which justifies the additional time spent in simulating
the architecture (approximately 40 minutes).
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Figure 5.26: Relative CO2 reductions after each step of the process.

The simulation results report higher gap between PV-dyn-inst and
PV-dyn-curt as compared to the results of the preliminary optimization
: -0.2 B$ of costs reduction against -0.1 B$. The total CO2 reduction
allowed by PV integration in PV-dyn-inst as compared to the base-case
is 56.7 kt/year. On the other hand, the change in operational strategy
PV-dyn-curt accounts for a CO2 reduction of 32.5kt/year as compared
to PV-dyn-inst. This results were expected and emphasize the interest
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of modifying the operational strategy to consider PV curtailed capacity
in the power drop calculation.

The total costs and CO2 savings potential of the hybrid power plant
are respectively evaluated at 18.45% and 19.85%. After re-evaluating
the system performance thanks to the simulator, the PV integration
now account for half of the costs and CO2 savings. These perfor-
mances are a considerable improvements as compared to preliminary
optimization results with a cost difference of 0.2 B$ and a CO2 emis-
sion difference of 30.7 kt/year for the final architectures in PV-dyn-curt
configurations.
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Figure 5.27: Relative costs reductions after each step of the process.

The sizing methodology provided two architectures with with vary-
ing operational choices ( PV-dyn-inst and PV-dyn-curt). The prelim-
inary optimization provides a first set of optimal size for PV, N+1

storage and cloud passage storage by screening a large feasibility
interval in less than 1 hour. This first step is equivalent as evaluat-
ing the economical performance of each configuration in the stability
map presented in part 4.4.3 which required 15h of calculation with
an advanced computer5. Thanks to the reliability constraints of the
preliminary optimization, the architecture were found to be operable
by the simulator which avoids an iteration on battery capacity for
ensuring frequency stability. The simulation reduces the size of the
storage system and allows recalculating the system performance with
more accuracy thanks to smaller time-step leading to better costs and
CO2 savings. The total computational time of the methodology for
evaluating PV-dyn-inst or PV-dyn-curt is approximately 2 hours with a
standard computer6.

5 advanced computer : 40 cores, 128Go Ram intel Xeon
6 standard computer : 4 cores 8Go RAM intel i5 CPU
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5.4.3 Sensitivity analysis on economic parameters

In this part, the size of the PV system, cloud passage battery and N+1

battery will be evaluated under 6 economic scenarios:

1. Reference costs (RC): All economical parameters at reference
value (which corresponds to the results presented above).

2. High capital costs scenarios (HCC) : PV and Battery installation
at their highest values.

3. High fuel costs (HFC): Aggregated fuel cost at its highest value.

4. High cost (HC) : All parameters at their highest values.

5. Low capital costs (LCC): PV and Battery installation at their
lowest values

6. Low costs (LC): All costs at their lowest values

Similarly to part 5.4.2, the performance of the system will be evalu-
ated in PV-dyn-inst and PV-dyn-curt configurations. To allow compar-
ing the performance of PV integration, the base-case is also computed
at the preliminary sizing step.

5.4.3.1 Sizing optimization

Table 5.10 to 5.12 report the results of the optimization performed
with an optimality gap tolerance of 2%.

Total costs CAPEX OPEX CO2 PV Cloud Battery N+1 Battery

Scenario/Unit B$ m$ m$/year kt/year MW MW MW

RC 5.5 0.0 274.1 890.5 0.0 0.0 0.0

HCC 5.5 0.0 274.1 890.5 0.0 0.0 0.0

HFC 7.4 0.0 369.3 890.5 0.0 0.0 0.0

HC 0.4 0.0 369.3 890.5 0.0 0.0 0.0

LC 1.5 0.0 77.4 890.5 0.0 0.0 0.0

LCC 5.5 0.0 274.1 890.5 0.0 0.0 0.0

Table 5.10: Optimization results for Base case (no PV considered).

Total costs CAPEX OPEX CO2 PV Cloud Battery N+1 Battery

Scenario/Unit B$ m$ m$/year kt/year MW MW MW

RC 4.8 72.6 235.0 763.6 76.3 26.7 40.4

HCC 4.8 97.0 235.7 766.0 62.4 17.2 40.4

HFC 6.4 72.6 316.6 763.6 76.3 26.7 40.4

HC 0.4 26.4 333.9 803.8 0.0 0.0 44.0

LC 1.4 41.2 66.6 766.6 60.6 16.0 40.4

LCC 4.7 50.6 235.0 763.6 76.3 26.7 40.4

Table 5.11: Optimization results for PV-dyn-inst (Dynamic cloud constraint
based on installed capacity).
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Total costs CAPEX OPEX CO2 PV Cloud Battery N+1 Battery

Scenario/Unit B$ m$ m$/year kt/year MW MW MW

RC 4.7 86.8 229.1 744.5 101.2 24.7 40.4

HCC 4.7 129.2 229.6 746.1 91.4 22.6 40.4

HFC 6.3 97.1 308.1 743.1 118.5 24.7 40.4

HC 0.4 26.4 333.9 803.8 0.0 0.0 44.0

LC 1.4 52.9 65.0 747.3 86.3 20.8 40.4

LCC 4.6 67.5 228.7 743.3 120.0 24.7 40.4

Table 5.12: Optimization results for PV-dyn-curt (Dynamic cloud constraint
based on curtailed capacity).

Figure 5.28 displays the PV and cloud battery installed capacities for
the PV-dyn-inst configuration. Interestingly, the preliminary optimiza-
tion provide equivalent solutions for RC, HFC and LCC scenarios with
a PV installed capacity around 80WM. In the PV-dyn-curt configuration
(displayed in Fig. 5.29), the installed capacities for LCC and HFC are
larger than in the RC scenario (120MW instead of 100MW). Therefore,
the optimization takes more advantage of the cost difference when PV
drop constraint is integrated in the management layer.

In both configurations, the HC scenario leads to installing an N+1

storage system without PV. This most probably comes from the dis-
count rate of 6% which highly penalises the OPEX savings and sup-
ports architectures with limited capital investments.

In both configurations, the optimal solutions for HCC and LC are
equivalent (around 60 MW for PV-dyn-inst and 90MW for PV-dyn-curt.
This shows that low fuel costs associated to low capital costs (LC
scenarios) have the same impact as high capital costs. The difference
between LC and HFC scenarios highlights the role of the fuel costs in
the optimization results.
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Figure 5.28: PV and cloud battery resulting from optimization for the 6

economic scenarios in PV-dyn-inst.
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Figure 5.29: PV and cloud battery resulting from optimization for the 6

economic scenarios in PV-dyn-curt.

5.4.3.2 Operational simulation

The simulation results are displayed in Tab. 5.13 for PV-dyn-inst con-
figurations and Tab. 5.14 for PV-dyn-curt configurations. Similarly to
the reference cost scenario analysis, all architectures were validated in
the first round of simulation with no TFD and a frequency being kept
above the minimum transient limit.

- PV Battery TFD Max. Power supply Min. Frequency

Scenario / Unit MW MW s MW Hz

RC 76.3 26.7 0 19.7 49.88

HCC 62.4 17.2 0 17.2 48.75

HFC 76.3 26.7 0 19.7 49.88

HC 0 0 0 0 50.00

LC 60.6 16 0 16 47.87

LCC 76.3 26.7 0 19.7 49.88

Table 5.13: Results of grid simulation for each economic scenario in the PV-
dyn-inst setup .

- PV Battery TFD Max. Power supply Min. Frequency

Scenario / Unit MW MW s MW Hz

RC 101.2 24.7 0 24.7 49.72

HCC 91.4 22.6 0 22.6 49.20

HFC 118.5 24.7 0 20.43 49.87

HC 0 0 0 0 50.00

LC 86.3 20.8 0 19.74 49.88

LCC 120 24.7 0 20.43 49.87

Table 5.14: Results of grid simulation for each economic scenario in the PV-
dyn-curt setup.
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According to the procedure detailed in Fig. 5.18, the battery installed
capacity is recalculated for each scenario as displayed in Fig. 5.30.
As expected, considerable differences can be obtained between the
simulation results (red and blue stars) and preliminary optimization
results (red and blue circles). The higher differences is obtained in the
PV-dyn-inst configuration for the RC, HFC and LCC scenarios with
-7 MW.

RC, HFC, LCC

HCC

LC

LC

HCC

RC

HFC

LCC

Figure 5.30: Battery capacity requirements for each economic scenario after
pre-optimization (pre-optimal) and after grid simulation.

5.4.3.3 Final architectures

Tables 5.15 and 5.16 report the final architectures and their characteris-
tics in "installed" and "curtailed" modes respectively.

PV Cloud Bat N1 Bat CAPEX OPEX Total Costs CO2

Scenario/Unit MW MW MW m$ m$/year B$ kt/year

RC 76.3 19.7 40.4 69.8 229.3 4.7 746.3

HCC 62.4 17.2 40.4 97.0 229.0 4.7 745.2

HFC 76.3 19.7 40.4 69.8 310.3 6.3 749.4

HC 0 0 44 26.4 333.9 0.4 803.8

LC 60.6 16 40.4 41.2 65.2 1.3 750.8

LCC 76.3 19.8 40.4 48.5 230.2 4.7 749.3

Table 5.15: Final architecture and economic performances for the (PV-dyn-inst
setup.

The PV integration allows saving from 15.6% to 19.8% of CO2 emis-
sions. The difference in costs and CO2 savings between lowest and
highest PV capacities remains relatively low (+4.2% of CO2 savings for
+60 MW of installed capacities). This is also confirmed with the RC
and HFC scenario in curtailed mode where the 20MW of additional
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PV Cloud Bat N1 Bat CAPEX OPEX Total Costs CO2

Scenario/Unit MW MW MW m$ m$/year B$ kt/year

RC 101.2 24.7 40.4 86.8 219.3 4.5 713.8

HCC 91.4 22.6 40.4 129.2 223.0 4.6 725.6

HFC 118.5 20.43 40.4 95.4 295.6 6.0 713.8

HC 0 0 44.0 26.4 333.9 0.42 803.8

LC 86.3 19.74 40.4 52.6 63.1 1.3 727.1

LCC 120.0 20.43 40.4 66.2 219.3 4.5 713.8

Table 5.16: Final architectures and economic performances for the PV-dyn-
curt setup.

PV capacity have negligible impact in CO2 savings This is mostly
explained by the low flexibility of the SGT800 gas turbine (this has
been highlighted in Chapter 4). Replacing gas turbines by better per-
forming fossil generators would allow to improve the performance of
the hybrid power plant. Such analysis require the integration of fossil
unit investment decisions in the formulation which will be studied in
the future.

-25,00%

-20,00%

-15,00%

-10,00%

-5,00%

0,00%

RC HCC HFC HC LC LCC

R
el

. C
O

2
sa

v
in

g
s 

to
 b

as
e 

ca
se

PV-dyn-curt PV-dyn-inst

Figure 5.31: Relative CO2 savings as compares to base case for each scenario
in "installed" (red) and curtailed (blue) modes.
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Figure 5.32: Relative total costs savings as compares to base case for each
scenario in "installed" (red) and curtailed (blue) modes.
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Figure 5.31 and 5.32 display the relative CO2 and costs savings as
compared to base cases both in PV-dyn-inst and PV-dyn-curt config-
urations. The result show that PV-dyn-curt perform better for every
scenarios featuring PV capacities. In the LCC, RC and HFC scenario,
the CO2 reduction is improved from 16.7% up to 19.8% which is sub-
stantial and emphasize the interest of accounting for ramp constraints
in the operational optimization layer.

In the preliminary optimization step, 6 optimizations were per-
formed per constraint setup (base case ,PV-dyn-curt and PV-dyn-inst).
Thanks to the linear optimization framework, all optimal solutions
were found in less than 3 hours. This is a considerable improvement
of computational time as compared to the use of the simulator for
screening a wide range of PV and battery capacities. To validate the
architecture and refine the total costs, a single simulation per sce-
nario was necessary. This brings the overall process of the sensitivity
analysis to a computational time of 11 h with a standard computer
and less than 2h with a more advanced computer 7. This must be
compared to generation of a stability map as proposed in chapter 4

which required 15h with PV capacity increments of 10MW and battery
capacity increments of 1MW whereas the MILP approach considered
wider continuous intervals.

7 standard computer : 4 cores 8Go RAM intel i5 CPU; advanced computer : 40 cores,
128Go Ram intel Xeon computer
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5.5 conclusion

In this chapter, a methodology for the optimal and robust integra-
tion of PV power plant in industrial microgrids has been proposed.
After a pre-treatment of solar input data thanks to solar variability
smoothing, timeseries clustering and convex hull identification, a ro-
bust pre-optimization is carried to evaluate the optimal PV and battery
capacities.

The pre-optimal sizing is formulated as a MILP problem based on
operational constraints developed in Chapter 4 which ensures the
consistency with operational management strategies. The resiliency
to fossil unit contingency is ensured thanks to spinning reserve con-
straints and allows evaluating the potential of an N+1 storage unit to
reduce the fuel consumption. The main contribution of this work is
the formulation of cloud passage resiliency constraint to ensure that
no grid instability will appear during solar power drops. As opposed
to [135], resiliency constraints were based on linear approximation of
the equation of motion which allows fully taking advantage of the
MILP formulation in terms of computational times and optimality
gaps. By considering worst-case linear solar drops, the frequency
constraint integrates sub-minute frequency stability into an high level
energy formulation which was not proposed in the literature.

Thanks to the robust sizing at the pre-optimization phase, a single
detailed simulation is necessary to refine battery capacity and fuel
consumption. This simplifies the sizing process and reduces the
computational burden of the methodology as compared to state-of-
the art approaches such as developed in [184] were every potential
solutions are simulated by detailed dynamic models.

The case study investigated in this chapter illustrates the ability of
the method to provide optimal capacities for PV, N+1 storage and
cloud passage storage for several economic scenarios. In the reference
case, the total CO2 savings were estimated at 16.19% against 24%
when frequency constraints are ignored with 76.3 MW of installed PV
capacity instead of 196 MW and a cloud passage storage capacity of
19.7 MW instead of 0 MW. This shows that neglecting cloud passage
effect leads to unstable architectures and an overestimation of the
power plant performances.

The integration of the frequency constraint within the operational
management of the plant allowed to increase the CO2 saving potential
up to 19.85%. This demonstrates the interest of investigating reliability
constrained operational management to improve the PV penetration.
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G E N E R A L C O N C L U S I O N

6.1 conclusion

This doctoral dissertation addresses the integration of large scale PV
systems in industrial power plants. The main research challenge is
to integrate short-term solar variability in the simulation and sizing
methodologies to help power plants developers in the preliminary as-
sessment process. The main contributions of this work is to develop a
simulation framework for the assessment of operational performances
of the system using optimal management strategies and to propose
a sizing methodology for the optimal and robust sizing of PV and
storage systems.

Thanks to variability quantifiers and irradiance time series pre-
processing, the solar variability is addressed to better anticipate elec-
trical perturbations. A scenario reduction method is applied to reduce
the number of daily simulations from 365 to 6 timeseries which signifi-
cantly reduces the computational burden of the proposed tools. Ramp
detection and convex hull representation are used to generate a set
of worst-case solar ramps. These scenarios are employed to evaluate
electrical perturbation and reduce the time windows from 5.4 10

5

seconds (5am to 8pm) down to 300 seconds.
The operational simulation framework proposed in this work is

composed of a single-line active power electrical model which calcu-
lates the frequency shift caused by solar variability. This model is
interfaced with a two-layer energy management optimization which
provides optimal operating status and setpoints to fossil units. The
CO2 emissions, fuel costs and cumulated frequency disturbances are
calculated and aggregated into yearly indicators thanks to the reduced
set of scenarios. The battery requirement guaranteeing electrical stabil-
ity is evaluated and refined according to the user’s tolerance in terms
of frequency shifts.

A sizing methodology evaluates the optimal investment decisions
for PV systems and two storage units dedicated to contingency re-
siliency and cloud passage management. The sizing process is com-
posed of a MILP optimization ensuring robust evaluation of storage
requirements thanks to linear frequency constraints and worst case
solar ramps. The results of the pre-optimization are refined by the
multi layer simulation. The case study of an LNG power plant is
investigated and results shows that up to 19% of CO2 can be saved
while ensuring electrical stability under highly variable irradiance
conditions.

219
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6.2 limitations

In the development process of these methods, keeping the model com-
plexity to a suitable level for preliminary studies was one of the main
challenge. This led to make assumptions for component description.
Consequently, the following limitations can be formulated:

A single line model reduction has been proposed to avoid using
the 3-phase model. One of the key assumption is to neglect voltage
variations and to consider that frequency stability is a sufficient condi-
tion for the whole stability of the system. This assumption is hard to
verify in preliminary studies since the grid topology is not available
(especially the contribution of PV inverters to voltage support).

The fossil controllers developed in the reduced order model is de-
signed to track optimal setpoints and frequency stability during cloud
passage. Hence, this model is not valid during fast transient such as
load step or generator contingency. Evaluating the system’s stability
over large load steps would require using the detailed electrical model.

For the sake of simplicity, a proper modeling of the PV system
has not been performed. Notably, temperature effect and modules
performance degradation were not considered. This is likely to bring
errors in the evaluation of the injected solar energy and consequently,
inaccurate fuel savings evaluation.

An hourly averaged load profile has been considered for operational
simulation and optimization. This is a reasonable assumption in
normal operation since industrial processes tends to be less variable
than residential loads. However, the connection of large consumers
can happen and cause large grid perturbations. The resiliency of
the grid in case of simultaneous load step and cloud passage is not
addressed. The probability of such situations should be evaluated to
verify the validity of this assumption.

In the energy management simulation proposed in chapter 4, no
forecast system has been used to generate solar irradiance timeseries
which is a major deviation from reality. This is not so much an
issue for frequency stability as short-term ramps are unforecastable.
But, spinning reserve requirements forces to use a forecast system in
real life conditions. In this work, the spinning reserve requirement
has been calculated as the maximum deviation between the hourly
averaged value and the 1-second profile which means that the hourly
averaged valued is considered as the predicted value. The use of a
forecast system should improve the accuracy of the method and avoid
a potential mismatch at low PV production time especially when the
plant is operated without a N+1 fossil generator.

In the optimization model, solar variations are assumed to be linear.
One could challenge the validity of this assumption since the gradient
of solar perturbation is not constant during cloud passage. Addition-
ally, the smoothing effect of the power plant is addressed by a single
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WVM pre-processing of the time-series. The solar variability of higher
power plant can be over-estimated which penalizes high PV installed
capacities.

Finally, the operational simulation considers that each days are
independent. The storage system is assumed to be fully charged at
the beginning of the day and fossil unit operating status decision have
no impact have no consequences on the next days. Such assumption
would most certainly be invalid if an energy-shifting storage system
or wind power are integrated in the future.

6.3 recommendations for industrial microgrid devel-
opment

The conclusions of this thesis leads to formulate a few recommenda-
tions to the attention of power plant developers.

First, the role of solar variability in the power quality degradation
and storage sizing shows that electrical stability during cloud passage
should be integrated sooner in preliminary sizing studies

Secondly, the role of fossil generation flexibility in the performance
of the hybrid power plants have highlighted the need for a change in
the selection process of future fossil units. The following factors shall
be considered to maximize the renewable penetration and reduce the
storage investments:

• Better performing units at part-load.

• Wider operational margins.

• Low minimum up and down times.

• High ramp rates.

This promotes the use of small units and preferably gas engines
which were found to be more flexible as compared to large industrial
gas turbines.

Thirdly, in an industrial development perspective of the proposed
tools, additional factors may be integrated to model the plant with
more accuracy. Notably, the temperature profile at site allows calcu-
lating the temperature effect of PV system as well as the gas turbine
maximum power output limitation. This last factor is crucial to refine
the spinning reserve capabilities of gas turbines.

Finally, the development of industrial microgrid would benefit from
reducing the uncertainties related to solar variability scenarios. In this
work, a worst-case data-set has been used. Performing measurement
studies as soon as possible may refine the sizing and bring subsequent
storage investment costs savings.
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6.4 recommendations for future research work

Fossil generation performance during transient operation

One of the main research perspective for this work is to investigate
the impact of extended transient operation on fossil generation perfor-
mance (fuel consumption and lifetime degradation).

A data-driven investigation has been performed thanks to gas tur-
bine commissioning records. A comparison between the fuel mass
flow during transient operation and steady-state operation showed
that the heat-rate may increase up to 12.5% higher during ramp oper-
ation. After applying this factor to a simulation results, it was found
that the fuel consumption during day-time could be around 5% higher.
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Figure 6.1: Comparison between steady-state and transient heat-rates thanks
to commissioning records on Rolls Roys RB211 GT. The theoreti-
cal fuel curve is obtained from the manufacturer’s steady state
data whereas the blue and purple curve shows the results of a
polynomial interpolation using records under transient operation.

The lack of a large amount of reliable data did not allow using
these results within the present work but highlights the relevance of
further investigations. Since only a few thermodynamic models have
attempted to address transient operations performances, an experi-
mental approach should provide lots of benefits for the calibration
of a generic model. One option could be to generate transient run-
ning lines in the compressor performance map thanks to a detailed
physical model. These lines could be interpolated in the operational
simulator to integrate transient performances while avoiding heavy
thermodynamic simulation.
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Integration of advanced management strategies in operational simulation

In the simulation simulation framework developed in 4, a sequential
structure is used for carrying energy management optimizations and
grid simulation. This reproduces the operational strategy of an in-
dustrial microgrid. Another advantage of such approach is to allow
integrating feedback variables from grid simulation into the optimiza-
tion of the next time slice. This could be useful for handling battery
state-of-charge management (see Fig. 6.2).

Schedule Problem
High level optimization

(1h step – 24h horizon)

Dispatch 

problem

Microgrid real 

time control
Setpoints

Power supply to the battery & load

Fossil unit operating status

1

2
(10’ step) (1’’ step, 10’ horizon)

3
Simulation feedback

Battery state of charge

Electrical perturbations

Figure 6.2: Feedback variable integration in the operational simulator

In chapter 5, the integration of solar ramp risks in the management
strategy showed promising perspective to increase the penetration
rate of the PV system and increase the CO2 savings (+1.4%). More
advanced management strategies could be integrated to smartly man-
age uncertainties related to solar production and variability. A first,
a deterministic approach could be carried by integrating the convex
hull corresponding to each day instead of a worst-case set obtained
from one year of data. Then, variability forecasts may be used for the
optimal management of the PV curtailment capacity and fossil unit
dispatch. For example the ramp rate prediction method proposed
in [216] paves the way for variability forecast integration. Such ap-
proach requires a deep investigation of currently available solutions.
Considering reliability constraints, robust optimization approaches
will be probably the most relevant to manage the uncertainties when
performing the unit commitment.

Enrich the sizing optimization problem for broader use

To use the sizing optimization method in more industrial applications,
the formulation shall be extended and include investments on fossil
units. This could be done by adding a new binary decision variable
µm,i associated to the investment costs cm in the objective function.
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The following constraint shall ensures that investment decision is
made if the unit is turned on at least once :

∀h µm,i > ωm,i (6.1)

The possible synergies between buffer storage and energy shifting
storage could be explored which would require to formulate the role
of each block in spinning reserve and frequency constraints. If an
energy shifting storage is used for solar ramp mitigation, the charging
strategy will undoubtedly play an important role in the reliability of
the system. However, the integration of new decision variables and
a new set of constraint may significantly increase the computational
complexity. To ensure faster calculation, decomposition methods for
MILP programming can be employed such as column generation or
Benders decomposition.

These proposals only give a glimpse of the possibilities for future
research on industrial microgrids. But the coming developments of
real-life projects and their practical implementation will undoubtedly
bring new exciting challenges to the scientific community.
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A P P E N D I X

7.1 proof of convex hull properties

The convex enveloppe of Rmax allows reducing the set of events to con-
sider. The Carathéodory’s theorem[206] defines Hmax = conv(Rmax)

as follows :

All elements p ∈ Hmax can be written as a convex combination of
k points of Rmax with k 6 1+ dim(Rmax).

Since dim(Rmax) = 2, this gives p = r1t1 + ...rktk with
∑3
k=1 tk =

1 and rk ∈ Rmax

properties

Let h1, u2 be two consecutive elements of Hmax and u ′ ∈ [h1,u2]
such as u ′ = τu1 + (1− τ)u2 with τ ∈ [0, 1]

Property 1 (P1) : The power imbalance Υu ′ of each point in the
segment [h1,u2] higher or equal than the power imbalance of every
element of lower irradiance drop Υr
∀r = (∆Tu ′ ,∆Ir) | ∆Ir 6 ∆Iu ′
Υ(r) 6 Υ(u ′)

Proof :

Υ(u ′) = ∆Iu ′ .ηPV .QPV − Tu ′ .rrfossil (7.1)

Υ(r) = ∆Ir.ηPV .QPV − Tu ′ .rrfossil (7.2)

∆Ir 6 ∆Iu ′ ⇒ Υ(r) 6 Υ(u ′) (7.3)

Property 2 (P2) : The power imbalance of each point of the segment
[h1,u2] is lower or equal than one of the two closely located point of
the convex hull (u1 or u2 )
Υ(u ′) 6 Υ(u1) or Υ(u ′) 6 Υ(u2)

Proof :

225
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Υ(u1) = ∆Iu1 .ηPV .QPV − Tu1 .rrfossil (7.4)

Υ(u2) = ∆Iu2 .ηPV .QPV − Tu2 .rrfossil (7.5)

Υ(u ′) = (1− τ)Υ(u1) + τΥ(u2) (7.6)

Υ(u2) 6 Υ(u1) ⇒ Υ(u ′) 6 Υ(u1) (7.7)

Υ(u1) 6 Υ(u2) ⇒ Υ(u ′) 6 Υ(u2) (7.8)

7.2 ggov model
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7.3 lists of parameters for gt detailed electrical mod-
eling

Name Desciption Unit Value

Type AVR Type - AC8C

Ts Sample time (-1 for inherited) - 0

RC Resistive component of load compensation pu 0

XC Reactance component of load compensation pu 0,04

TR Regulator input filter time constant s 0,02

KPR Voltage regulator proportional gain pu 36,3

KIR Voltage regulator integral gain pu/s 15,58

KDR Voltage regulator derivative gain pu*s 8,09

TDR Lag time constant for derivative channel of PID controller s 0,3

VPIDmax Maximum voltage regulator output pu 7,736

VPIDmin Minimum voltage regulator outputn pu 0,1553

KA Rectifier bridge gain pu 1

TA Rectifier bridge time constant s 0

VRmax Maximum regulator output pu 12,243

VRmin Minimum regulator output pu 0

VS Alternate PSS input locations - Voltage error calculation

VOEL Alternate OEL input locations - Unused

VUEL Alternate UEL input locations - Unused

VSCL Alternate SCL input locations - Unused

KE Exciter field proportional constant, KE pu 1

TE Exciter field time constant, TE s 0,75

KC Rectifier loading factor proportional to commutating reactance, KC pu 0,79

KD Demagnetizing factor, function of exciter alternator reactances, KD pu 0,37

E1 Exciter output voltage for saturation factor SE(E_1), E1 pu 6,6

SEE1 Exciter saturation factor at exciter output voltage - 0,02

E2 Exciter output voltage for saturation factor pu 4,2

SEE2 Exciter saturation factor at exciter output voltage - 0,02

VFEmax Maximum exciter field current, pu 13,47

VEmin Minimum exciter output limit, pu 0

KP Potential circuit gain coefficient, pu 1

θP Potential circuit phase angle (degrees) degrees 0

KI Potential circuit (current) gain coefficient pu 0

XL Reactance associated with potential source pu 0

KC1 Rectifier loading factor proportional to commutating reactance pu 0

SW1 Logical switch 1 - Position B: power source

VBmax Maximum available exciter field voltage, pu 1,25

Table 7.1: AVR AC7B data
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Name Description Unit Value

Type Governor reference - GGOV1

Tpelec Electrical Power Transducer Time Constant s 1

Kpgov Proportional Gain - 5,3

Kigov Integral Gain - 1,9

Kdgov Derivative Gain - 4,9

Tdgov Derivative Time Constant s 1

minerr Speed Error Limits Minimum value pu -0,2

maxerr Speed Error Limits Maximum value pu 0,2

vmin Valve Limits Minimum value pu 0,09

vmax Valve Limits Maximum value pu 0,689

r Permanent droop pu 0,1

rselect Feedback for Droop - Electrical Power

Tact Actuator Time Constant s 0,2

Kturb Turbine Gain pu 1,999

wfnl No Load Fuel Flow pu 0,17

Tb Lag Time Constant s 0,1

Tc Lead Time Constant s 0

Teng Transport Lag for Diesel s 0

Flag Fuel Source Characteristic - Fuel Flow Independent of Speed

Tfload Time Constant s 0

Kpload Proportional Gain - 10

Kiload Integral Gain - 0

Ldref Load Limiter Reference Value pu 2

Dm Speed Sensitivity Coefficient pu 0

rclose Valve Closing Rates pu/s -3,3

ropen Valve Opening Rates pu/s 3,3

Kimw Power Controller Gain - 0

Pmwset Power Controller Setpoint MW 0

aset Acceleration Limiter Setpoint pu/s 1

Ka Acceleration Limiter Gain - 10

Ta Acceleration Limiter Time Constant s 0

db Speed Governor Dead Band pu 0

Tsa Temperature Detection Lead s 0

Tsb Temperature Detection Lag s 0

rdown Load Limit Rates pu -1

rup Load Limit Rates pu 1

Tau Algebraic Loop Time Constant s 1,00E-06

Table 7.2: GGOV data
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Name Description Unit Value

Type Machine reference - 48.6MW 11kV

Sn Rated apparent power V*A 4,86E+07

Vn Rated voltage V 1,10E+04

fn Rated electrical frequency Hz 50

Xd d-axis reactance pu 1,5

Xdtrans d-axis transient reactance pu 0,476

Xdsubtrans d-axis subtransient reactance pu 0,263

Xq q-axis reactance pu 1,37

Xqsubtrans q-axis subtransient reactance pu 0,243

Xl Stator leakage reactance pu 0,031

Tdtrans d-axis transient short-circuit s 4,349

Tdsubtrans d-axis subtransient short-circuit s 0,031

Tqsubtrans q-axis subtransient short-circuit s 0,074

Rs Stator resistance pu 0,0042

M Inertia constant s*W/V/A 10,1

D Per-unit damping coefficient pu 0

p Number of pole pairs - 2

Table 7.3: Synchronous machine data
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ABSTRACT 

The integration of a large-scale solar power plant in off-grid industrial power systems brings 

new challenges related to the short-term variability. The long-term planning and 

management of industrial microgrids must now consider the relationship between 

renewable penetration, short-term variability, and power quality. 

 

This thesis aims to integrate the short-term solar photovoltaic variability in the optimization 

process of off-grid industrial microgrids. To ensure the resiliency of the grid against 

renewable variation, a procedure for the variability analysis of irradiance time series is 

proposed. Then, the performance of optimal management strategies is evaluated thanks 

to a multi-layer simulation framework that reproduces scheduling decisions and power 

quality control. Finally, optimal and robust sizing of the power plant is performed and 

ensures both resiliency to cloud passage and to fossil generators contingencies. 

MOTS CLÉS 

 

Optimisation, Energie photovoltaïque, Mathématiques appliquées, Systèmes électriques 

RÉSUMÉ 

L'intégration de centrales photovoltaïques dans les réseaux électriques industriels hors 

réseau pose de nouveaux défis liés à la variabilité de l'ensoleillement. La planification des 

micro-réseaux industriels doit désormais tenir compte de la relation entre la pénétration 

des énergies renouvelables, la variabilité court terme et la qualité de la fourniture 

électrique. 

 

Cette thèse vise à intégrer la variabilité court-terme de l'ensoleillement dans le processus 

d'optimisation des micro-réseaux industriels. Dans un premier temps, une procédure 

d'analyse de la variabilité des séries temporelles d'ensoleillement est proposée. Ensuite, 

la performance des stratégies de gestion optimale est évaluée grâce à un cadre de 

simulation composé d'une couche d'optimisation couplée à un modèle électrique 

dynamique. Enfin, un problème de dimensionnement optimal et robuste est formulé. Il 

assure à la fois la résilience face au passage nuageux et aux pannes des générateurs 

fossiles. 
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Optimization, Solar Energy, Applied Mathematics, Power systems 
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