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General Introduction  

Solidification processes play the most important role in metal casting, and the ability to 

cast metals represents the progress of human culture in a fairly long period of history. For 

example, the term Bronze Age represents the time period from 4000 BC to 1200 BC, and the 

invention of the Bessemer process leading to the mass production of steel in liquid form is 

regarded as a key invention of the first industrial revolution [1]. Nowadays, solidification and 

its control are always remaining of major economic and industrial interest, whereas they are 

difficult to understand due to their multi-physical aspects: the thermal evolution is 

heterogeneous and varies with phase transformation in the process; the nucleation of grains is 

at atomic scale and involves rich physics; the solute diffusion is combined with convection 

induced by gravity, and convection results in macrosegregation of species; the evolution of 

thermodynamic phases is anisotropic… 

Microstructures formed during solidification processes have a large influence on the 

properties of cast metals and alloys. A large majority of scientific studies on solidification 

microstructures are concerned with a kind of very common microstructure called dendrite, 

including this work. Dendritic growth is driven by the repartition of atoms on both sides of 

the solid/liquid interface according to the thermodynamic equilibrium. Because of the 

anisotropy of the solid/liquid interfacial energy, dendrites have principal growth directions 

corresponding to specific crystal directions. This anisotropy is the reason why dendrites grow 

with this tree-like shape, which is the origin of their name (déndron means tree in Greek) [2]. 

The morphology of dendritic grains can be columnar or equiaxed. Columnar grains have 

significant development in one spatial direction, whereas equiaxed grains have similar 

dimensions in all spatial directions. These two morphologies can coexist in the same ingot, 

and the Columnar-to-Equiaxed Transition (CET) [3] is a common phenomenon in 

solidification processes. As this transition impacts the mechanical properties of material, it is 

necessary to control it during solidification. For example, it has to be eliminated in directional 

solidification of superalloys (columnar crystals or single crystals) but enhanced in welding 

processes [4]. The understanding of the CET of alloy can also help for the optimization of 

grain structures in various solidification processes [5]. 

In attempts to improve the understanding of the microstructures formed during 

solidification processes, the Columnar-to-Equiaxed Transition in SOLidification processing 

(CETSOL) project was launched in 1999 aiming to improve our understanding of the physics 

governing the formation of the CET in alloy solidification process. Experiments of 

solidification in the International Space Station (ISS) in microgravity as well as on earth, and 

different numerical models are being developed and applied for the investigation. The 

CETSOL project is partially funded by the European Space Agency (ESA) within the frame 

of its Microgravity Applications Promotion (MAP) program. To date, six phases of CETSOL 

project have been finished [6]. The last phase, CETSOL-6, from January 2019 to December 

2021, based on Contract Change Notice CNN009, was coordinated by ACCESS e.V. and 

consisted of the following partners: 
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Academic partners:  

• Gerhard Zimmermann (coordinator), Laszlo Sturz, ACCESS e.V. Aachen (Germany) 

• Henri Nguyen-Thi, Nathalie Mangelinck-Noel, IM2NP CNRS / Aix-Marseille University (France) 

• Charles-André Gandin, Oriane Senninger, CEMEF MINES Paris PSL University (France) 

• Shaun McFadden, Antony Robinson, Trinity College Dublin (Ireland) 

• Nils Warnken, University of Birmingham (UK)  

Associated academic partners:  

• Peter Voorhees, Northwestern University Evanston (USA) 

• Andras Roosz, University of Miskolc (Hungary) 

• Christoph Beckermann, University of Iowa (USA) 

• Alain Karma, Northeastern University (USA) 

Non-academic partners:  

• Etienne Perchat, TRANSVALOR Mougins (France) 

• Gerd-Ulrich Grün, HYDRO Aluminium Rolled Products GmbH Bonn (Germany) 

• Manfred Grohn, Incaal GmbH Nörvenich (Germany) 

• Isabelle Poitrault, ArcelorMittal Industeel Le Creusot (France)  

Associated non-academic partners:  

• Gabor Balazs, Arconic-Köfem Ltd. (Hungary) 

• Tamas Nemeth, Nemak Györ Kft. (Hungary) 

• David Toth, INOTAL Aluminiumfeldolgozo (Hungary)  

In terms of experiments of the CETSOL project, the solidification of Al-7 wt.% Si 

samples in microgravity have been completed in the Microgravity Science Laboratory (MSL) 

on-board the ISS, for dissociating the effect of gravity. The experiments were performed in a 

Bridgman-type furnace, as shown in Figure 1. The samples were cylinders with a diameter of 

7.8 mm and a length of 245 mm, put in a special sample cartridge assembly together with 

twelve thermocouples positioned along the sample. The samples were fixed, and melting or 

solidification of the alloy was achieved by moving the furnace along the axis of the sample.  

 

Figure 1  Schematic setup of the Sample Cartridge Assembly (SCA) inserted in the Low Gradient 

Furnace (LGF) on board the ISS. The LGF is sketched at its initial position with 

respect to the SCA. The 12 thermocouples, labeled as TC1 to TC12, are regularly 

distributed from 72.5mm to 182.5mm from the cold end of the sample. From [7]. 
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These experiments provide unique data for the CET in Al-7 wt.% Si alloy for purely 

diffusive solidification conditions, which are helpful for improving numerical models on 

microstructure formation. Reference experiments were carried out on earth as well, and a 

notable difference in the genesis and growth of microstructures during solidification by the 

effect of gravity can be observed (Figure 2). Investigation of CET and equiaxed growth in Al-

Cu alloys and investigation of CET in transparent alloys were also carried out.  

 

Figure 2  Microstructure from an optical polarized light microscope (OM) of Al-7 wt.% Si alloys 

along longitudinal sections in the region of the transition from stage I to stage II for: 

(a1) the GM (Ground Module) sample from solidification experiment on earth and (b1) 

the FM (Flight Module) sample from solidification experiment on-board the ISS. Stages 

I and II are two different stages of solidification with different experimental conditions. 

During Stage I, the pulling velocity of the sample is 𝟎. 𝟎𝟏 𝐦𝐦/𝐬  and the initial 

temperature gradient is about 𝟎. 𝟗 𝐊/𝐦𝐦 . During Stage II the pulling velocity is 

identical to Stage I while the temperature gradient decreases continuously due to a 

cooling down of the hot zone at a cooling rate of 𝟎. 𝟎𝟔𝟕 𝐊/𝐬. (a2) and (b2) are the 

corresponding eutectic percentage (E%) distribution maps for both samples. The white 

dashed lines represent the highest position of the columnar grains issued from the 

initial dendritic zone. The yellow dashed line represents the position defining the CET 

inception in the GM sample. From [8].  

Numerical models, such as the Cellular Automaton – Finite Element (CAFE) model [9], 

the Concurrent Columnar Equiaxed Transition (C2ET) model [10], the Dendritic Needle 

Network (DNN) model [11, 12], have been used for simulating the grain structure of 

CETSOL solidification experiments, and their predictions on the CET are in reasonable 

agreement with the experimental measurement.  



General Introduction 

4 

 

The team CEMEF MINES Paris is specialized in the modeling of grain structure using the 

CAFE model that permits to simulate the grain structure during solidification processes. The 

three-dimensional CAFE model showed encouraging results but was limited for quantitative 

agreement with the experiment [7], especially due to approximations when considering solute 

interaction during dendritic growth. The Parabolic Thick Needle (PTN) method [13] is the 

method used in the DNN model for calculating dendrite tip kinetics, relevant to both steady 

and unsteady growth. To consider the impact of the solute interaction on dendritic growth, the 

CAFE model was hereby enriched by coupling the PTN method as growth law. This work 

was initiated in a two-dimensional model by Romain Fleurisson [14], who was a PhD student 

in the frame of the CETSOL-5 phase in CEMEF MINES Paris from 2015 to 2019. He 

implemented the two-dimensional PTN method in the finite element library cimlib, studied 

the influence of numerical parameters, and coupled the PTN method with the CAFE model. 

This coupling model showed its advantages, but also its shortcomings on huge requirement on 

computational resources, so its application and development are limited [15].  

In the frame of the CETSOL-6 phase, my PhD work aims to improve the efficiency of the 

two-dimensional Cellular Automaton – Parabolic Thick Needle (CAPTN) method where the 

resolution of energy is not considered, apply it for investigating the microstructures under 

directional solidification, and develop the three-dimensional CAPTN model. Chapter 1 

presents the state of the art on dendritic growth theories and numerical models. Chapter 2 

firstly reviews the algorithm of the PTN method of Fleurisson [14], then present the 

improvements on the method and their advantages on computational efficiency. Chapter 3 

studies the parameters of the PTN model. The parametric study on the two-dimensional model 

carried out by Fleurisson [14] is recalled, and complementary developments are presented. 

Then the extension to three dimensions are detailed. Chapter 4 is dedicated to the CAPTN 

model, concerning its improvements and three-dimensional validation. Equiaxed dendritic 

grains under isothermal condition are modeled, and compared with theoretical and other 

numerical models. Chapter 5 focuses on the application of the two-dimensional CAPTN 

model on investigating the dendritic spacing of a single crystal and the grain boundary of a bi-

crystal under directional solidification. It is in the format of an article and is to be submitted. 
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Résumé en français 

Cette thèse porte sur la modélisation des structures de grain dendritique. Ce premier 

chapitre présente une étude bibliographique des théories et phénomènes physiques sur la 

croissance dendritique ainsi que les modèles numériques existant pour modéliser la 

croissance et les structures de grains dendritiques. Le modèle CAPTN couplant les modèles 

d'automate cellulaire (Cellular Automaton, CA) et de réseau d'aiguilles paraboliques 

(Parabolic Thick Needle, PTN) est présenté en détail. Ce modèle a été développé et appliqué 

pour prédire la structure des grains équiaxes en deux dimensions. Cependant, ce modèle 

n'était pas efficace numériquement. Cette thèse a pour objectif d’améliorer l’implémentation 

numérique de ce modèle et de poursuivre son développement vers des applications en trois 

dimensions. 
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As the beginning of this thesis, this chapter reviews first the theories on dendritic growth 

that will be used in the following of the thesis, then the state of the art of the numerical 

models on dendritic microstructures and grain structures allowing to situate the CAPTN 

model among the existing models. 

1.1 Theories of dendritic growth 

1.1.1 Undercooling and supersaturation  

Let us consider here a sample of a binary alloy of nominal composition 𝑤0 placed in an 

isothermal domain at temperature 𝑇∞ lower than the liquidus temperature of the alloy 𝑇L. An 

exothermal nucleation leads to the growth of a curved solid phase with a solid/liquid interface 

at temperature 𝑇ls, solid composition 𝑤sl and liquid composition 𝑤ls. The driving force of 

solidification and the evolution of the solid/liquid interface is the temperature difference ∆𝑇 =

𝑇L − 𝑇
ls, called undercooling. In linear approximation, this undercooling can be divided into 

four terms [1] 

 
∆𝑇 = ∆𝑇C + ∆𝑇R + ∆𝑇T + ∆𝑇K 

 

(1.1) 

∆𝑇C is the chemical undercooling due to the diffusion of chemical species in the liquid 

(see Fig. 1.1). Its origin lies in the difference in solute solubility between the liquid and solid. 

If the liquidus slope is 𝑚, the chemical undercooling can be expressed as  

 
∆𝑇C = 𝑚(𝑤0 − 𝑤

ls) 
 

(1.2) 

∆𝑇R is the curvature undercooling (see Fig. 1.1) due to the curvature of the solid/liquid 

interface. It is the product of the Gibbs-Thomson coefficient 𝛤sl and the local curvature at the 

interface, i.e., ∆𝑇R = 2𝛤
sl/𝑟  for a sphere of radius 𝑟 . ∆𝑇T  is the thermal undercooling 

representing the temperature difference between the liquid at solid/liquid interface and the 

liquid in the environment. This undercooling requires therefore to define a temperature of 

reference for the environment and is taken into account when latent heat is released during 

solidification and heats the solid/liquid interface. ∆𝑇K is the undercooling due to the atomic 

attachment kinetics. 

For solidification velocities lower than 10 cm/s , it can usually be assumed that the 

solid/liquid interface is locally in equilibrium state [16], so the kinetic undercooling is not 

considered. Take the Al-7 wt.% Si alloy under solidification with velocity of 0.2 mm/s 

(corresponding to the configuration in the CETSOL project) as an example. Its chemical 

undercooling is 6.11 K, its curvature undercooling is 0.25 K, and the thermal undercooling 

can be neglected under this velocity. In the conditions studied in this thesis, ∆𝑇R, ∆𝑇T, and 

∆𝑇K are all negligible compared to ∆𝑇C. Therefore, in the method presented in this thesis, only 

the chemical undercooling is considered. The solute partition coefficient 𝑘 is defined as 
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𝑘 =

𝑤sl

𝑤ls
 

 

(1.3) 

We define the supersaturation 𝛺 at the interface by  

 
𝛺 =

𝑤ls − 𝑤0
𝑤ls − 𝑤sl

=
𝑤ls − 𝑤0
(1 − 𝑘)𝑤ls

≈
∆𝑇

−𝑚(1 − 𝑘)𝑤ls
 

 

(1.4) 

The supersaturation is dimensionless between 0 and 1. In the conditions where the 

undercooling can be approximated as the chemical undercooling, the supersaturation can be 

used instead of the undercooling to describe the growth conditions of the structures during 

solidification. 

 

Fig. 1.1  Linear phase diagram for a binary alloy at constant pressure. ∆𝑻𝐂  is the chemical 

undercooling, ∆𝑻𝐑 is the curvature undercooling, and ∆𝑻𝐓 is the thermal undercooling. 

𝒘𝟎 is the nominal composition of the solute in the alloy, 𝒘𝐥𝐬 is the solid/liquid interfacial 

composition in the liquid phase, and 𝒘𝐬𝐥 is the solid/liquid interfacial composition in the 

solid phase. 𝑻𝐌  is the melting temperature for the solvent, 𝑻𝐋  is the liquidus 

temperature, and 𝑻𝐥𝐬 is the temperature at the solid/liquid interface. Redrawn based on 

[16]. 

1.1.2 Parameters describing the dendritic microstructure 

The difference in composition between solid and liquid results in the phase 

transformation by the repartition of atoms on both sides of the solid/liquid interface. The 

nature and the behavior of the interface between the solid phase and the liquid phase during 

solidification processes are generally decisive in the formation of grain structures. The 

solid/liquid interface might be stable or unstable. Imagine there is a small disturbance caused 

by some physical reasons acting on the interface. The interface is considered stable if this 

disturbance fades, the interface is considered unstable if this disturbance amplifies, and the 

interface is considered marginally stable if this disturbance neither fades nor amplifies.  
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Analytical study [1] on a planar solid/liquid interface stability demonstrates that if the 

diffusion in solid is neglected, the critical wavelength 𝜆c to instability is about 

 𝜆c ≈ 2π√
𝑑0𝐷l

𝑣ls
  

 

(1.5) 

with 𝑑0 =
𝛤sl

−𝑚(1−𝑘)𝑤ls
 the solute capillary length, 𝐷l  the solute diffusion coefficient in the 

liquid, and 𝑣ls the velocity of the solid/liquid interface. 

Let us assume that the solid has a spherical shape in the stage of nucleation. Once 

disturbances to the spherical shape can grow, the solid shape starts to show preferred growth 

directions derived from anisotropy of the solid/liquid interfacial energy [1], which is a result 

of the regular atomic arrangement in crystal, leading to the growth of dendrite towards 

preferred directions (as Fig. 1.3). Dendrites along 〈1 0 0〉 directions take our interest in this 

thesis. The tip of a dendrite can be regarded as a paraboloid in three dimensions [17], and its 

kinetics can be described by tip radius 𝜌tip, which is the curvature radius at the tip, and tip 

velocity 𝑣tip.  

 

Fig. 1.2  A dendrite of transparent succinonitrile–acetone alloy observed by the high-resolution 

camera. Its tip is like a paraboloid. From [18]. 

To determine the morphology of a dendrite, Langer and Müller-Krumbhaar proposed that 

the dendrite tip radius is equal to the critical wavelength yielding the destabilization of a 

planar interface 𝜆c [19]. The so-called marginal stability criterion writes 

 
𝜌tip
2 𝑣tip =

𝐷l𝑑0
1/(2π)2

 

 

(1.6) 

This widely-used criterion does not take the anisotropy of the interfacial energy into account. 

It was later replaced by the solvability condition, which was a more mathematically rigorous 

analysis removing some questionable assumptions in the previous analyses. Karma and Kotlia 

proposed the microscopic solvability theory for alloys [20], then Ben Amar and Pelcé 
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generalized it [21]. In the small Peclet number Pe = 𝜌tip𝑣tip/(2𝐷
l)  limit, the solvability 

condition can be expressed as  

 
𝜌tip
2 𝑣tip =

𝐷l𝑑0
𝜎

 

 

(1.7) 

where 𝜎 is the selection parameter fixed by the strength of crystalline anisotropy. 

A dendritic grain consists of a network of branches from the same initial seed. Primary 

dendritic arms form along preferred directions, then secondary dendritic arms appear by 

ramification. The primary dendrite arm spacing 𝜆1  and the active secondary dendrite arm 

spacing 𝜆2 are generally employed for characterizing the network (Fig. 1.3).  

 

Fig. 1.3  Photographic illustration of the primary and secondary dendrite arm spacing 𝝀𝟏 and 

𝝀𝟐. The photo is of camphene (>95% purity, Merck Ltd.), from [22].  

1.1.3 Ivantsov stationary solution 

For a single dendritic branch growing at steady state in a semi-infinite domain of nominal 

composition 𝑤0 imposed in the liquid under constant temperature, if the form of this branch is 

assumed as parabola in two dimensions or paraboloid in three dimensions, and the 

composition is uniform as 𝑤ls at the solid/liquid interface, the composition field in the liquid 

can be described by the two-dimensional or three-dimensional Ivantsov solution [23], 

respectively 

 

𝑤2D
l (𝜉) = 𝑤0 + (1 − 𝑘)𝑤

ls√πPeexp(Pe)  erfc(𝜉√Pe) 

𝑤3D
l (𝜉) = 𝑤0 + (1 − 𝑘)𝑤

ls Pe exp(Pe) E1(Pe 𝜉
2) 

 

(1.8) 

with 𝜉 the first parabolic coordinate (see Fig. 1.4), erfc(𝑥) the complementary error function, 

and E1(𝑥) the exponential integration. The Ivantsov solution was firstly proposed for the 

thermal diffusion of a pure material, and it was extended later for the chemical diffusion of 

alloys. 

The Ivantsov solution with 𝜉 = 1  is the solid/liquid interface, i.e., description of the 

parabolic branch. According to the definition of undercooling in Eq. (1.4), the Ivantsov 

solution in Eq. (1.8) can be converted into equations between undercooling and Peclet number 

when 𝜉 = 1 
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𝛺2D = √πPe exp(Pe)  erfc(√Pe) 

𝛺3D =  Pe exp(Pe) E1(Pe) 

 

(1.9) 

Eq. (1.9) can be rewritten as  

 

𝛺2D = √
π𝜌tip𝑣tip

2𝐷l
exp (

𝜌tip𝑣tip

2𝐷l
)  erfc (√

𝜌tip𝑣tip

2𝐷l
) 

𝛺3D = 
𝜌tip𝑣tip

2𝐷l
 exp (

𝜌tip𝑣tip

2𝐷l
) E1 (

𝜌tip𝑣tip

2𝐷l
) 

 

(1.10) 

if the definition of Pe is taken. For a given supersaturation, Eq. (1.10) and the solvability 

condition Eq. (1.7) can be solved to get the dendrite tip radius and velocity at the steady state. 

This theoretical solution is called Ivantsov – Solvability solution in the following, denoted as 

𝜌tipIv and 𝑣tipIv.  

 

Fig. 1.4  Parabolic and Cartesian coordinate system. Two sets of parabolas are confocal. The 

origin of the Cartesian coordinate is at their focus. In Ivantsov solution the solid/liquid 

interface corresponds to 𝝃 = 𝟏. The dendrite tip radius and tip velocity are marked. 

1.1.4 Columnar dendrite, equiaxed dendrite, and Columnar-to-Equiaxed Transition (CET) 

There are two typical types of dendritic growth: one is free growth which means the 

evolution of isolated dendrites in an isotropic infinite undercooled melt, the other is 

constrained growth where many dendrites grow together under an imposed temperature 

gradient. These two regimes generate two different morphologies of dendrites: equiaxed 

dendrites and columnar dendrites. Upon columnar growth dendrites are significantly more 

developed in one of their principal growth directions. Oppositely equiaxed dendrites grow in 

all their principal directions of similar dimension.  Since the two types of dendrites can 

coexist in an ingot, the Columnar-to-Equiaxed Transition (CET) is regularly seen in 

solidification.  
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The first criterion describing this transition was proposed by Hunt [3]. This criterion is 

based on the mechanical blocking of the columnar dendrite front by equiaxed grains for a 

binary alloy. Equiaxed grains are assumed to be nucleated and then to grow in the region in 

front of the columnar dendrites that is undercooled. If the volume fraction of the equiaxed 

grains becomes greater than 0.49, the equiaxed grains will block the advancement of the 

columnar dendrites, yielding the CET.  

Gandin [24] studied CET by experiment and numerical approach based on the resolution 

of the heat flow equation using a two-interface front tracking approach. Two hypotheses of 

CET are proposed. One is that when the temperature gradient is near zero or even slightly 

negative along the upward direction, the latent heat released by solidification may remelt 

some dendritic side branches becoming nuclei of equiaxed grains. The other is the thermal 

destabilization of the macroscopic interface which means that heat released by some dendrites 

will influence the growth of dendrite and the primary dendrite arm spacing. Gandin proposed 

another CET criterion based on the position of the maximum velocity of the columnar 

dendritic interface according to his study. It should be noticed that Gandin’s criterion could 

only be applied in alloys where no inoculation particles are added to the melt. 

Martorano et al. [25] proposed another mechanism for CET based on solutal interactions 

between the equiaxed grains and the advancing columnar front, rather than mechanical 

blocking. CET will occur if the solute rejected from the equiaxed grains is enough to dissipate 

the undercooling at the columnar front. They also proposed that the origin of the equiaxed 

grains may not be heterogeneous nucleation, but rather a breakdown or fragmentation of the 

columnar dendrites. 

Fig. 1.5 is the experimental grain structures observed in the longitudinal section of 

cylindrical Al-7 wt.% Si ingot obtained by directional solidification over a copper chill [24]. 

The columnar crystal, the equiaxed crystal, and their transition can be seen.  

 

Fig. 1.5  Experimental grain structures observed in the longitudinal section of Al-7 wt.% Si 

ingot obtained by directional solidification. From [24].  

A good understanding of the CET during solidification process is very helpful to the 

control of the grain structure [5] and of great industrial interest, such as in additive 

manufacturing [26–28]. The CET is the investigating subject of the CETSOL project. 
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1.2 Numerical models of dendrites and grains 

1.2.1 Phase-Field (PF) method 

The PF method is a microscopic computational method describing the growth of the solid 

phase without its shape known a priori. It takes the physics of interface (e.g., curvature and its 

energy) into account, and is one of the most widely used methods for simulating the evolution 

of microstructures. In this method, the space is divided into three zones: liquid, solid, and 

solid/liquid interface. The phase field variable 𝜙 is employed in order to identify the phase: it 

keeps constant in each phase and varies continuously at the solid/liquid interface. For example, 

𝜙 = 0  in solid, 𝜙 = 1  in liquid, and 𝜙 ∈ (0, 1)  at the solid/liquid interface. Thus, the 

solid/liquid interface confined to a narrow region becomes diffuse, and the phases turn into a 

continuous field [1]. 

The thickness of the solid/liquid interface is a crucial parameter of the PF method. 

Extremely fine meshes are employed here to describe its shape and calculate the evolution of 

phase. A larger thickness permits coarser meshes to be used in this area, so a larger domain 

can be simulated with the same computational cost. However, this thickness must be limited 

for ensuring the convergence of simulation results.   

The principle of the PF method is seeking to minimize the free energy of the simulation 

domain with respect to time. It therefore necessitates to solve the thermal and/or solutal 

transport equation depending on the problem.  

In spite of its good accuracy, the application of the PF method on solidification is limited 

on small simulation domains, due to its enormous requirement on computational resources 

[14]. For example, in the study of Takaki et al., dendritic microstructure is modeled by the 

three-dimensional PF model on supercomputer TSUBAME2.5 at Tokyo Institute of 

Technology with 144 GPUs. Fig. 1.6 is one of their results. The computational time for a 

domain less than 1 mm3 is about 5.2 days [29]. 

 

Fig. 1.6  Illustration of three-dimensional PF simulation results of dendritic grains. From [29]. 

The PF method has been applied in [30] for simulating the CET. This application is only 

in two dimensions with the moving-domain technique whose moving domain is about 

0.004 mm2. The simulation results qualitatively agrees with the analytical CET criterion of 

Hunt [3]. 
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1.2.2 Microscopic Cellular Automaton (CA) method 

For the sake of a description on dendritic branches, Nastac employed the Cellular 

Automaton (CA) method for predicting the dendritic morphology controlled by solute 

diffusion [31], named as microscopic CA method in this manuscript. Afterwards many 

mathematical models have emerged based on this method for modeling the growth of 

equiaxed dendrites, columnar dendrites, the CET, and the influence of cooling condition and 

melt flow, which are summarized in [32].  

In the microscopic CA method, the evolution of the solidification interface is governed by 

the solute balance. The simulation domain is discretized by regular-lattice CA cells, squares 

in two dimensions and cubes in three dimensions. Each CA cell holds its location information 

and several variables, such as the concentration, the temperature, the solid fraction, and the 

crystallographic orientation. A cell can be solid, liquid, or solid/liquid interface. With the 

growth of dendrites, the solute concentration of the liquid phase in the interface cell increases 

gradually and diffuses to its neighboring according to the diffusion law. When the solid 

fraction of the solidification interface cell is greater than unity, it becomes solid and captures 

the first 4 (resp. 6) nearest-neighboring cells in two dimensions (resp. three dimensions) as 

interface cells [32]. The definition of neighboring cells can be found in Subsection 1.2.5 and 

in Fig. 1.13. Simultaneously, the solute diffusion continues in the entire liquid domain.  

A three-dimensional microscopic CA model is applied for modeling the microstructures 

under directional solidification with different temperature gradients in [33], to investigate the 

influence of physical parameters on the cell-to-dendrite transition in directional solidification. 

Its results are shown in Fig. 1.7. Each simulation takes less than one day on a personal 

computer without parallel computation for a simulation domain of 0.03 mm3. However, the 

results of the microscopic CA method have limited comparison with dendritic growth 

theories. 

 

Fig. 1.7  Three-dimensional microscopic CA model simulations of directional solidification: (a) 

dendritic microstructure at low temperature gradient, (b) cellular microstructure at 

high temperature gradient. The computational domain is 𝟎. 𝟏𝟗𝟐 𝐦𝐦 × 𝟎. 𝟏𝟗𝟐 𝐦𝐦 ×
𝟎. 𝟕𝟔𝟖 𝐦𝐦. From [33]. 

The microscopic CA method has been applied for modeling the CET in two dimensions, 

in [34]. The simulation domain is about 12 mm2. One of its simulation results is shown in 
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Fig. 1.8. The CET map predicted by the microscopic CA model is consistent with the 

analytical result of the Hunt model [3]. One of the limits of this work is that the primary 

dendrite arm spacing is set as a constant, while in the actual solidification process, the 

primary dendrite arm spacing changes with the thermal condition. 

 

Fig. 1.8  Solidification process of the Fe-0.82C alloy during unidirectional solidification. The 

temperature gradient is 𝟑 𝐊/𝐦𝐦 and the cooling rate is 𝟎. 𝟓 𝐊/𝐬. From [34]. 

1.2.3 Dendritic Needle Network (DNN) and Parabolic Thick Needle (PTN) methods 

Proposed by Tourret and Karma in [35], and then enriched in [11–13, 36, 37], the 

Dendritic Needle Network (DNN) method aims to overtake the numerical limits of the PF 

method. It models dendritic growth at a scale between the microscopic scale and the 

mesoscopic scale. Dendrites are regarded as a network of needles. The growing direction of a 

branch is predefined and fixed during its growth. Each dendrite tip is predefined in parabolic 

form. This simplified representation of dendrite tip reduces hugely the computational time, 

making the DNN method able to be applied for larger simulation domains than the PF 

method. 

The method used for calculating the kinetics of a dendrite tip in the DNN method is the 

Parabolic Thick Needle (PTN) method. In the PTN method, a dendrite tip is represented as a 

parabola in two dimensions or a paraboloid in three dimensions with radius 𝜌tip truncated by 

a cylinder of radius 𝑟cyl as in Fig. 1.9. Its growing direction is the +𝑥 direction. To be simple, 

the word “truncating cylinder” is used for both two-dimensional and three-dimensional 

models. For computing the kinetics of the tip, the solute diffusion equation  

 

𝜕𝑤PTN
l

𝜕𝑡
= 𝐷l∇2𝑤PTN

l  

 

(1.11) 

is solved in the liquid to compute the composition field in the liquid 𝑤PTN
l . It is assumed that 

the solid/liquid interface is at thermodynamic equilibrium. Therefore, Dirichlet condition of 

solid/liquid interfacial composition in the liquid side 𝑤ls  is imposed at the solid/liquid 

interface. One should note that the composition 𝑤ls is imposed in the parabola as well, so 

there is no solute conservation in the PTN method.  
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Fig. 1.9 Two-dimensional illustration of the integration contours and area defined by 𝒂, used in 

the calculation of the Flux Intensity Factor, and truncating cylinder. The integration on 

green contour 𝚪′ is converted to integration on yellow surface 𝚺 and red contour 𝚪. 

Thus, 𝚺 and 𝚪 compose the integration area for calculating the Flux Intensity Factor. 

Redrawn according to [14]. 

Neglecting the diffusion in solid, the mass conservation at the solid/liquid interface, also 

called Stefan condition, can be written as 

 𝒗∗ ∙ 𝒏 =
−𝐷l

(1 − 𝑘)𝑤ls
𝛁𝑤PTN

l |ls ∙ 𝒏 (1.12) 

where 𝒗∗ is the velocity vector of solid/liquid interface, 𝒏 is the normal vector of solid/liquid 

interface, and 𝛁𝑤PTN
l |ls  is the gradient of composition field in the liquid at solid/liquid 

interface. Assuming that the growth of the dendritic branch is quasi-stationary, 𝒗∗ ∙ 𝒆𝒙 = 𝑣tip 

with 𝒆𝒙 the unit vector of the growth direction [14]. 

In two dimensions integrating Eq. (1.12) along the contour of parabolic dendrite tip Γ′ 

defined by the integration distance 𝑎 (see Fig. 1.9, 𝑎 is the distance along the axis of the 

branch between the dendrite tip and the farthest point on the contour Γ′ from the dendrite tip) 

yields a direct relation between 𝜌tip and 𝑣tip, 

 𝜌tip𝑣tip
2 =

2𝐷l
2
ℱ2D
2

𝑑0
 (1.13) 

ℱ2D in Eq. (1.13), named as Flux Intensity Factor (FIF), is defined as  

 ℱ2D =
−1

4√𝑎 𝑑0⁄ (1 − 𝑘)𝑤ls
∫ 𝛁𝑤PTN

l ∙ 𝒏𝚪
′
 dΓ′

Γ′
 (1.14) 

In numerical implementation (such as the finite difference method [11–13, 36, 37] and the 

finite element method [14]), the composition gradient on the parabola is difficult to evaluate 

with good precision because extremely fine meshes need to be applied to the contour Γ′, thus, 

Eq. (1.14) is transferred by the divergence theorem into 

 ℱ2D =
−1

4√𝑎 𝑑0⁄ (1 − 𝑘)𝑤ls
(∫𝛁𝑤PTN

l ∙ 𝒏𝚪

Γ

 dΓ +
1

𝐷l
∬𝒗𝐭𝐢𝐩 ∙ 𝛁𝑤PTN

l  dΣ
Σ

) (1.15) 

where Γ is the outer contour and Σ is the surface, as illustrated in Fig. 1.9.  

In three dimensions integrating Eq. (1.12) along the surface of parabolic dendrite tip Γ′ 

leads to 
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 𝜌tip𝑣tip = 𝐷lℱ3D (1.16) 

with 

 ℱ3D =
−1

2π𝑎(1 − 𝑘)𝑤ls
∬ 𝛁𝑤PTN

l ∙ 𝒏𝚪
′
 dΓ′

Γ′
 (1.17) 

and its form for implementation is 

 ℱ3D =
−1

2π𝑎(1 − 𝑘)𝑤ls
(∬𝛁𝑤PTN

l ∙ 𝒏𝚪 dΓ
Γ

+
1

𝐷l
∭𝒗𝐭𝐢𝐩 ∙ 𝛁𝑤PTN

l  dΣ
Σ

) (1.18) 

Combining the solvability condition Eq. (1.7) and Eq. (1.13) or (1.16), 𝜌tip and 𝑣tip can 

be obtained. Because of its consideration on the composition field in the liquid in the vicinity 

of the tip, the PTN method is relevant for computing dendrite tip kinetics at both steady and 

unsteady state.  

The DNN method is implemented by the finite difference method [11–13, 35–37], so as 

the PTN method. Parametric studies [13, 38] have shown that the kinetics is dependent with 

the integration distance and the mesh size. To date, the simulation domain of the DNN 

method can reach up to 100 mm3. The three-dimensional DNN model has been applied for 

simulating the CET of the experiments under microgravity on-board the International Space 

Station in the framework of CETSOL project. However, the solid fraction generated during 

the growth is not modeled and so the coupling of the microstructure evolution with resolution 

of energy is currently not possible. In the DNN simulation, the temperature field is imposed 

as the temperature measured from the CETSOL experiments. Fig. 1.10 is one of its results, 

demonstrating that the columnar front is completely blocked by the growth of equiaxed grains 

from inoculant particles. The start, the end, and the length of the CET are predicted accurately 

with the three-dimensional DNN model [12].  

 

Fig. 1.10  Illustration of the three-dimensional DNN simulation under imposed temperature field 

for investigating the CET. Snapshots at (a) 𝒕 = 𝟖𝟑𝟎 𝐬  and (b) 𝒕 = 𝟐𝟏𝟓𝟎 𝐬  of three-

dimensional DNN simulation results for one sample of CETSOL experiments in 

microgravity. From [12]. 
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1.2.4 Grain Envelope method 

Also named as the “mesoscopic phase-field” method, the grain envelope method was 

initially proposed by Steinbach et al. in [39] and then improved in [40]. It describes the 

dendritic grain by its envelope but not its solid/liquid interface in order to save computational 

resources.  

The envelope of a grain is a virtual smooth surface connecting all its active dendrite tips, 

so the envelope growth kinetics can be calculated from the kinetics of dendrite tips. A 

confocal envelope is defined with a distance from the principal envelope, as schematized by 

Fig. 1.11. The stagnant film is defined by the liquid between the grain envelope and the 

confocal grain envelope. The composition field in the stagnant film is regarded as Ivantsov-

like composition field, under the assumption that the theory determining dendritic growth is 

valid for all orders’ tips and the interactions at the tip scale is independent of the interactions 

at grain scale. The growth of the dendrite tips is determined by the solvability theory and the 

local supersaturation in the vicinity of the envelope. The solute mass balance is resolved over 

the entire domain. Within the envelope, the solid/liquid interface is assumed at 

thermodynamic equilibrium [41]. 

 

Fig. 1.11  Illustration of the grain envelope defined by active dendrite tips, the stagnant film, and 

the confocal grain envelope in the grain envelope method. From [39]. 

The grain envelope model was recently enriched with the volume-average fluid flow 

equation in two dimensions, and the columnar and equiaxed dendritic growth under the 

influence of flow was investigated [41]. The computational cost of the grain envelope 

simulations is about two orders of magnitude lower than that of PF [42]. Three-dimensional 

grain envelope model has also been developed, while its simulation domain is generally in the 

order of 1 mm3 [43]. Fig. 1.12 is an example of three-dimensional grain envelope simulation 

during equiaxed solidification in a thin sample.  

To our knowledge, the grain envelope method has not been applied for modeling the 

CET. 
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Fig. 1.12  Three-dimensional snapshots of the grain envelope simulation of 15 equiaxed grains 

during equiaxed solidification in a thin sample at three different times. The color map 

indicates the normal growth velocity of the envelopes, 𝑽𝐧. From [43]. 

1.2.5 Cellular Automaton – Finite Element (CAFE) method  

Initially introduced by Rappaz and Gandin [44], the mesoscopic CA method is used for 

the prediction of the grain structure by modeling the grain envelopes on a cellular grid. This 

method is able to simulate the grain structure evolution during solidification processes at the 

scale of 1000 cm3  [45]. In the rest of this thesis, only this mesoscopic CA method is 

concerned, so it is simply called the CA method.  

The simulation domain is covered by equal-size CA cells, usually squares in two 

dimensions and cubes in three dimensions, and they are aligned as grid. Their edge length is 

called CA cell size, denoted as 𝑙CA . Each cell has its neighbors that are the cells having 

common point, common edge, or common surface with it. Consider a cell 𝜈, which is with 

black solid contours in Fig. 1.13. In two dimensions, the cells having a common edge with 

cell 𝜈 are its first nearest cells, as the red cells in Fig. 1.13a, and the cells having a common 

point with cell 𝜈  are its second nearest cells, as the green cells in Fig. 1.13a; in three 

dimensions, the cells having a common surface with cell 𝜈 are its first nearest cells, as the red 

cells in Fig. 1.13b, the cells having a common edge with cell 𝜈 are its second nearest cells, as 

the green cells in Fig. 1.13b, and the cells having a common point with cell 𝜈 are its third 

nearest cells, as the yellow cells in Fig. 1.13b. There are two commonly used neighborhoods. 

Von Neumann neighborhood is composed by the first nearest cells (4 cells in two dimensions, 

6 cells in three dimensions); Moore neighborhood is composed by the first and second nearest 

cells in two dimensions (8 cells) and first, second, and third nearest cells in three dimensions 

(26 cells) [46]. In the following of this thesis, Moore neighborhood is adopted.  
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Fig. 1.13  Illustration of two-dimensional and three-dimensional CA cell and its neighbors. For 

the cell 𝝂  with black solid contours, (a) in two dimensions, the red cells having a 

common edge with it are its first nearest cells, and the greem cells having a common 

point with its are its second nearest cells; (b) in three dimensions, the red cells having a 

common surface with it are its first nearest cells, the green cells having a common edge 

with it are its second nearest cells, and the yellow cells having a common point with it 

are its third nearest cells. 

The evolution of grain structure in the solidification process is modeled by the transition 

of CA cell state. There are three different cell states: liquid, mushy, and solid. A CA cell in 

mushy state has a growing envelope. During the solidification process, the envelope captures 

neighboring cells in liquid state, then these captured cells turn into mushy state and bear their 

own envelopes (Fig. 1.14). A CA cell will turn into solid state if all its neighbors are in mushy 

state or solid state (Fig. 1.15). In this way, the propagation of grain is modeled.  

 

Fig. 1.14  Illustration of capture process in the two-dimensional CA method. The red cell is in 

mushy state, and its envelope is the red quadrilateral. (a) All its neighboring cells are in 

liquid state.  (b) At this moment the center of the blue cell is included within the red 

envelope, so this blue cell is captured by the red envelope, leading to the creation of the 

blue envelope. 

The grain envelope is an orthodiagonal quadrilateral in two dimensions (Fig. 1.14) and an 

orthodiagonal octahedron in three dimensions, i.e., diagonals are perpendicular to each other. 

The growth of the envelope is determined by analytical laws calculating the velocity of its 

apices, such as the Ivantsov – Solvability solution, depending on the temperature at the apices 

(when the temperature field is non-uniform, the apices of an envelope may have different 

velocities, so the envelope can be an irregular quadrilateral or octahedron). These analytical 

growth laws are under strong assumptions such as growth at steady state [23]. Therefore, the 
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CA method does not consider solute interactions between grains unless macrosegregation is 

accounted for [9]. However, in this configuration, solute interaction remains very approximate.  

 

Fig. 1.15  Illustration of transition into solid state of a CA cell in two dimensions. The gray 

envelope belongs to the gray cell at center. At this moment, all its neighbors are 

captured (Moore neighborhood is adopted), so the gray cell is turned into solid state, 

and its envelope is no longer needed.  

Fig. 1.14 illustrates the capture process of the CA method. The red quadrilateral is the 

envelope of the red cell in mushy state in Fig. 1.14a, and all its white neighboring cells are in 

liquid state. At a moment the center of the right cell (colored in blue in Fig. 1.14b) is 

contained within the red envelope, so it is captured by the red envelope and becomes mushy. 

This capture induced the creation of the blue envelope associated to the blue cell, which is 

homothetic to the red envelope, linked to the same grain and retaining its preferred growing 

directions, as shown in Fig. 1.14b. The size of the newly born blue envelope is determined by 

the CA cell size and the length of the capturing edge of the red envelope at the moment of 

capture [47]. 

With the implementation of the microsegregation laws for computing the solid fraction 

generated during grain growth, the CA method has been coupled with the Finite Element (FE) 

resolution of energy and solute mass in the simulation domain, as the Cellular Automaton – 

Finite Element (CAFE) method, for taking thermal and solutal evolution during the 

solidification process into account. As the continuity of the initial work [48], the thermal 

coupling was introduced in [49], the macrosegregation was introduced in [50], and Wang-

Beckermann microsegregation model was introduced in [51]. The two-dimensional and three-

dimensional CAFE models have been developed and implemented in the CEMEF finite 

element library cimlib [45].  

Fig. 1.16a is the simulation result of the three-dimensional CAFE model on the 

solidification grain structure of one sample of CETSOL project, and Fig. 1.16b is the 

experimental grain structure of the sample observed in a longitudinal metallographic cross 

section. The Gaussian nucleation law is applied in the entire domain, with nuclei density 

5 × 1010 m−3, and mean (4 K) and standard deviation (0.5 K) of nucleation undercooling. 

Qualitative comparison between the CAFE simulation and experimental observation is 

reached, while there is still some deviation at the CET position [7]. Possible reasons are that 

the grains are only considered as envelopes, and the CAFE model is poor at describing 

dendrite kinetics at unsteady state for its use of analytical growth laws on grain envelopes. 
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Fig. 1.16  Three-dimensional CAFE simulation of the solidification grain structure of one sample 

from the CETSOL experiment between thermocouples TC5 (𝟏𝟏𝟐. 𝟓 𝐦𝐦) and TC12 

(𝟏𝟖𝟐. 𝟓 𝐦𝐦). A quarter of the cylinder was removed by postprocessing to offer an 

exploded view at (a) the equiaxed structure forming at 𝒕 = 𝟐𝟒𝟎𝟎 𝐬. The position of the 

CET favorably compares with the (b) experimental grain structure observed in a 

longitudinal metallographic cross section. From [7].  

1.2.6 Cellular Automaton – Parabolic Thick Needle (CAPTN) coupling method 

Since the PTN method is relevant to calculating dendritic growth at unsteady state by the 

composition field in the vicinity of the tip, and the CA method is relevant to modeling grain 

structures and can be coupled with resolution of energy, their complementary advantages 

have motivated their coupling in the so-called Cellular Automaton – Parabolic Thick Needle 

(CAPTN) method. This method was initiated in the thesis of Fleurisson [14] at CEMEF in 

two dimensions for binary alloys. Its principle is to associate a parabola with radius of 

curvature 𝜌tip to each growing branch of the envelopes of the CA model and to calculate the 

tip velocity 𝑣tip of the branches by the PTN method on these parabolas. A review of this 

coupling will be found in Section 4.1 

Fleurisson has implemented the PTN method in the CEMEF finite element library cimlib. 

The description of the integration area as a circle by the integration distance 𝑎 of the DNN 

method [36] has been maintained in this implementation. Same as the finite difference 

implementation in the DNN method, this finite element implementation of the PTN method 

requires a fine mesh size at least in the vicinity of the parabola tips, so an adaptive 

heterogeneous mesh, called PTN mesh, is used [14]. But a major limitation of this strategy is 

that it costs a large amount of computational time for very frequent reconstruction of mesh to 

maintain the fine mesh at the solid/liquid interface [15]. Section 2.1 is a summary of this 

implementation and its computational cost. A parametric study analyzing the convergence of 

the PTN model to the Ivantsov – Solvability solution as a function of the minimum mesh size 

and the integration distance has also been carried out [14]. This study is summarized at the 

beginning of Chapter 3. Fleurisson has adapted the CA method to the CAPTN coupling, in 

particular on how to capture adjacent cells (see Section 4.1). 

This CAPTN model can be coupled to a resolution of mass and heat transfer over the 

resolution domain in the same way as the CAFE model. A two-dimensional CAPTN – FE 
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simulation of the growth of an equiaxed grain in a circular domain was performed and 

compared to its corresponding CAFE simulation [15]. It has been shown that if the thermal 

evolutions of the two models are consistent, the kinetics of the primary branches of the grain 

are different. In particular, the solute interaction of the branches with the edge of the domain 

is observed in the CAPTN – FE simulation, while it is not considered in the CAFE simulation. 

Fig. 1.17 shows the simulation results at four different times of the growth of an equiaxed 

dendritic grain by the coupling CAPTN – FE method on the (a) PTN, (b) CA, and (c) FE 

meshes.  

In spite of its encouraging first results, this method necessitates numerical improvements. 

It is too costly in terms of computational resources. Neither the CAPTN method nor the 

CAPTN – FE method has been developed in three dimensions [15].  

 

Remark: to our knowledge, among the models for dendrites and grain structures mentioned 

above, the PF method and the microscopic CA method have been applied for modeling the 

CET in two dimensions, the DNN method and the CAFE method have been applied for 

modeling the CET in three dimensions. Some other models not aiming at predicting individual 

grain envelopes can also predict the CET, such as the volume averaging method [52, 53]. 

These models are not introduced in details since the numerical models studied in this thesis 

aim to predict the grain structures. 
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Fig. 1.17  Two-dimensional CAPTN – FE simulation for an equiaxed dendritic grain. Evolution 

of the (a) PTN composition field 𝒘𝐏𝐓𝐍
𝒍 , (b) CA mush fraction 𝒈+

𝒎 and cell state, with 

deallocated cells (white parts) and (c) FE volume fraction of solid 𝒈𝒔 at four different 

times. From [15].  

1.3 Conclusion 

Solidification processes involve many physical phenomena, and the microstructures 

formed during solidification processes have large influence on the properties of casting metals 

and alloys. Dendrite, as a very common microstructure, is studied in this thesis. Some 

physical theories and phenomena on dendritic growth as well as numerical models for 

dendrites and dendritic grain structures were reviewed in this chapter. Table 1.1 is a summary 

of the numerical models on the application on modeling the CET. Fleurisson [14] 

implemented the PTN method in the finite element library and initiated the multi-scale 

coupling CAPTN model. The CAPTN model has been applied for predicting the structure of 

the equiaxed grains and has shown encouraging results. However, the CAPTN model was 

only two-dimensional, not computationally efficient. Furthermore, even though the CAPTN 

model has been compared with the CAFE model at mesoscopic scale [15], some evaluations 

on dendritic microstructures are still missing.  

In the following of this thesis, first the PTN model will be improved in particular on 

computational efficiency; then the PTN model will be developed into three dimensions and its 



Chapter 1 Dendritic growth and numerical models of dendrites and grains 

25 

 

parameters will be studied; next the CAPTN model will be improved, developed into three 

dimensions, and evaluated by other microscopic numerical models; finally, the two-

dimensional CAPTN model will be applied for investigating the microstructures produced 

under directional solidification. 

Table 1.1  Numerical models and their application on the modeling of the CET. The individual 

grain envelope means the model has description on dendrites or grains. The maximum 

domain size as well as the reference is for the application on the CET, so for the models 

without application on the CET, these two items are blank. 

Model 
Individual grain 

envelope 

Application on the 

CET 
Maximum domain size Reference 

PF ✓ ✓ 0.004 mm2 [30] 

Microscopic CA ✓ ✓ 12 mm2 [34] 

Grain envelope ✓    

DNN ✓ ✓ 192 mm3 [12] 

CAFE ✓ ✓ 3345 mm3 [7] 

CAPTN (– FE)  ✓    

Volume averaging  ✓ 1.27 × 108 mm3 [53] 
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Résumé en français 

Le temps de calcul de chaque module de l'algorithme original du modèle PTN est 

analysé. Le remaillage prend la majorité du temps de calcul. Pour augmenter l'efficacité du 

calcul, une nouvelle stratégie de maillage adaptatif visant à diminuer la fréquence de 

remaillage est proposée. Cette stratégie se fonde sur la structure octree et la méthode de 

requête orthogonale pour trouver rapidement les nœuds appartenant à un certain domaine. 

L'algorithme amélioré permet d'économiser énormément de temps de calcul dans la 

simulation bidimensionnelle. Ce résultat satisfaisant encourage l'application de la méthode 

CAPTN et son développement en trois dimensions. 
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This chapter is dedicated to the PTN finite element implementation. The original PTN 

implementation [14] before this thesis is reviewed, and its shortcomings on computation 

efficiency are pointed out. As improvements, a new adaptive meshing strategy is proposed, 

and the octree structure and the orthogonal query method involve into the implementation. 

The effects of the improvements are shown in the end. 

2.1 Review on the finite element implementation of the PTN method 

2.1.1 PTN algorithms 

To illustrate the two-dimensional finite element implementation of the PTN method [14], 

it is applied here for simulating the growth of a single dendritic branch (see Fig. 2.1). The 

simulation domain is a square with edge length 𝐿D  along 𝑥  and 𝑦 axes. The origin of the 

coordinate locates at the left-down corner of the domain. A single dendritic branch grows 

from left to right (in +𝑥  direction). Its root stays at (0, 𝐿D/2). The position of the tip is 

(𝐿init, 𝐿D/2) initially and then evolves to (𝑥tip, 𝐿D/2) with time. Its tip radius and tip velocity 

are 𝜌tip  and 𝑣tip , respectively. The parabolic form of the branch can be described 

mathematically using a formula by tip position, root position, and tip radius: (𝑦 − 𝐿D/2)
2 +

2𝜌tip(𝑥 − 𝑥tip) = 0.  

 

Fig. 2.1  Illustration of the adaptive heterogeneous PTN mesh used by Fleurisson [14]. On the 

right the mesh is represented by wireframe. On the left is the enlargement of the box 

with black dashed contours, and the mesh is represented by surface with edges. The 

nodes in yellow elements with minimum mesh size 𝒉𝐦𝐢𝐧 are at solid/liquid interface; the 

nodes in red elements with mesh size 𝒉𝐬𝐨𝐥𝐢𝐝  are in the solid. The mesh is heterogeneous 

in the cyan liquid area, and its size is smaller where the magnitude of composition 

gradient is larger.  

This method is implemented by the finite element method on an unstructured finite 

element mesh of simplex (triangle in two dimensions), as shown in Fig. 2.1. This mesh is 

called “PTN mesh” in the following part of the thesis. A nodal field 𝛿∈parabola is employed 

for indicating whether a node belongs to the parabola or to the liquid: 𝛿∈parabola = 0 for 
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nodes in the liquid, and 𝛿∈parabola = 1 for nodes belonging to the parabola 1. The algorithm 

for calculating this field will be introduced in the Dirichlet Condition module. The elements 

having some nodes belonging to the parabola and some nodes belonging to the liquid are 

regarded as the solid/liquid interface (colored in yellow in Fig. 2.1).  

An adaptive heterogeneous meshing strategy was proposed in [14] for a good description 

of the composition field near the dendrite tip and the computation efficiency, as shown in Fig. 

2.1. Nodes of the elements at the solid/liquid interface are equipped with isotropic mesh with 

minimum mesh size ℎmin  (nodes in yellow elements in Fig. 2.1); nodes belonging to the 

parabola are equipped with isotropic mesh with mesh size ℎsolid (nodes in red elements in 

Fig. 2.1). ℎsolid  is greater than ℎmin  for reducing the number of elements. An anisotropic 

mesh is generated for liquid nodes (nodes in cyan elements in Fig. 2.1) by an anisotropic 

metric based on the composition field using a geometric error estimator [54] 

 𝛬𝑘 = min (max (
𝑐

𝜖
|𝜆𝑘|,

1

ℎmax2
) ,

1

ℎmin
2  ) (2.1) 

In the framework of the eigenvectors of the Hessian of composition field, the diagonal 

values 𝛬𝑘 of the metric are functions of eigenvalues 𝜆𝑘 of the Hessian of composition field, of 

the minimum mesh size ℎmin  and maximum mesh size ℎmax , of the maximum estimated 

interpolation error accepted 𝜖, and of the geometric parameter 𝑐 =
1

2
(
𝑑𝑖𝑚

𝑑𝑖𝑚+1
)
2

 with 𝑑𝑖𝑚 the 

spatial dimension of the problem (2 or 3) [14]. Thus, the mesh size in the liquid is between 

ℎmin and ℎmax, and is smaller where the magnitude of composition gradient is greater. 

The two physical fields used in the PTN method are the temperature field 𝑇 and the liquid 

composition field 𝑤PTN
l . These fields are implemented as nodal fields. As for the DNN 

method, the composition on nodes belonging to the parabola is imposed to the liquidus 

composition of the tip 𝑤ls (as described in the Dirichlet Condition). Therefore, there is no 

solute conservation in the PTN method. 𝑤PTN
l  is imposed to the nodes with 𝛿∈parabola = 1 as 

a Dirichlet condition.  

The algorithm of the PTN method can be briefly presented by the flow chart in Fig. 2.2. 

Initialization is the module at the very beginning of the method. In this module the initial 

values of fields and parameters are set. Composition Dirichlet condition is imposed to the 

nodes belonging to the parabola, which will be detailed in the module Dirichlet Condition. 

The temperature field is uniform. The initial tip radius is the one of Ivantsov – Solvability 

solution, and the initial tip velocity is 0. The initial composition field in the liquid can be 

either uniform or Ivantsov solution. 

Resolution of Solute Diffusion solves the diffusion equation Eq. (1.11), with boundary 

conditions to calculate the composition field in the liquid at time 𝑡. The composition boundary 

conditions are no-flux boundary condition at the simulation domain edges and Dirichlet 

                                                 

1 For the cases with more than one branch in the simulation, 𝛿∈parabola = 𝑗 where 𝑗 is the number of the 

branch and 𝑗 ∈ {1, 2, 3, … }. 
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boundary condition given by Initialization for the first time step or by Dirichlet Condition at 

time 𝑡 − ∆𝑡 for other time steps. 

Remeshing judges whether the current mesh needs to be reconstructed based on some 

remeshing criteria, and if so, a remeshing operation will be launched on the PTN mesh, and 

the fields of the old mesh will be interpolated to the new mesh. Since the anisotropy of the 

mesh corresponds to the composition field in the liquid and the position of the parabola, as the 

dendrite grows a certain distance, a new heterogeneous mesh adapting to the new composition 

field and the parabola should be constructed. The remeshing criteria are as follows. Once at 

least one of them is satisfied, Remeshing will be carried out. 

• The tip of a parabola has passed more than one element of size ℎmin  since last 

Remeshing. 

• A parabola is calculated by the PTN method for the first time.1  

• 25 time steps have passed since last Remeshing.2 

 

 

Fig. 2.2  Algorithm modules of the PTN method. The modules in the temporal loop take our 

interest in the following.  

Calculation of Tip Radius and Velocity calculates first the Flux Intensity Factor by 

integration, then the tip radius and velocity at time 𝑡 + ∆𝑡. In order to identify the elements on 

which an integration should be carried out, all elements of the PTN mesh are gone through, 

                                                 

1 In the PTN simulation presented in this chapter, Remeshing is carried out at the beginning of the 

simulation.  
2 25 is a quite arbitrary number aiming at the branch with decreasing velocity and increasing radius. In 

the PTN simulation presented in this chapter, this criterion is not reached. 
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and the distance from each node to the tip of the parabola is calculated. According to this, an 

elementary field indicating that an element belongs to the integration surface Σ or integration 

contour Γ is deduced. An element is considered to belong to the contour Γ if at least one node 

of this element is contained in the integration circle, whose radius is determined by the 

integration distance 𝑎 and tip radius, and at least one other node of this element is not in the 

circle. Besides, any node contained in the parabola is not considered as in the circle. An 

element belongs to the surface Σ if all its nodes are contained in the integration circle but not 

contained in the parabola. Definitions for 𝑎, Γ, and Σ are illustrated in Fig. 1.9. The gradient 

of composition on the elements belonging to Γ and Σ is computed based on 𝑤PTN
l . The area of 

element dΣ, the length of the arc of the integration circle contained in the element dΓ, as well 

as unit outside normal vector 𝒏Γ are calculated. Then the contribution to the Flux Intensity 

Factor of related elements are calculated, as in Eq. (1.15). Once the Flux Intensity Factor is 

known by summing all contribution, the tip radius and tip velocity can be deduced from Eq. 

(1.7) and Eq. (1.13). 

Growth of Parabola gets the position and shape of parabola at time 𝑡 + ∆𝑡 based on its tip 

radius and velocity at time 𝑡 + ∆𝑡 and its position at time 𝑡.  

Dirichlet Condition tags the nodes inside the parabolas (nodes in the red area in Fig. 2.1) 

at 𝑡 + ∆𝑡 with the Boolean 𝛿∈parabola
𝑡+∆𝑡 = 1, and imposes the liquidus composition 𝑤ls on these 

nodes.  This becomes a part of the boundary condition in Resolution of Solute Diffusion. To 

identify the nodes belonging to the parabola, all elements of the PTN mesh are gone through 

for computing the distance from each node to the middle of the root and the tip of the 

parabola (Point M in Fig. 2.12). For each node with distance not greater than √2𝜌tip𝐿 + 𝐿2/4 

(𝐿 is the distance between the root and the tip of the parabola, as in Fig. 2.12), its coordinates 

are used for verifying if the node is in the parabola or not. Since the composition in the solid 

has no influence on the composition in the liquid, for the simplicity of implementation, all 

nodes belonging to the parabola are given 𝑤ls = (𝑇 − 𝑇M)/𝑚  as composition Dirichlet 

condition, with 𝑇 the temperature of the tip of the parabola, 𝑇M the melting point, and 𝑚 the 

liquidus slope.  

A Time Ending criterion is applied to stop the loop: if the simulation time exceeds 𝑡end, 

the loop will stop and go to the end.  

The algorithm mentioned here (detailed in [14]) is called original algorithm in the 

following. The integration distance 𝑎 is a fixed model parameter. Parametric studies on 𝑎 and 

minimum mesh size ℎmin have been carried out by Fleurisson [14], which will be summarized 

at the beginning of Section 3.1. 

2.1.2 Computational time 

A two-dimensional PTN simulation of Al-7 wt.% Si alloy for 𝛺 = 0.1 by the original 

algorithm is launched on 2 CPU cores. The CPUs used in this thesis are of type Intel® Xeon® 

E5-2680V4 2.40GHz. The composition in liquid is initialized as the Ivantsov solution. 
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Material properties are listed in Table 2.1; simulation parameters are listed in Table 2.2. 

Under this supersaturation, the tip radius and tip velocity from the Ivantsov – Solvability 

solution are 𝜌tipIv
= 2.45 × 10−2mm  and 𝑣tipIv = 8.90 × 10

−4mm/s , respectively. The 

simulation domain is a square whose edge length is 135 mm, about 40𝐷l/𝑣tipIv , so that the 

simulation could correspond to the growth in a semi-infinite space. The initial length of the 

branch is 20 mm, giving a tip initial position at (6𝐷l/𝑣tipIv , 20𝐷
l/𝑣tipIv). The maximum 

mesh size is around 0.6𝐷l/𝑣tipIv . All these parameters are chosen as in the thesis of 

Fleurisson [14]. In this test, the simulation time is 5100 s. During this period, the tip moves 

forward about 1.35𝐷l/𝑣tipIv , and the final tip radius and velocity at 5100 s  are 𝜌tip =

2.55 × 10−2mm and 𝑣tip = 8.23 × 10−4mm/s. 

Table 2.1  Material properties of Al-7 wt.% Si [16].  

Variable Name Unit Value 

Nominal composition in Al 𝑤0 wt.% Si  7  

Diffusion coefficient 𝐷l mm2 ∙ s−1  3 × 10−3  

Partition coefficient 𝑘  0.13  

Liquidus slope 𝑚 K ∙ wt.%−1  −6.5  

Melting temperature 𝑇M K  933.6  

Gibbs Thomson coefficient 𝛤sl K ∙ mm  1.96 × 10−4  

Marginal stability coefficient 𝜎  1/(4π2)  

 

Table 2.2  Simulation parameters used for the original algorithm, for Al-7 wt.% Si alloy with 

supersaturation 𝜴 = 𝟎. 𝟏.  

Variable Name Unit Value 

Minimum PTN mesh size ℎmin 𝜌tipIv 1 

PTN mesh size in solid ℎsolid ℎmin 2 

Maximum PTN mesh size ℎmax ℎmin 82 

Integration distance 𝑎 ℎmin 10 

Time step ∆𝑡 s 1 

The accumulated computational time of each PTN module is depicted in Fig. 2.3, and the 

total computational time, i.e., the sum of the computational time of these five modules, is 

2756 s. Remeshing consumes 70.5% of the total computational time, because mesh building 

is a time-costing process and it is too frequent: in this simulation of 5100 time steps there are 

197 times of Remeshing. To raise the computational efficiency, an indispensable step is to 

reduce the frequency of Remeshing. A new adaptive meshing strategy will be introduced in 

the next section. In the PTN implementation, it is necessary to find the nodes locating in the 

parabola or the integration area. All nodes are scanned for the queries, which is not efficient. 
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The query on nodes will also be used in the new meshing strategy. In order to avoid a 

systematic scan over all nodes or elements in the simulation domain, the octree structure and 

orthogonal query method will be employed. They will be introduced in Subsection 2.2.1 and 

their applications on Remeshing, Dirichlet Condition, and Calculation of Tip Radius and 

Velocity will be presented in Subsection 2.2.2, 2.2.3, and 2.2.4, respectively. The evaluation 

of the improvements will be presented in Subsection 2.2.5. 

 

Fig. 2.3  Accumulated computational time for each PTN module of the original algorithm for a 

two-dimensional PTN simulation on 2 CPU cores. Remeshing consumes 𝟕𝟎. 𝟓% of the 

total computational time. 

2.2 Octree and orthogonal query 

2.2.1 Theory 

Orthogonal query [55] is a quick-query algorithm to report quickly the points in a range 

that is a d-dimensional axis-parallel box. This range is named as orthogonal query range. This 

query algorithm is efficient because it is based on a tree data structure. In the PTN model, the 

octree data structure is applied to divide the mesh domain.  

An octree [56] is a tree data structure where each internal child has eight children. A 

three-dimensional space can be recursively subdivided into eight octants, so an octree is often 

used to represent this kind of partition. Each child represents a space and its eight octants. The 

subdivided region may be a cuboid or a sphere, or an arbitrary shape. 

A quadtree [55], shown in Fig. 2.4, is the two-dimensional analog of octree. Each of its 

internal child has four children and corresponds to a two-dimensional space and its four 

quadrants. In our current two-dimensional case, a quadtree structure is applied; but to be 

simple on words, here these kinds of structure are also called “octree”.  
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There are two parameters used for creating an octree structure: its maximum number of 

levels and the threshold of element number in a child for subdivision (in general, it is not 

satisfactory to subdivide a child with only small number of elements). Fig. 2.4 is an octree 

with 4 levels and the subdivision is carried out only on children with at least 16 elements. The 

numbers in each block is the number of elements of each block. Green blocks in the third 

level will not be divided since they each have less than 16 elements. Red blocks in the fourth 

level will not be divided either since the fourth level is its deepest division.  

 

Fig. 2.4  Illustration of the two-dimensional octree (quadtree) data structure. This tree has 4 

levels. The subdivision only acts on the blocks with at least 16 elements. The number in 

each block is the number of elements of each block. Green blocks in the third level will 

not be divided since they each have less than 16 elements. Red blocks in the fourth level 

will not be divided either since the fourth level is its deepest division. 

Because the Cartesian coordinate system is used, the subdivided region of the octree is 

chosen as a rectangle. The edges of all rectangles are axis-parallel, so a rectangle can be 

defined by two characteristic vertices: vertex inferior 𝑉inf (𝑥inf, 𝑦inf)  and vertex superior 

𝑉sup (𝑥sup, 𝑦sup), as in Fig. 2.5. 𝑥inf and 𝑦inf are the minimum of 𝑥 and 𝑦 coordinates of the 

vertices of the rectangle; 𝑥sup  and 𝑦sup  are the maximum of 𝑥  and 𝑦  coordinates of the 

vertices of the rectangle.  

 

Fig. 2.5  Illustration of an axis-parallel containing rectangle of a triangle with extension. The red 

axis-parallel rectangle contains the triangle with black solid edges. The rectangle with 

light blue dashed edges is created based on the red rectangle with extension. It is the 

containing rectangle of the triangle. This rectangle with light blue dashed edges is 

defined by vertex inferior 𝑽𝐢𝐧𝐟  and vertex superior 𝑽𝐬𝐮𝐩.  
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For the orthogonal query, the relative position of two rectangles needs to be analyzed, 

hence two functions are employed: intersection and inclusion. Rectangle A is intersected with 

Rectangle B if they have common area or common segment or common point. Rectangle A is 

included in Rectangle B if Rectangle A is entirely a part of Rectangle B. If Rectangle A is 

intersected with Rectangle B, then Rectangle B is intersected with Rectangle A; vice versa. If 

Rectangle A is included in Rectangle B, then they are definitely intersected with each other. 

In all the four cases in Fig. 2.6, Rectangle A and Rectangle B are intersected with each other; 

in particular, in Fig. 2.6a Rectangle A is included in Rectangle B, and in Fig. 2.6c Rectangle 

B is included in Rectangle A. 

An arbitrary shape can be included in an axis-parallel rectangle. The minimum 𝑥 and 𝑦 

coordinate and the maximum 𝑥 and 𝑦 coordinate of the shape are denoted as 𝑥min, 𝑦min, 𝑥max, 

𝑦max, respectively. If the vertex inferior 𝑉inf and the vertex superior 𝑉sup of an axis-parallel 

rectangle are defined by (𝑥min, 𝑦min) and (𝑥max, 𝑦max), then this rectangle includes the shape. 

However, some points or edges of the shape will locate exactly on the edge of this rectangle. 

To ensure that all of the shape is fully located inside this rectangle (but not on the edge of this 

rectangle), an extension factor 𝑓ext is applied on the rectangle 

𝑥inf = 𝑥min − 𝑓ext ∙ (𝑥max − 𝑥min) 

𝑦inf = 𝑦min − 𝑓ext ∙ (𝑦max − 𝑦min) 

𝑥sup = 𝑥max + 𝑓ext ∙ (𝑥max − 𝑥min) 

𝑦sup = 𝑦max + 𝑓ext ∙ (𝑦max − 𝑦min) 

This rectangle is called the containing rectangle of the shape, as in Fig. 2.5. 

 

Fig. 2.6  Illustration of the two relations of location: intersection and inclusion. In all these four 

cases, Rectangle A is intersected with Rectangle B, and Rectangle B is intersected with 

Rectangle A as well. In particular, in (a) Rectangle A is included in Rectangle B, and in 

(c) Rectangle B is included in Rectangle A. In (b) and (d) there is only intersection not 

inclusion.  

Now the octree is applied to the PTN mesh. A mesh will be constructed with an octree 

once it is created. The total mesh area has its containing rectangle that is the first level of the 
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octree. The content of a child of the octree is a set of simplexes (in the two-dimensional case, 

a simplex is a triangle; in the three-dimensional case, a simplex is a tetrahedron) of this mesh 

whose containing rectangles are intersected with the region corresponding to the child. One 

should note that a simplex is regarded intersected with a rectangular region if the containing 

rectangle of the simplex is intersected with the rectangular region. 

In order to guarantee that all the nodes of the mesh locate inside at least one of the 

deepest-level rectangular region of the octree, the extension factor 𝑓ext is also applied in the 

construction of subdivided regions, i.e., for any subdivision of the octree, the region of a child 

is a bit larger than a quarter of the region of the parent.  

The orthogonal query range is an axis-parallel rectangle, denoted as Rectangle R. The 

objective of orthogonal query is to find all simplexes in the query range R. The algorithm of 

orthogonal query is demonstrated in Fig. 2.7. For the parent without child (Line 3), if the 

rectangular region of this parent is intersected with Rectangle R (Line 4), then all simplexes in 

this parent will be reported (Line 5). For the parent of octree with children (Line 6), for each 

of its child (Line 7), if the rectangular region of this child is included in Rectangle R (Line 9), 

then all simplexes related to this child will be reported (Line 10); if the rectangular region of 

this child is intersected with but not included in Rectangle R (Line 8, 11), then do the same 

thing on its each child as on the parent (Line 12), recursively. After all queries, a list of 

simplex numbers will be reported, after sorting and deleting repeated ones (Line 13, 14). All 

simplexes in the query range are reported. However, some other simplexes not in the query 

range are also reported because they are in the last-level child of the octree. 

 

Fig. 2.7  Recursive algorithm of the orthogonal query method.  

Fig. 2.8a is an illustration of orthogonal query on mesh. The rectangle with black solid 

edges is the orthogonal query range. The mesh has a five-level octree structure, and the color 

dashed lines represent the subdivisions (here only the subdivisions related to the orthogonal 

query are drawn). The mesh itself is the first level, and the dark red (magenta, green, blue, 
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resp.) represents the first (second, third, fourth, resp.) level. For the sake of clarity, the 

children of octree are named by 0, 1, 2, 3 in each level, and a number is added behind for each 

subdivision, as shown in Fig. 2.8b. 

 

Fig. 2.8  (a) Illustration of orthogonal query on a meshing domain. The rectangle with black 

solid edges is the orthogonal query range. Dark red, magenta, green, and blue dashed 

lines represent the first, second, third, and fourth subdivision, respectively. Only the 

ones involving into this orthogonal query are drawn. The gray zone is the orthogonal 

query result based on this octree. It is larger than the orthogonal query range. All 

simplexes in this gray zone are reported as result. (b) Nomenclature of the octree 

structure used in this thesis. The children of the octree are named by 0, 1, 2, and 3 for 

the top left, top right, bottom left, and bottom right in each level, and a number is 

added behind for each new subdivision.  

The orthogonal query processes are as follows. 

(i) The orthogonal query range is included in the mesh. Orthogonal query is launched 

on its children: Children 0, 1, 2, 3. 

(ii) Only Child 0 is intersected with the orthogonal query range, so another orthogonal 

query is launched on its children: Children 00, 01, 02, 03. 

(iii) Children 00, 01, 02, 03 are all intersected with the orthogonal query range, so 

another orthogonal query is launched on their children. 

(iv) Children 001, 003, 010, 011, 012, 013, 021, 030, 031 are intersected with the 

orthogonal query range; in particular, Child 012 is included in the orthogonal query 
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range. So, another orthogonal query is launched on all their children except for 

Child 012. All elements in Child 012 are reported. 

(v) Children 0013, 0031, 0033, 0102, 0103, 0112, 0130, 0132, 0211, 0300, 0301, 0310 

are intersected with the orthogonal query range. Since this is the last level of the 

octree structure, all elements in these children are reported. 

As its result, all elements in the gray zone are reported. The above example does not 

account for the extension of the subdivision, explaining the absence of the repetitive 

simplexes found (Line 14 in Fig. 2.7). 

2.2.2 New adaptive meshing strategy 

To guarantee that the mesh follows the form of the dendritic branch, the original 

algorithm needs to rebuild the mesh nearly every two time steps, which costs enormous 

computational time. In order to save computational time, it is indispensable to reduce the 

frequency of Remeshing. Since in the PTN method a branch has a known trajectory, the part 

of mesh used for computing its kinetics can also be predefined. Based on this, a new adaptive 

meshing strategy is proposed: the idea is to place a box with minimum mesh size ℎmin in front 

of the tip, along its growth direction, as the rectangle with blue dashed edges in Fig. 2.9. This 

permits to compute the Flux Intensity Factor with a good precision at every time step in 

certain duration while not proceeding with remeshing.  

The integration area is a part of circle, drawn in yellow and red in Fig. 2.9. Its radius at 

the creation time of the fine-mesh box, denoted as 𝑅integ
c , is determined by the integration 

distance 𝑎, which is a constant in the current code, and tip radius at this time 𝜌tip
c  

 𝑅integ
c = √𝑎2 + 2𝜌tip

c 𝑎 (2.2) 

The distance from the dendrite tip to the back edge of the fine-mesh box is 𝑙b , and the 

distance from the dendrite tip to the center of the fine-mesh box tip is 𝑙. Hence, the length of 

the fine-mesh box is 2(𝑙 + 𝑙b). This length impacts the frequency of Remeshing: the greater 

the length is, the less frequently the reconstruction of mesh occurs. However, in order to limit 

the number of elements, the fine-mesh box should not be too long. Half of its height, denoted 

as 𝐻, is greater than the radius of integration area at this time. Meshes in the solid (resp. 

liquid) are homogeneous with mesh size ℎsolid (resp. ℎmax). To have good transition between 

different mesh sizes, two transitional areas TA1 and TA2 are defined based on the distance of 

nodes to the walls of the fine-mesh box. These transitional areas are also helpful to the 

reconstruction of the mesh, which will be detailed in Subsection 3.1.1. Meshes in these two 

transitional areas are isotropic and homogeneous with different mesh sizes, ℎ1  and ℎ2 , 

respectively. If mesh belongs to different areas with different sizes, its size is determined by 

the smallest one.  

The integration area for calculating the Flux Intensity Factor of the tip must always stay 

in the fine-mesh box, so this heterogeneous PTN mesh needs to be reconstructed if at least 

one of the following criteria is satisfied: 
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• A parabola employs the PTN method for the first time. 

• The tip of a parabola has passed more than a distance 𝑙R since last remeshing 1. 

• The radius of integration area, which varies with tip radius, is greater than 0.95𝐻.  

These criteria are only suitable for the simulation with a single branch. Its generalization 

for multi-branch cases will be discussed in Subsection 4.3.2. 

 

Fig. 2.9  New adaptive heterogeneous PTN mesh. The dendritic branch with its integration area 

is represented by green solid line and yellow area with red solid contour. Magenta lines 

are the iso-composition lines in the liquid. At this moment the adaptive mesh is 

constructed. Meshes in the fine-mesh box with blue dashed edges have minimum mesh 

size 𝒉𝐦𝐢𝐧 for calculating the kinetics of the tip. The distance from the dendrite tip to the 

back edge of the fine-mesh box is 𝒍𝐛, and the distance from the dendrite tip to the center 

of the fine-mesh box tip is 𝒍. Its half height is 𝑯. Meshes in the solid have homogeneous 

mesh size 𝒉𝐬𝐨𝐥𝐢𝐝 , and meshes in the liquid have homogeneous mesh size 𝒉𝐦𝐚𝐱 . 

Transitional Area 1 (TA1) is in the smaller round corner rectangle with dark green 

dashed edges and outside the fine-mesh box. Its thickness is 𝒆𝟏 . Meshes in it are 

isotropic and homogeneous with mesh size 𝒉𝟏 . Transitional Area 2 (TA2) has a 

thickness of 𝒆𝟐 from TA1, i.e., the area between the two round corner rectangles with 

dark green dashed edges. Meshes in it are isotropic and homogeneous with mesh size 

𝒉𝟐.  

A nodal field 𝛿∈fine−mesh box  indicating the nodes belonging to the fine-mesh box is 

defined. The orthogonal query is employed for finding nodes in the fine-mesh box. In general 

cases, the fine-mesh box is oriented with the axis of the dendritic branch and thus not aligned 

with the frame axes, so an orthogonal query range must be determined. In Fig. 2.10 the blue 

box is the fine-mesh box determined above. Point A and B are the midpoints of the two edges 

respectively. 𝐴𝐵⃗⃗⃗⃗  ⃗  is the growing direction of the dendrite. A simple way to determine the 

orthogonal query range is to first draw a circle at the center of the blue box whose diameter 

equals to the length of the diagonal of the blue box (i.e., the red circle in Fig. 2.10), then 

                                                 

1 The selection of the value of 𝑙R will be discussed in Subsection 3.1.1. 
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determine the square along axes at the same center circumscribing around the circle (i.e., the 

black square in Fig. 2.10). This square is its orthogonal query range. 

 

Fig. 2.10  Illustration of the algorithm on finding nodes in the blue box with the help of 

orthogonal query. The green branch is the dendritic branch. This blue box represents 

the fine-mesh box mentioned above, i.e., the rectangle with blue dashed edges in Fig. 

2.9. Point A and B are the midpoints of the two edges and 𝑨𝑩⃗⃗⃗⃗⃗⃗  is the growing direction 

of the dendrite. The red circle is at the center of the blue box and its diameter equals to 

the length of the diagonal of the blue box. The square with black solid edges is the axis-

parallel circumscribing square of the red circle. This square is the orthogonal query 

range. For a node N, if its distance to line AB is not greater than the mid height of the 

blue box, 𝑯, and both 𝑨𝑵⃗⃗⃗⃗⃗⃗ ⋅ 𝑨𝑩⃗⃗⃗⃗⃗⃗ ≥ 𝟎 and 𝑩𝑵⃗⃗⃗⃗ ⃗⃗  ⋅ 𝑨𝑩⃗⃗⃗⃗⃗⃗ ≤ 𝟎 are satisfied, this node locates in 

the blue box.  

The algorithm for determining 𝛿∈fine−mesh box  is shown in Fig. 2.11. The orthogonal 

query reports quickly all nodes belonging to it (Line 5 in Fig. 2.11). Then for each of these 

nodes, its distance to line AB is calculated (Line 8 in Fig. 2.11). For a node N, if its distance to 

line AB is not greater than the half height of the blue box, 𝐻 (Line 9 in Fig. 2.11), and both 

𝐴𝑁⃗⃗⃗⃗⃗⃗ ⋅ 𝐴𝐵⃗⃗⃗⃗  ⃗ ≥ 0 and 𝐵𝑁⃗⃗⃗⃗⃗⃗ ⋅ 𝐴𝐵⃗⃗⃗⃗  ⃗ ≤ 0 are satisfied (Line 12 in Fig. 2.11), this node is in the blue 

box. Although all illustrations are two-dimensional here, this algorithm is suitable for three-

dimensional model as well, with two-dimensional box and circle replaced by three-

dimensional cylinder and sphere.  

 

Fig. 2.11  Algorithm of finding nodes in the fine-mesh box with minimum mesh size.  
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The efficiency of this improved adaptive meshing strategy will be presented in Subsection 

2.2.5. 

2.2.3 Application to Dirichlet Condition 

The essential step in the algorithm of Dirichlet Condition is to identify the nodes 

belonging to the parabolas. In the original algorithm, all elements need to be scanned for 

calculating distance from their nodes to the middle of the root and the tip of the parabola 

(Point M in Fig. 2.12), called “the middle of the parabolic branch”). The calculation on the 

elements very far from the parabola is a waste of time. The orthogonal query method is now 

used for raising computational efficiency by reducing the number of elements involved in the 

calculation. The orthogonal query range is determined similarly as before: it is an axis-parallel 

square whose center locates on the middle of the parabolic branch and whose edge length is 

2√2𝜌tip𝐿 + 𝐿
2/4  with 𝜌tip  and 𝐿  respectively the tip radius and the length of the parabolic 

branch, as shown in Fig. 2.12. If the parabola is truncated, the circle and square do not change.  

 

Fig. 2.12  Illustration of the orthogonal query range in Dirichlet Condition. Point 𝑴  is the 

midpoint at the growing axis. The blue circle is centered at 𝑴 and passes through the 

farthest edge points of the non-truncated parabola (so its radius equals √𝟐𝝆𝐭𝐢𝐩𝑳 + 𝑳𝟐/𝟒). 

The black square that is the axis-parallel circumscribing square of the blue circle is the 

orthogonal query range. If the parabola is truncated, the circle and the square do not 

change.  

The improved algorithm of Dirichlet Condition by using the orthogonal query method is 

shown in Fig. 2.13. As inputs, 𝑇  is the nodal temperature field on the PTN mesh, and 

“parabolas” means the tip coordinates, root coordinates, and tip radius of each parabola. As 

outputs, 𝛿∈parabola is a nodal field identifying nodes belonging to parabolas, and 𝑤PTN
ls  is the 

composition of nodes belonging to parabolas. For each parabola, the matrix of changing lab 

framework to the framework of this parabola is computed. With the help of the orthogonal 

query method, the number of elements considered is reduced. A list of elements will be 

reported by orthogonal query (Line 6 in Fig. 2.13). For each element in the list, each node is 

tested if it locates in a circle of center given by the middle of the parabolic branch and of 
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radius given by √2𝜌tip𝐿 + 𝐿2/4 (Line 13, 14). If a node is in this circle (the blue circle in Fig. 

2.12), its coordinates in the coordinate framework associated with the parabola are calculated 

(Line 15 in Fig. 2.13) for judging whether it is inside the parabola. For a node inside the 

parabola, the value of  𝛿∈parabola is given as the index of the parabola (Line 17 in Fig. 2.13). 

The temperature of the dendrite tip is obtained by locating the element containing the tip and 

interpolating the temperature field. The interfacial composition in liquid calculated from the 

tip temperature and a linearized phase diagram is given to the nodes belonging to this branch.  

 

Fig. 2.13  Improve algorithm of Dirichlet Condition for the PTN method.  

Fig. 2.14 shows the elements reported by the orthogonal query (in green and red) and 

elements belonging to the parabola (in red). In this example the maximum number of levels of 

the octree structure is limited to 12 and subdivision is carried out only on children with at 

least 256 elements. The mesh near the dendrite tip is finer. Because of the threshold of 

element number in a child for subdivision, the number of levels of subdivision near the tip is 

greater than that far away the tip, and the regions of the children at the last level of the octree 

near the dendrite tip are smaller in area. Therefore, the regions reported by the orthogonal 

query are not the same in area. This yields that the reported shape is not a rectangle. 34184 

elements are reported by the orthogonal query, whereas in the total simulation domain there 

are 78523 elements: only 43.5% of the elements go into the loop from Line 7 to Line 17 in 

Fig. 2.13. The efficiency of this improvement will be presented in Subsection 2.2.5.  
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One has to note that this Dirichlet Condition algorithm is only suitable for the PTN and 

CAPTN model when the temperature field is uniform. If the temperature is non-uniform, this 

algorithm is no longer relevant, and its generalization will be discussed in Subsection 4.3.1. 

 

Fig. 2.14  Elements of orthogonal query results and parabola. The green and red zones are the 

elements reported by the orthogonal query; the red parabola contains the elements 

whose nodes are imposed to Dirichlet condition. In the simulation domain there are 

78523 elements. The number of levels of the octree structure is limited to 12 and 

subdivision is carried out only on children with at least 256 elements. 34184 elements 

are reported by the orthogonal query. 

2.2.4 Application to Calculation of Tip Radius and Velocity 

The calculation of dendrite tip kinetics necessitates computing the Flux Intensity Factor 

in the integration area.  The algorithm of Calculation of Tip Radius and Velocity is improved 

as well with the employment of the orthogonal query method in a similar way. Its query range 

is chosen as an axis-parallel square whose center is at the tip of the parabola and whose edge 

length equals 2𝑅integ, where  

 𝑅integ = √2𝜌tip𝑎 + 𝑎
2 (2.3) 

is the radius of its integration area for Flux Intensity Factor, so the integration area is entirely 

included in this query range, as shown in Fig. 2.15.  

The improved algorithm of Calculation of Tip Radius and Velocity is shown in Fig. 2.16. 

Here the arguments are for the current time step 𝑡  by default, and to be simple, their 

superscript 𝑡 is omitted; on the contrary, arguments for the previous time step are noted by 

superscript 𝑡 − ∆𝑡 . As inputs, 𝛿∈parabola  is a nodal field identifying that nodes belong to 

parabolas, 𝑤PTN
l  is the composition field composition, 𝑇 is the nodal temperature field on the 

PTN mesh, and “parabolas” means the tip coordinates, root coordinates, and radius of each 

parabola. As outputs, 𝜌tip and 𝑣tip are the tip radius and velocity of each branch. 

For each parabola, the matrix of changing lab framework to the framework of this 

parabola is computed (Line 4 in Fig. 2.16).  The orthogonal query method reports the 

elements located in the query range (Line 5 in Fig. 2.16) that will be browsed in the following. 

If none of the nodes of the element is in liquid area (a node is in liquid area at 𝑡 − ∆𝑡 if 
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𝛿∈parabola
𝑡−∆𝑡 = 0), this element will be passed out. The distance of each node to the tip of the 

parabola is calculated (Line 10 in Fig. 2.16), if none of the nodes locates in the integration 

area, i.e., its distance to the tip of the parabola is greater than the radius of integration area, 

this element will be passed out; else, this element donates its contribution to the Flux Intensity 

Factor. For an element contributing to the calculation of Flux Intensity Factor, its 

composition gradient will be calculated if it is unknown (Line 13 in Fig. 2.16). Then it is 

distinguished whether the element is on the boundary Γ of the integration area or in the 

surface Σ (as defined in Fig. 1.9), by regarding if at least one of its nodes are out of the 

integration area (Line 14 in Fig. 2.16). In the two-dimensional model, for the simplicity of 

implementation, the integration in Eq. (1.15) is modified as  

 ℱ′ =
−1

4√𝑎(1 − 𝑘)𝑤ls
(∫𝛁𝑤PTN

l ∙ 𝒏𝚪

Γ

 dΓ +
1

𝐷l
∬𝒗𝐭𝐢𝐩 ∙ 𝛁𝑤PTN

l  dΣ
Σ

) =
1

√𝑑0
ℱ (2.4) 

The contributions of the elements to this modified Flux Intensity Factor ℱ′ of parabola 𝑗 

are accumulated as ℱ𝑗
′. The temperature of the tip of parabola is interpolated with the help of 

a logarithmic locator, which is able to find the element of PTN mesh containing the tip of the 

parabola (Line 20 in Fig. 2.16). This logarithmic locator is also based on the octree discussed 

above while it is an application of point query. After calculating the interfacial composition of 

the tip in the liquid 𝑤tip and the capillary distance 𝑑0, the new tip radius and velocity can be 

obtained by combining the Solvability condition (Eq. (1.7)).  

 

Fig. 2.15  Illustration of the orthogonal query range in Calculation of Tip Radius and Velocity. 

The dendrite tip is drawn with its integration area, i.e., the partial circle in yellow and 

its red arc. The axis-parallel square with black solid edges outside the integration area 

is the orthogonal query range. Its center is at the tip of parabola and its edge length is 

the diameter of the partial circle, i.e. 𝟐𝑹𝐢𝐧𝐭𝐞𝐠. 

Fig. 2.17 shows the elements reported by the orthogonal query (in green, yellow, and red) 

and elements belonging to the integration area (in yellow and red). In this example the 

number of levels of the octree structure is limited as no larger than 12 and subdivision is 

carried out only on children with at least 256 elements as well. 2144 elements are reported by 

the orthogonal query, whereas in the total simulation domain there are 78523 elements: only 

2.7% elements go into the loop from Line 6 to Line 18 in Fig. 2.16. The efficiency of this 

improvement will be presented in Subsection 2.2.5. 
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Fig. 2.16  Improve algorithm of two-dimensional Calculation of Tip Radius and Velocity. 
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Fig. 2.17  Elements of orthogonal query results and integration area. The green, yellow, and red 

zones are the elements reported by the orthogonal query; the yellow area and red 

contour correspond to integration area 𝚺 and 𝚪 defined in Fig. 1.9 respectively. In the 

simulation domain there are 78523 elements. The number of levels of the octree 

structure is limited to 12 and subdivision is carried out only on children with at least 

256 elements. 2144 elements are reported by the orthogonal query. On the left is an 

enlargement of the corresponding part on the right.   

2.2.5 Reduction on computational time 

The same simulation as Section 2.1 is redone on 2 cores with improved algorithms 

employing the orthogonal query method on Remeshing, Dirichlet Condition, and Calculation 

of Tip Radius and Velocity. Its simulation parameters are listed in Table 2.3, keeping the same 

minimum mesh size, mesh size in the solid, maximum mesh size, integration distance, time 

step, and simulation time. The tip radius and tip velocity from the Ivantsov – Solvability 

solution are 𝜌tipIv
= 2.45 × 10−2mm  and 𝑣tipIv = 8.90 × 10

−4mm/s .The distance 𝑙  is 

defined based on the diffusion length under Ivantsov – Solvability solution, denoted as 𝛿dIv, 

which will be introduced in Subsection 3.1.2. Here 𝛿dIv = 0.67 mm (i.e., 𝛿dIv/𝜌tipIv
≈ 28).  

The final tip radius and velocity at 5100 s calculated by the improved PTN algorithm are 

𝜌tip = 2.52 × 10−2mm and 𝑣tip = 8.46 × 10
−4mm/s. The computational time for each PTN 

module of the improved algorithm is depicted in Fig. 2.18 with dashed curves, in comparison 

with the computational time of the original algorithm with solid curves. The curves of original 

algorithm are just those in Fig. 2.3. The numbers of elements of the two algorithms are not too 

different: 93148 and 85060 elements at the last time step for the original and improved 

algorithm, respectively. Even so, the reducing on computational time is dramatic. The 

improved Remeshing consumes only 53 s , saving 97.3%  time of the original Remeshing, 

because it is only launched 4 times in 5100 time steps. The employment of orthogonal query 

helps Dirichlet Condition and Calculation of Tip Radius and Velocity to save 41.2% and 

50.4%  of its computational time, respectively. There is no algorithmic improvement on 

Resolution of Solute Diffusion or Growth of Parabola. The computational time of Growth of 

Parabola does not change; however, the computational time of Resolution of Solute Diffusion 

decreases a little. This decrease of time can be explained by the fact that the number of 

elements of the improved algorithm is a little smaller than that of the original algorithm, so 
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the time for solving diffusion equation on the mesh is saved a little. In total, for this 

simulation, the original algorithm consumes 2756 s while the improved algorithm consumes 

only 768 s : 72.1%  of the computational time is saved. This great improvement on 

computational efficiency will permit the model to be applied for more complicated two-

dimensional and three-dimensional cases. 

 

Table 2.3  Simulation parameters for the improved algorithm, for Al-7 wt.% Si alloy with 

supersaturation 𝜴 = 𝟎. 𝟏.  

Variable Name Unit Value 

Minimum PTN mesh size ℎmin 𝜌tipIv 1 

PTN mesh size in TA1 ℎ1 ℎmin 3 

PTN mesh size in TA2 ℎ2 ℎmin 10 

PTN mesh size in solid ℎsolid ℎmin 2 

Maximum PTN mesh size ℎmax ℎmin 82 

Integration distance 𝑎 ℎmin 10 

Time step ∆𝑡 s 1 

Distance from the tip to the center of the rectangle with ℎmin at its creation 𝑙 𝛿dIv 1 

Distance from the tip to the back boundary of the rectangle with ℎmin at its creation 𝑙b 𝑎 1.2 

Half height of the rectangle with ℎmin 𝐻 𝑅integ
c  1.5 

Distance passed by the tip between two Remeshings 𝑙R 𝑙 1.9 

TA1 thickness 𝑒1 𝑙 1 

TA2 thickness 𝑒2 𝑙 1 

 

It should be emphasized that all these improvements on algorithm are suitable for the 

three-dimensional model as well, only with changes in dimension, for example: the 

rectangular box with minimum mesh size becomes a cylinder, the circle and axis-parallel 

square become a sphere and axis-parallel cube. 

Besides of the computational time, kinetics obtained by the original and improved 

algorithm at 5100 s are comparative. Further analyses on the kinetics will be discussed in 

Section 3.1. 
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Fig. 2.18  Accumulated computational time of PTN modules for original (solid curves) and 

improved (dashed curves) algorithms. The curves of original algorithm are just those in 

Fig. 2.3. The original Remeshing (the green solid curve) consumes 𝟐𝟕𝟓𝟔 𝐬, out of the 

scale limit of this figure. The improved Remeshing consumes only 𝟓𝟑 𝐬: 𝟐. 𝟕% of the 

original. The employment of orthogonal query helps Dirichlet Condition (black curves) 

to save 𝟒𝟏. 𝟐% of its computational time, and Calculation of Tip Radius and Velocity 

(red curves) to save 𝟓𝟎. 𝟒% of its computational time. 

2.3 Conclusion 

The original algorithm and implementation of the PTN method [14] were reviewed 

briefly at the beginning of this chapter, and the computational time of each module was 

analyzed. Remeshing consumed enormous time. To raise the computation efficiency, the 

octree structure and orthogonal query method have been employed in Remeshing, Dirichlet 

Condition, and Calculation of Tip Radius and Velocity for seeking the nodes in a certain 

domain quickly, and a new adaptive meshing strategy aiming to decrease the frequency of 

Remeshing have been proposed. The improved algorithm saves huge amount of computational 

time in the two-dimensional as-example simulation. This satisfactory result encourages the 

application of the CAPTN method and its three-dimensional development.  

Algorithmic improvements in this chapter does not change the simulation results on 

kinetics. The kinetics of the original and improved algorithms will be further compared in the 

next chapter.  
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Résumé en français 

La cinétique calculée par l'algorithme amélioré du modèle PTN et celle calculée par 

l'algorithme original sont quasiment identiques en deux dimensions, attestant que 

l'algorithme amélioré n'influence pas la cinétique. La longueur de diffusion d'une branche 

dendritique sous la solution d'Ivantsov est définie. Celle-ci est utilisée pour dimensionner la 

distance d'intégration et la dimension de la boîte des mailles fines dans la suite de cette thèse. 

On observe que lorsque la distance d'intégration est trop grande, la cinétique calculée est 

divergente. Ce phénomène est expliqué mathématiquement. Les paramètres numériques du 

modèle PTN sont ensuite étudiés en trois dimensions.  Dans une certaine gamme de valeurs, 

une distance d'intégration plus grande et une taille de maille minimale plus petite améliorent 

la précision de la cinétique. Le pas de temps a une toute petite influence sur la cinétique en 

régime permanent, et le cylindre tronquant la parabole ne doit pas croiser la zone 

d'intégration pour ne pas influencer la cinétique des branches dendritiques.   
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This chapter shows the studies on PTN method parameters. The calculated kinetics of the 

improved and original two-dimensional PTN methods are compared. A new observation that 

the kinetics will be divergent when the integration distance is too large is explained 

mathematically. The parametric studies on the two-dimensional PTN method are extended to 

the three-dimensional PTN method.  

3.1 Two-dimensional PTN parameters in isothermal condition 

Fleurisson has analyzed the influence of the parameters, including the minimum mesh 

size ℎmin, integration distance 𝑎, and radius of truncating cylinder 𝑟cyl, on the results of the 

two-dimensional PTN method [14]. A single dendritic branch of Al-7 wt.% Si alloy growing 

under constant supersaturation in a large simulation domain is modeled with the two-

dimensional PTN method. The initial composition field 𝑤PTN
l  in the liquid is taken equal to 

the Ivantsov solution. In these conditions, the dendrite tip kinetics evolves towards a steady 

state that should theoretically correspond to the Ivantsov – Solvability solution, introduced in 

Subsection 1.1.3. 

As shown in Fig. 3.1, it is observed that steady-state tip radius and tip velocity converge 

towards the Ivantsov – Solvability solution for small ℎmin/𝜌tipIv  and large 𝑎/ℎmin . The 

smaller ℎmin/𝜌tipIv and the larger 𝑎/ℎmin are, the smaller difference between the calculated 

results at steady state and the Ivantsov – Solvability solution is, and the higher its 

computational cost is. In terms of 𝑟cyl, if the truncating cylinder intersects with the integration 

area, it does influence the results; otherwise, it does not have noticeable impact on the results. 

Fleurisson has also demonstrated that the prediction on kinetics becomes less precise when 

the supersaturation increases [15]. 

 

Fig. 3.1  Evolution of the steady-state dimensionless kinetics (a) 𝝆𝐭𝐢𝐩/𝝆𝐭𝐢𝐩𝐈𝐯  and (b) 𝒗𝐭𝐢𝐩/𝒗𝐭𝐢𝐩𝐈𝐯  of a 

dendrite tip of Al-7 wt.% Si alloy in two dimensions under supersaturation 𝜴 = 𝟎. 𝟏 

with 𝒂/𝒉𝐦𝐢𝐧 for various values of 𝒉𝐦𝐢𝐧/𝝆𝐭𝐢𝐩𝐈𝐯 . From [15]. The notations 𝝆𝐈𝐯 and 𝒗𝐈𝐯 in 

the figure correspond to 𝝆𝐭𝐢𝐩𝐈𝐯  and 𝒗𝐭𝐢𝐩𝐈𝐯 in this thesis.  
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These studies are regarded as a reliable reference for the PTN model. The improved 

algorithm does not change the method of calculating the kinetics, therefore the kinetics from 

the improved algorithm should be the same as that from the original algorithm. This is 

validated by comparing the PTN simulation results from two algorithms for a case mentioned 

in [14].  

3.1.1 Comparison on kinetics between the original and improved algorithm 

The same simulations for a single dendritic branch of Al-7 wt.% Si alloy growing under 

constant supersaturation 𝛺 = 0.1 as Subsection 2.1.2 and 2.2.5 are used for comparing the 

kinetics calculated by the original and improved algorithm. The simulation domain is a square 

of 135 mm × 135 mm. The branch is rooted at the middle of the left domain edge and grows 

towards the right. Its initial length is 20 mm.The composition in the liquid is initialized as the 

Ivantsov solution. In this case, the tip radius, tip velocity, and diffusion length at dendrite tip 

from Ivantsov – Solvability solution (to see Subsection 3.1.2) are 𝜌tipIv
= 2.4 × 10−2mm, 

𝑣tipIv = 8.9 × 10−4mm/s, and 𝛿dIv = 0.67 mm, respectively. The simulation time is 5100 s.  

The kinetics computed by the simulation using the original algorithm and the improved 

algorithm are compared. The normalized tip radius and tip velocity at every time step are 

plotted in Fig. 3.2: (a) is from the original algorithm, and (b) is from the improved algorithm. 

The normalization is achieved by dividing the Ivantsov – Solvability solution under the same 

supersaturation. At the first time step, the kinetics is initialized by the Ivantsov – Solvability 

solution, so the dimensionless kinetics equals to 1. The composition field in the liquid is 

initialized as the Ivantsov solution, so the kinetics is close to its steady state from the 

beginning. The PTN method is employed as the growth law just from the second time step. 

The improved algorithm gives very similar kinetics to the original algorithm, indicating that 

the improved algorithm keeps the same precision on results. Thus, the studies on parameters 

in [15] are valid for the improved algorithm as well.  

 

Fig. 3.2  Tip radius and velocity normalized by the Ivantsov – Solvability solution, computed in 

the simulations by the (a) original and (b) improved algorithm. Vertical dotted lines in 

(b) are the moments when the mesh is reconstructed in the improved algorithm. The 

kinetics is initialized by the Ivantsov – Solvability solution and the composition field is 

initialized by the Ivantsov solution. The improved algorithm gives very similar kinetics 

to the original algorithm. In 5100 seconds, the kinetics have not arrived at steady state. 
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Vertical dotted lines in Fig. 3.2b are the moments when the mesh is reconstructed in the 

improved algorithm. The moments of reconstructing the mesh in the original algorithm are 

not plotted in the Fig. 3.2a because there are 197 times of Remeshing, too many to present in 

the figure. The mesh with branch, integration area, iso-composition contours, and the 

definition of fine-mesh box at the time step just before (𝑡 = 3071 s) and after (𝑡 = 3072 s) 

Remeshing are shown in Fig. 3.3a and Fig. 3.3b, respectively.  

 

Fig. 3.3  Mesh with dendritic branch, integration area, and iso-composition contours before and 

after Remeshing, for the two-dimensional PTN simulation of a single dendritic branch 

of Al-7 wt.% Si alloy with supersaturation 𝜴 = 𝟎. 𝟏. (a) is at 𝒕 = 𝟑𝟎𝟕𝟏 s, the last time 

step before Remeshing, and (b) is at 𝒕 = 𝟑𝟎𝟕𝟐 s, the first time step after Remeshing. 

The dendritic branch is in green; the integration area is in yellow and its contour is in 

red; the iso-composition contours are in magenta, from 7.10 wt.% Si to 7.65 wt.% Si, 

every 0.05 wt.% Si. The blue rectangle is the theoretical position of the fine-mesh box 

with minimum mesh size at the moment of constructing the mesh in (b). The round 

corner rectangle with dark green dashed edges in (a) is the larger transitional area 

(TA2) before Remeshing. 

The areas with minimum mesh size are not exact rectangles, especially on the right side, 

for the reason that their definition is based on the coarse mesh of the last time step. The 

transitional areas (introduced in Subsection 2.2.2, and the larger transitional area TA2 in Fig. 
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3.3a is shown by the round corner rectangle with dark green dashed edges) can partly solve 

this problem, besides ensure good transition between minimum mesh size and maximum 

mesh size. If the elements with the maximum mesh size are involved in the description of the 

blue box, which is not the current case, the mesh will no doubt become much worse. 

Supposing at steady state the tip radius remains as 𝜌tipIv and the radius of the integration 

area 𝑅integ is such that 𝑅integ < 0.95𝐻. In this case the integration area will go out of the 

fine-mesh box if the tip has passed  

 𝑙Rmax = 2𝑙 + 𝑙b − 𝑅integ (3.1) 

since last Remeshing. With the parameters in Table 2.3, 𝑙Rmax ≈ 2.04𝑙. In the simulation 𝑙R =

1.9𝑙 < 𝑙Rmax  is used so as to reconstruct the mesh before the integration area enters the 

poorly defined zone near the right boundary of the blue box. If the integration area always 

stays in the area with minimum mesh size, the influences of Remeshing on the composition 

field and kinetics will be negligible. In Fig. 3.2b, there is little extra fluctuation at the 

moments when Remeshing occurs. 

The mesh sizes in the transitional areas, ℎ1 and ℎ2, hardly influence the calculation on 

kinetics if their values are reasonably chosen. This will be manifested in Section 4.5, by the 

comparison of the kinetics calculated by the adaptive heterogeneous mesh and the kinetics 

calculated by the homogeneous mesh (all mesh sizes are equal to ℎmin). 

3.1.2 Diffusion length under Ivantsov – Solvability solution 

As mentioned above, Fleurisson uses the minimum mesh size ℎmin to nondimensionalize 

the integration distance 𝑎. However, the integration area used for calculating the solute flux is 

rather linked with the composition field, so it is better to use a physical length related to the 

composition for nondimensionalizing the integration distance.  

The diffusion length at a parabolic tip under Ivantsov solution is proposed. It is denoted 

as 𝛿dIv, as firstly mentioned in Subsection 2.2.5. Suppose that a single dendritic branch grows 

in a semi-infinite domain. The form of the branch is assumed as a parabola. At steady state, 

the composition field in the liquid follows Ivantsov solution as Eq. (1.8). In two dimensions, 

the tip of the parabolic branch is at (𝑥, 𝑦) = (𝜌tipIv/2, 0) , and the relation of parabolic 

coordinate and Cartesian coordinate is (as shown in Fig. 1.4) 

𝜌tipIv𝜉
2 = 𝑥 + √𝑥2 + 𝑦2,        𝜌tipIv𝜂

2 = −𝑥 + √𝑥2 + 𝑦2 

At 𝑥 axis, 𝑦 = 0, 𝜉 = √2𝑥/𝜌tipIv , so 

 𝑤2D
l (𝑥) = 𝑤0 + (1 − 𝑘)𝑤

ls√πPe exp(Pe)  erfc (√Pe ∙ 2𝑥/𝜌tipIv) (3.2) 

Referring to the definition of the diffusion length of a planar front, the diffusion length at 

the dendrite tip along its growing direction is defined as twice of the intersection of the 

tangent of the composition along the 𝑥  axis at the solid/liquid interface and the nominal 
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composition, as shown in Fig. 3.4. The derivative of the composition at the dendrite tip along 

𝑥 axis is 

 
d𝑤2D

l

d𝑥
|
𝑥=
𝜌tipIv
2

= −2(1 − 𝑘)𝑤lsPe/𝜌tipIv (3.3) 

so the diffusion length is 

 𝛿dIv =
𝑤0 − 𝑤

ls

−2(1 − 𝑘)𝑤lsPe/𝜌tipIv
× 2 =

2𝛺𝐷l

𝑣tipIv
 (3.4) 

For the three-dimensional case, even if the composition field is different from that of two 

dimensions, the diffusion length takes the same formula as Eq. (3.4). Fig. 3.5 demonstrates 

the evolution of two-dimensional and three-dimensional diffusion length and tip radius of a 

dendrite tip of Al-7 wt.% Si alloy at steady state with supersaturation 𝛺. For 𝛺 ≤ 0.5 in two 

dimensions and 𝛺 ≤ 0.3 in three dimensions, which are satisfied by all the studies in this 

thesis, 𝛿dIv > 𝜌tipIv  always stands. Under the same supersaturation, the three-dimensional 

characteristic lengths are much smaller than the two-dimensional ones, and the ratio of 𝛿dIv to 

𝜌tipIv in three dimensions is smaller than in two dimensions. 

 

Fig. 3.4  Two-dimensional illustration of the definition of diffusion length at steady state for Al-7 

wt.% Si alloy with supersaturation 𝜴 = 𝟎. 𝟏. The intersection of the tangent of the 

composition at the dendrite tip along the 𝒙 axis and the nominal composition is half of 

its diffusion length, 𝜹𝐝𝐈𝐯/𝟐. 

 

Fig. 3.5  Evolution of two-dimensional (solid curves) and three-dimensional (dashed curves) 

diffusion length and tip radius of a dendrite tip of Al-7 wt.% Si alloy at steady state 

with supersaturation. (a) Diffusion length is in red and tip radius is in green. The 

characteristic length axis is in log scale. (b) shows the ratio of diffusion length and tip 

radius. 
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3.2 Integration distance and convergence on kinetics 

3.2.1 Observation of convergence limit 

The influence of the integration distance 𝑎 on kinetics has been investigated in [15], and a 

general conclusion is that the greater the integration distance is, the more accurate the kinetics 

is. However, in our study, it is observed that, as shown below, if the integration distance is too 

large, the kinetics may be divergent and not physical. 

PTN simulations for Al-7 wt.% Si alloy with supersaturation 𝛺 = 0.1 have been carried 

out with different integration distance: 𝑎/𝛿dIv ∈ {0.1, 0.2, 0.5, 1, 2, 5, 20, 25, 30} . Fig. 3.6 

illustrates the branch and integration area of (a) 𝑎 = 𝛿dIv, (b) 𝑎 = 5𝛿dIv , and (c) 𝑎 = 25𝛿dIv. 

Other parameters are the same as Table 2.3.  

 

Fig. 3.6  Illustration of the dendritic branch with its integration area in PTN simulations for a 

single dendrite tip with integration distance (a) 𝒂 = 𝜹𝐝𝐈𝐯, (b) 𝒂 = 𝟓𝜹𝐝𝐈𝐯, (c) 𝒂 = 𝟐𝟓𝜹𝐝𝐈𝐯. 

Branches are green, integration areas are yellow in the surface and red on the contour 

(to see the enlarging figures). The tiny red elements can be seen in the enlargements.  

Fig. 3.7 shows the evolution of kinetics at steady state with integration distance for 

𝑎/𝛿dIv ≤ 20 . The tip radius and velocity are normalized by the Ivantsov – Solvability 

solution, their standard deviations are represented by error bars, and the integration distance is 

normalized by the diffusion length at steady state. In this range, the kinetics keeps improving 

as 𝑎 increases. However, for 𝑎/𝛿dIv ∈ {25, 30} there is not any steady state for the kinetics: 

the kinetics becomes divergent. Fig. 3.8 demonstrates (a) the convergent kinetics of the 

simulation with 𝑎 = 5𝛿dIvand (b) the divergent kinetics of the simulation with 𝑎 = 25𝛿dIv. In 

the divergent case, although the initial kinetics and composition field are the same as the 

theoretical steady-state solution, the tip velocity drops dramatically, then increases slightly, 

finally increases dramatically. This interesting phenomenon will be explained in the next 

subsection. 
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Fig. 3.7  Evolution of dimensionless kinetics of a dendrite tip of Al-7 wt.% Si alloy in two 

dimensions under supersaturation 𝜴 = 𝟎. 𝟏   with integration distance 𝒂 , for 𝒂 ≤
𝟐𝟎𝜹𝐝𝐈𝐯 . The tip radius and velocity are normalized by the Ivantsov – Solvability 

solution, the error bars are their standard deviation, and the integration distance is 

normalized by the diffusion length at steady state. In this range, that greater the 

integration distance is, the more precise the kinetics is. 

 

 

Fig. 3.8  Dimensionless kinetics of a dendrite tip of Al-7 wt.% Si alloy in two dimensions under 

supersaturation 𝜴 = 𝟎. 𝟏  with (a) 𝒂 = 𝟓𝜹𝐝𝐈𝐯  and (b) 𝒂 = 𝟐𝟓𝜹𝐝𝐈𝐯 . Kinetics in (a) is 

convergent while kinetics in (b) is divergent.  

3.2.2 Theoretical explanation 

The divergence of kinetics for very large integration distance can be explained by the 

following deduction. By combining Eq. (1.7) and Eq. (1.15), an expression of the tip velocity 

can be obtained 

 
𝑣tip = 𝐷

l(
4𝜎

𝑑0
(−

1

(1 − 𝑘)𝑤ls
∙
1

4√𝑎
(∫𝛁𝑤PTN

l ∙ 𝒏𝚪dΓ
Γ

+
𝑣tip

𝐷l
∬𝒆𝒙 ∙ 𝛁𝑤PTN

l  dΣ
Σ

))

4

)

1
3

 (3.5) 

To be simple, Eq. (3.5) is noted as 𝑣tip = 𝑓(𝑣tip). This is also the explicit formula used in the 

current model for calculating the tip velocity of time 𝑡 based on the tip velocity of time 𝑡 − ∆𝑡 

𝑣tip
𝑡 = 𝑓(𝑣tip

𝑡−∆𝑡) 
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Suppose that the branch grows at steady state with velocity 𝑣tip
s . Then 𝑣tip

𝑡 = 𝑣tip
𝑡−∆𝑡 =

𝑣tip
s , and 𝑣tip

s = 𝑓(𝑣tip
s ) stands. If there is a small error ∆𝑣R on the velocity on the right-hand 

side, then there will be an error ∆𝑣L on the left-hand side as well, i.e., 

 𝑣tip
s + ∆𝑣L = 𝑓(𝑣tip

s + ∆𝑣R) (3.6) 

By Taylor’s theorem,  

 𝑓(𝑣tip
s + ∆𝑣R) ≈ 𝑓(𝑣tip

s ) + 𝑓′(𝑣tip
s )∆𝑣R (3.7) 

From Eq. (3.6) and Eq. (3.7), there is 

 𝑓′(𝑣tip
s ) ≈

∆𝑣L

∆𝑣R
 (3.8) 

The derivative of 𝑓, i.e., the right-hand side of Eq.(3.5), at 𝑣tip = 𝑣tip
s  can be calculated under 

the assumption that all other parameters are independent with 𝑣tip, so  

 𝑓′(𝑣tip
s ) = −

√2

3(1 − 𝑘)𝑤ls√𝑎𝜌tip
s

∬𝒆𝒙 ∙ 𝛁𝑤PTN
l  dΣ

Σ

 
(3.9) 

with 𝜌tip
s  the tip radius at steady state. Eq. (3.9) is regarded a function of 𝑎, denoted as 𝐶(𝑎), 

indicating the convergence of the explicit formula. 

 𝐶(𝑎) = 𝑓′(𝑣tip
s ) ≈

∆𝑣L

∆𝑣R
 (3.10) 

Theoretically, if 𝐶(𝑎) is greater than 1, an error on the velocity on the right-hand side will 

lead to a greater error on the velocity on the left-hand side in Eq. (3.6), then the calculated 

velocity will go further and further away from the correct solution, meaning that this formula 

is divergent.  

If the composition field in the liquid at steady state is equal to the Ivantsov solution (see 

Subsection 1.1.3), and the steady-state tip radius and velocity are just 𝜌tipIv and 𝑣tipIv , then the 

integrated part of Eq. (3.9) can be calculated mathematically 

𝒆𝒙 ∙ 𝛁𝑤 =
∂𝑤

∂𝑥
=
∂𝑤

∂𝜉

∂𝜉

∂𝑥
= −

(1 − 𝑘)𝑤lsPe exp (Pe)

𝜌tipIv
exp(−

Pe(𝑥 + √𝑥2 + 𝑦2)

𝜌tipIv
)(

𝑥 + √𝑥2 + 𝑦2

𝑥2 + 𝑦2
)

1
2

 

Eq. (3.9) can be converted as 

 𝐶(𝑎) =
√2 Pe exp (Pe)

3𝜌tipIv√𝑎
∬ exp(−

Pe(𝑥 + √𝑥2 + 𝑦2)

𝜌tipIv
)(

𝑥 + √𝑥2 + 𝑦2

𝑥2 + 𝑦2
)

1
2

d𝑥d𝑦
Σ

 (3.11) 
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where the upper half of the integration surface can be expressed as 

1

2
Σu:  

{
 
 

 
 
𝑦: 0 → √𝑅integ

2 − (𝑥 −
𝜌tipIv
2

)
2

, for  𝑥 ∈ [
𝜌tipIv
2

, 𝑅integ +
𝜌tipIv
2

]

𝑦: √−2𝜌tipIv (𝑥 −
𝜌tipIv
2

) → √𝑅integ
2 − (𝑥 −

𝜌tipIv
2

)
2

, for 𝑥 ∈ [−𝑎 +
𝜌tipIv
2

,
𝜌tipIv
2

]

 

and the lower half of the integration surface can be expressed as 

1

2
Σl:  

{
 
 

 
 
𝑦:−√𝑅integ

2 − (𝑥 −
𝜌tipIv
2

)
2

→ 0, for  𝑥 ∈ [
𝜌tipIv
2

, 𝑅integ +
𝜌tipIv
2

]

𝑦: −√𝑅integ
2 − (𝑥 −

𝜌tipIv
2

)
2

→ −√−2𝜌tipIv (𝑥 −
𝜌tipIv
2

) , for 𝑥 ∈ [−𝑎 +
𝜌tipIv
2

,
𝜌tipIv
2

]

 

with 𝑅integ = √𝑎2 + 2𝜌tipIv𝑎.  See Fig. 3.9 for illustration.  

 

Fig. 3.9  Illustration of the integration surface 𝚺. The yellow integration surface is divided into 

upper half part and lower half part by the 𝒙 axis. Tip coordinate is (
𝝆𝐭𝐢𝐩𝐈𝐯

𝟐
, 𝟎). Formulas 

correspond to the curve in the same color.  

The two-dimensional curve of 𝐶(𝑎) by Eq. (3.11) for Al-7 wt.% Si alloy with 𝛺 = 0.1 is 

plotted in Fig. 3.10a. 𝑎 is also nondimensionalized by 𝛿dIv . 𝐶(𝑎) increases from 0 to more 

than 1 with the increase of 𝑎/𝛿dIv. For 𝑎/𝛿dIv ≤ 5, 𝐶(𝑎) is smaller than unity, the kinetics is 

convergent as indicated in Fig. 3.7. For 𝑎/𝛿dIv = 20, even if 𝐶(𝑎) is a little greater than 

unity, the kinetics is also convergent. This might be because in the deduction of Eq. (3.11) the 

composition field is regarded as Ivantsov solution and the tip radius and tip velocity are 

regarded as Ivantsov – Solvability condition, but in the reality, they are not. For 𝑎/𝛿dIv ∈

{25, 30}, 𝐶(𝑎) gets further from unity, so the kinetics becomes divergent.  
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In summary, 𝐶(𝑎) deduced from Ivantsov solution is fairly consistent with the divergence 

of kinetics observed in the simulations, while the criterion 𝐶(𝑎) < 1 is a little bit stricter than 

the reality due to the strong assumption in the mathematical deduction. It can be used as an 

advance test on the choice of integration distance 𝑎: with 𝐶(𝑎) ≥ 1 there is risk of divergence 

on kinetics, and 𝑎 might be too large.  

 

Fig. 3.10  Evolution of the convergence of kinetics with 𝒂 under Ivantsov – Solvability solution 

for Al-7 wt.% Si alloy with supersaturation 𝜴 = 𝟎. 𝟏, by mathematical deduction, in (a) 

two dimensions and (b) three dimensions. 𝑪(𝒂) is monotonic increase with 𝒂. 𝑪(𝒂) > 𝟏 

has risk of divergence. 

In terms of the three-dimensional model, the same convergence-to-divergence phenomena 

are observed as the integration distance 𝑎 increases, and its theoretical explanation follows the 

same logic, except that Eq. (3.5) should match with the three-dimensional equations  

 𝑣tip =
𝐷l𝜎

𝑑0
(

−1

2π𝑎(1 − 𝑘)𝑤ls
)
2

(∬𝛁𝑤PTN
l ∙ 𝒏𝚪 dΓ

Γ

+
𝑣tip

𝐷l
∭𝒆𝒙 ∙ 𝛁𝑤PTN

l  dΣ
Σ

)

2

 (3.12) 

It is assumed that all other parameters are independent with 𝑣tip  and the branch grows at 

steady state with velocity 𝑣tip
s . 𝑣tip

s = 𝑓(𝑣tip
s ) stands. The influence of disturbance can be 

expressed as 𝑣tip
s + ∆𝑣L = 𝑓(𝑣tip

s + ∆𝑣R). So  

 
∆𝑣L

∆𝑣R
≈ 𝑓′(𝑣tip

s ) = 𝐶(𝑎) = −
1

π𝑎𝜌tip(1 − 𝑘)𝑤ls
∭𝒆𝒙 ∙ 𝛁𝑤PTN

l  dΣ
Σ

 (3.13) 

Suppose that the composition field in the liquid at steady state is equal to the Ivantsov 

solution, and the steady-state tip radius and velocity are just 𝜌tipIv and 𝑣tipIv . Taking the three-

dimensional form of Eq. (1.8) into Eq. (3.13) yields 

 𝐶(𝑎) =
Pe exp (Pe)

π𝑎𝜌tipIv
∭exp(−

Pe(𝑥 + √𝑥2 + 𝑟2)

𝜌tipIv
) ∙ (√𝑥2 + 𝑟2)

−
1
2
∙ 2π𝑟d𝑟d𝑥

Σ

 (3.14) 

where the integration zone can be expressed as 
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Σ:  

{
 
 

 
 

 𝑟: 0 → √𝑅integ
2 − (𝑥 −

𝜌tipIv
2

)
2

, for  𝑥 ∈ [
𝜌tipIv
2

, 𝑅integ +
𝜌tipIv
2

]

 𝑟:√−2𝜌tipIv (𝑥 −
𝜌tipIv
2

) → √𝑅integ
2 − (𝑥 −

𝜌tipIv
2

)
2

, for 𝑥 ∈ [−𝑎 +
𝜌tipIv
2

,
𝜌tipIv
2

]

 

The curve of three-dimensional 𝐶(𝑎) for Al-7 wt.% Si alloy with 𝛺 = 0.1 is plotted in 

Fig. 3.10b. The same as in two dimensions, 𝐶(𝑎) increases from 0 to more than 1 with the 

increase of 𝑎/𝛿dIv. In our further observation of three-dimensional simulations (not shown 

here), the simulations with 𝑎/𝛿dIv ∈ {1, 2, 5, 7}  have convergent results, whereas the 

simulation with 𝑎/𝛿dIv = 10 has divergent results. This observation corresponds well to the 

explanation: results are convergent if 𝐶(𝑎) < 1; results are divergent if 𝐶(𝑎) > 1. 

The evolutions of 𝑎/𝛿dIv  with 𝛺 at 𝐶(𝑎) = 1 in two-dimensional and three-dimensional 

models are drawn in Fig. 3.11. 𝑎/𝛿dIv|𝐶(𝑎)=1
 decreases with 𝛺 , indicating that at high 

supersaturation the choice of 𝑎 is more limited. Besides, in both two-dimensional and three-

dimensional models, large integration distance means large consumption on computational 

resource, therefore in the real simulation it is rare to use a large integration distance. In the 

following simulations the choice of 𝑎 guarantees the convergence of kinetics.  

 

Fig. 3.11  Evolution of the value of 𝒂/𝜹𝐝𝐈𝐯  with 𝜴 at 𝑪(𝒂) = 𝟏, in two-dimensional and three-

dimensional models. 

3.3 Three-dimensional PTN parameters in isothermal condition 

The three-dimensional PTN model has also been developed. Its parameters are to be 

investigated as the same way as the two-dimensional model. For this, the growth of a single 

dendritic branch of Al-7 wt.% Si alloy under constant temperature with supersaturation 𝛺 =

0.062  is studied. The velocity of Ivantsov – Solvability solution at this temperature is 

0.02 mm/s , corresponding to the minimum pulling velocity in the CETSOL project 

experiments. Physical parameters from Ivantsov – Solvability solution are given in Table 3.1. 

The initial length of the branch is 15𝛿dIv , long enough for any integration distance 

investigated. The initial composition in the liquid is the nominal composition 𝑤0 = 7 wt.%, 
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leading to a long transient to arrive at its steady-state growth 1. The simulation domain is a 

cube, and the branch grows from its bottom. In this section we are only interested in its 

steady-state kinetics that will be compared with the Ivantsov – Solvability solution, so the 

length of the cube must be large enough for the branch arriving at steady state: it is hereby 

chosen as 3 mm ≈ 160𝛿dIv. The simulation time is set as 140 s. The integration distance 𝑎, 

the minimum mesh size ℎmin, the time step ∆𝑡, and the radius of truncating cylinder 𝑟cyl are 

the parameters investigated in this section.  

Table 3.1  Physical parameters from Ivantsov – Solvability solution, for Al-7 wt.% Si alloy with 

supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐.  

Variable Name Unit Value 

Tip radius 𝜌tipIv mm  5.27 × 10−3  

Tip velocity 𝑣tipIv  mm ∙ s−1  2 × 10−2  

Diffusion length 𝛿dIv mm  1.87 × 10−2  

The integration distance is nondimensionalized by the diffusion length of a parabolic 

branch under Ivantsov – Solvability solution. The minimum mesh size is nondimensionalized 

by the tip radius of Ivantsov – Solvability solution, and the time step is nondimensionalized 

by the quotient of the minimum mesh size divided by the tip velocity of Ivantsov – Solvability 

solution, hence introducing the parameters 𝛼, 𝛾, and 𝜏 

 𝑎 =
1

𝛼
𝛿dIv (3.15) 

 ℎmin = 𝛾𝜌tipIv (3.16) 

 ∆𝑡 = 𝜏
ℎmin
𝑣tipIv

 (3.17) 

For the sake of precision on kinetics, the truncating cylinder should not intersect with the 

integration area [14], so a minimum applicable radius of truncating cylinder at steady state 

𝑟cyl
min is defined as the distance from the intersection of the circle contour of the integration 

area with the parabola to the axis of the branch, under the assumption that its growth follows 

the Ivantsov – Solvability solution: 

 𝑟cyl
min = √2𝑎𝜌tipIv  (3.18) 

𝑟cyl is then nondimensionalized by 𝑟cyl
min, hence introducing the parameter 𝛽: 

 𝑟cyl = 𝛽𝑟cyl
min (3.19) 

Simulation parameters are given in Table 3.2. 

                                                 

1 We remind that for the above two-dimensional simulations the initial composition field was set to the 

Ivantsov solution.  
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Table 3.2  Simulation parameters of three-dimensional PTN simulation for Al-7 wt.% Si alloy 

with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐.  

Variable Name Unit Value 

Minimum PTN mesh size ℎmin 𝜌tipIv  𝛾 

PTN mesh size in TA1 ℎ1 ℎmin 2 

PTN mesh size in TA2 ℎ2 ℎmin 5 

PTN mesh size in solid ℎsolid ℎmin 5 

Maximum PTN mesh size ℎmax ℎmin 20 

Integration distance (Eq. (3.4) for 𝛿dIv) 𝑎 𝛿dIv 1/𝛼 

Radius of truncating cylinder (Eq. (3.18) for 𝑟cyl
min) 𝑟cyl 𝑟cyl

min 𝛽 

Time step ∆𝑡 ℎmin/𝑣tipIv  𝜏 

Distance from the tip to the center of the box with ℎmin at its creation 𝑙 𝛿dIv 10 

Distance from the tip to the end of the box with ℎmin at its creation 𝑙b 𝑎 1.2 

Half height of the rectangle with ℎmin (Eq. (2.2) for 𝑅integ
c ) 𝐻 𝑅integ

c  1.5 

Distance passed by the tip between two Remeshings 𝑙R 𝑙 1.6 

TA1 thickness 𝑒1 𝑙 1 

TA2 thickness 𝑒2 𝑙 1 

3.3.1 Three-dimensional PTN simulation results and computational time 

The dendrite tip radius and tip velocity of the simulation with parameters 𝛼 = 1/3, 𝛾 =

0.5, 𝜏 = 0.5, and  𝛽 = ∞ (the branch is not truncated by the cylinder), normalized by the 

Ivantsov – Solvability solution, are shown in Fig. 3.12, where the kinetics is plotted every 10 

time steps. At the first time step, the tip is given radius and velocity of Ivantsov – Solvability 

solution for initialization, so the normalized kinetics is unity. In the following time steps its 

kinetics is calculated by the PTN method. At the beginning its growth is unsteady: large 

composition gradient near the solid/liquid interface in the vicinity of the tip yields large solute 

flux, so the tip velocity is large and tip radius is small. The growth closely approaches steady 

state gradually. At the end of simulation, the tip is near the boundary, which has considerable 

effect on the composition field in liquid in the vicinity of the tip, so the tip velocity gets 

smaller and the tip radius gets greater. There is fluctuation on the kinetics for numerical 

reasons. The dotted vertical lines are the moments when Remeshing occurs, and there is tiny 

extra fluctuation at these Remeshing moments. Since the evolution of kinetics is smooth 

overall, the tiny extra fluctuation is considered acceptable, as well as the current Remeshing 

strategy. 

The composition field on the cross section at (1.5 mm, 1.5 mm, 1.5 mm)  with +𝑥 

direction, in the above-mentioned simulation at 𝑡 = 100 s, is depicted by wireframe in Fig. 

3.13a. Dirichlet condition is imposed to all nodes belonging to the paraboloid. Finer meshes 

are employed near the tip. Fig. 3.13b is an enlargement of the meshes in the rectangle with 

black dashed edges, where the branch (in green) and the integration area (in yellow and red) 
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are overlapped. The integration area locates in the fine-mesh box with minimum mesh size 

ℎmin . The meshes for transitional areas, solid, and liquid can be easily identified. It 

demonstrates the aptness of the improved meshing strategy for three-dimensional PTN model.  

 

Fig. 3.12  Evolution of normalized tip radius and tip velocity for the three-dimensional PTN 

simulation of Al-7 wt.% Si alloy with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐, with parameters 𝜶 =
𝟏/𝟑, 𝜸 = 𝟎. 𝟓, 𝝉 = 𝟎. 𝟓, and  𝜷 = ∞. Vertical dotted lines are the moments when the 

mesh is reconstructed. The kinetics is plotted every 10 time steps.  

 

Fig. 3.13  Simulation outputs at 𝒕 = 𝟏𝟎𝟎 𝐬 on the cross section at (𝟏. 𝟓 𝐦𝐦, 𝟏. 𝟓 𝐦𝐦, 𝟏. 𝟓 𝐦𝐦) 
with +𝒙 direction, for three-dimensional PTN simulation of a single dendritic branch of 

Al-7 wt.% Si alloy with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐, with parameters 𝜶 = 𝟏/𝟑, 𝜸 =
𝟎. 𝟓, 𝝉 = 𝟎. 𝟓, and  𝜷 = ∞. (a) is the composition field. (b) is an enlargement of the 

meshes in the rectangle with black dashed edges in (a). The branch (in green) and the 

integration area (in yellow and red) are overlapped. 
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The accumulated computational time of each PTN module of this simulation, launched on 

32 CPU cores, is plotted by curves in Fig. 3.14. The total computational time of the five 

modules is 57730 s. Remeshing consumes 88% of the total computational time, Resolution of 

Solute Diffusion consumes 10% of the total computational time, Calculation of Tip Radius 

and Velocity and Dirichlet Condition both consume 1% of the total computational time, and 

Growth of Parabola hardly consumes computational time. This is the same conclusion as the 

two-dimensional PTN model. 

 

Fig. 3.14  Accumulated computational time of each PTN module in the three-dimensional PTN 

simulation mentioned in Subsection 3.3.1, launched on 32 CPU cores. Remeshing 

consumes most of the computational time. 

3.3.2 Influence of the integration distance and minimum mesh size 

In a first part, the integration distance 𝑎 and the minimum mesh size ℎmin are studied. 

The branch is not truncated by the cylinder, i.e., 𝛽 = ∞. The dimensionless time step is fixed 

as 𝜏 = 0.5. Since three-dimensional simulation consumes lots of computational resource, the 

investigating ranges of 𝛼 and 𝛾 are not as large as two-dimensional ones, but they are still 

sufficient to reveal their influence. Two series of simulations are launched on 32 CPU cores. 

For Series I, 𝛾 = 0.5, and for Series II, 𝛾 = 1. Their parameters, computational time, and 

number of elements at 𝑡 = 100 s are listed in Table 3.3. The Series I, 𝛾 = 0.5, 𝛼 = 1/3 is the 

simulation discussed in Subsection 3.3.1, but its computational time in the Table 3.3, 1086 

minutes, is larger than the sum of the accumulated computational time of the five PTN 

modules in Fig. 3.14 because the computational time listed in the Table 3.3 includes other 

modules of the simulation such as loading and partitioning of the mesh. 

Kinetics closely approaches steady state between 60 s and 100 s for all the simulations 

reported in Table 3.3. The mean value and standard deviation of 𝜌tip/𝜌tipIv  and 𝑣tip/𝑣tipIv in 

this period are computed for all the simulations, and they are plotted in Fig. 3.15 as solid 
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curves for Series I and dashed curves for Series II. The same conclusion as the study of two-

dimensional model [14] is obtained: larger integration distance and smaller minimum mesh 

size will bring steady-state results closer to Ivantsov – Solvability solution and smaller 

fluctuation, with higher computational cost. One should note that the difference between the 

steady-state kinetics and the Ivantsov – Solvability solution is larger in three dimensions than 

in two dimensions. For example, the two-dimensional steady-state velocity with 𝛼 = 1 and 

𝛾 = 1 is about 94%𝑣tipIv [15], whereas the three-dimensional steady-state velocity with 𝛼 =

1 and 𝛾 = 1 is about 77%𝑣tipIv. This may be because that the ratio 𝛿dIv/𝜌tipIv is smaller in 

three dimensions than in two dimensions, as shown in Fig. 3.5. Since ℎmin = 𝜌tipIv , the 

composition field is worse described by the mesh in three dimensions. 

Table 3.3  Parameters (various 𝜶  and 𝜸 , with 𝝉 = 𝟎. 𝟓  and 𝜷 = ∞ ), computational time, and 

number of elements at 𝒕 = 𝟏𝟎𝟎 𝐬 for three-dimensional PTN simulation of a single 

dendritic branch of Al-7 wt.% Si alloy with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐 . These 

simulations are run on 32 CPU cores.  

Series 
Parameters 

Computational time (min) Number of elements 
𝛾 𝛼 

I 0.5 

1/5 3052 2.62 × 107 

1/3 1086 1.07 × 107 

1/2 499 6.42 × 106 

1 305 3.95 × 106 

2 174 3.17 × 106 

II 1 

1/7 492 6.41 × 106 

1/5 212 3.10 × 106 

1/3 79 1.25 × 106 

1/2 52 7.33 × 105 

1 36 4.23 × 105 

It has to be noted that although Series I and II have the same dimensionless time step 𝜏, 

they do not have the same time step. Since the minimum mesh size of Series II is twice of the 

minimum mesh size of Series I, according to the definition of 𝜏, the time step of Series II is 

also twice of the time step of Series I. For the same simulation time, Series I have twice loop 

numbers than Series II. Nevertheless, the times of Remeshing are the same because 

Remeshing does not depend on loop numbers, and its computational time almost determines 

the total computational time, it is therefore reasonable to compare the total computational 

time of the two series.  

Since both increasing the integration distance 𝑎 and decreasing the minimum mesh size 

ℎmin  are able to improve the precision on kinetics, it is interesting to compare their 

consumption on computational resources. From the steady-state kinetics depicted in Fig. 3.15, 

and information in Table 3.3, Series I with 𝛼 = 1 and Series II with 𝛼 = 1/5  have very 

similar steady-state kinetics, whereas the former consumes more computational resources; 
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Series I with 𝛼 = 1/2 and Series II with 𝛼 = 1/7 consumes similar computational resources,  

whereas the former has better kinetics. There is not a universal conclusion on this subject. 

However, it is clear that even for a single dendritic branch, the three-dimensional PTN 

simulation can be resource-costing. A trade-off between accuracy and computational cost 

must be considered for three-dimensional CAPTN simulations with many dendritic branches, 

as shown in Chapter 4.  

 

Fig. 3.15  Steady-state dimensionless kinetics of three-dimensional PTN simulations of a single 

dendritic branch of Al-7 wt.% Si alloy with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐, with different 

integration distance and minimum mesh size. The 𝜶 axis is in log scale. There are two 

series of simulations: Series I represented by solid curves for 𝜸 = 𝟎. 𝟓 and Series II 

represented by dashed curves for 𝜸 = 𝟏 . Error bars represent their standard 

deviations.  

3.3.3 Influence of the time step 

Simulations with different time steps, 𝛼 = 1/3, 𝛽 = ∞, 𝛾 = 0.5, 𝜏 ∈ {0.5, 1, 2, 10, 50} 

are launched for investigating the influence of time step. Their steady-state kinetics are 

plotted in Fig. 3.16.  

 

Fig. 3.16  Steady-state dimensionless kinetics of three-dimensional PTN simulations of a single 

dendritic branch of Al-7 wt.% Si alloy with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐, with different 

time step. Error bars represent their standard deviations. 
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The time step has very small influence on the steady-state kinetics. This is because at 

steady state, the composition field remains stable in the parabolic frame of dendrite, and in the 

PTN algorithm (Fig. 2.2) the composition field is solved before calculating dendritic kinetics. 

However, the tip velocity increases and tip radius decreases slightly with the time step, 

indicating that the composition fields under different time steps have small difference with 

each other. Moreover, for describing the dendritic growth at unsteady state, the time step 

should be small enough for good temporal discretization.  

3.3.4 Influence of the radius of truncating cylinder 

Using a cylinder for truncating the parabolic branch permits to avoid the branches with 

non-physical thickness, and in the simulations of solidification, the employment of the 

truncating cylinder is indispensable [14]. It is therefore important to study the influence of the 

radius of truncating cylinder 𝑟cyl on kinetics for the following developments. This kind of 

study has been done in two dimensions [14], so now we focus on three dimensions.  

The previous simulation with parameters 𝛼 =
1

3
, 𝛾 = 0.5 , and 𝜏 = 0.5  is reused for 

studying the influence of the radius of truncating cylinder, whereas the radius of truncating 

cylinder is imposed as 𝛽 = 0.5, 2.0, and 5.0, respectively. Fig. 3.17 shows the relation of 

truncating cylinder and integration area at steady state in the simulation with (a) 𝛽 = 0.5 and 

(b) 𝛽 = 2. At steady state, if 𝛽 < 1 , the truncating cylinder will intersect with the integration 

area. 

 

Fig. 3.17  Simulation outputs of (a) 𝜷 = 𝟎. 𝟓 and (b) 𝜷 = 𝟐 at steady state. Dendritic branches are 

in green, integration areas are in yellow and red. For 𝜷 < 𝟏, the truncating cylinder 

intersects with its integration area.  

Their steady-state kinetics are depicted in Fig. 3.18 with error bars representing standard 

deviations. 𝛽 = ∞ means there is no truncating cylinder. Same as two-dimensional cases, 𝛽 <

1  yields bad calculation on kinetics and 𝛽 > 1  hardly influences the dendritic kinetics. 

However, even though 𝛽 > 1, the composition Dirichlet condition changes with 𝛽, so the 

composition field may have small change. This explains the small difference on kinetics 

between 𝛽 = 2, 5, and ∞. In the following simulations, 𝑟cyl = 2𝑟cyl
min is chosen. 
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Fig. 3.18  Steady-state dimensionless kinetics of three-dimensional PTN simulations of a single 

dendritic branch of Al-7 wt.% Si alloy with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐,  with different 

radius of truncating cylinder. 𝜷 axis is in log scale. 𝜷 = ∞ means there is no truncating 

cylinder. Error bars represent their standard deviations. 

3.4 Conclusion 

This chapter was dedicated to the parametric study of the PTN model. The kinetics 

calculated by the improved algorithm has been compared with the kinetics calculated by the 

original algorithm in two dimensions. They are almost the same, attesting that the improved 

algorithm does not influence the kinetics. Thus, the parametric study of two-dimensional PTN 

model [14] is valid to the improved algorithm as well. The diffusion length of a dendritic 

branch under Ivantsov solution has been defined. It is used for nondimensionalizing the 

integration distance and the dimension of the fine-mesh box in the rest of this thesis. It is 

observed that when the integration distance is too large the kinetics will be divergent. This 

phenomenon has been explained by mathematical deduction. For the three-dimensional PTN 

model, parametric studies on integration distance, minimum mesh size, time step, and radius 

of truncating cylinder have been carried out. These studies are equivalent to the two-

dimensional parametric studies [14], and the conclusion is similar to that of two-dimensional 

model: in certain range, larger integration distance and smaller minimum mesh size improve 

the kinetics precision, time step has tiny influence on steady-state kinetics, and the truncating 

cylinder should not intersect with the integration area. These studies are important reference 

for parameters in the following studies.  
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Résumé en français 

La première implémentation du modèle CAPTN a été faite avant cette thèse. Des 

améliorations algorithmiques ont été réalisées au cours de cette thèse. Ces améliorations 

permettent de choisir une loi de croissance de la pointe appropriée en fonction de la longueur 

de la branche physique, d'éliminer les branches tertiaires superposant sa branche primaire, 

d'activer un pourcentage de branches latérales, d'imposer une condition de Dirichlet de la 

composition en fonction de la température locale du nœud, et d'appliquer la stratégie de 

maillage adaptatif hétérogène pour la méthode PTN. Toutes ces améliorations sont valables 

en deux dimensions et trois dimensions. Le modèle tridimensionnel CAPTN est évalué en 

modélisant un grain équiaxe croissant à une sursaturation constante. La cinétique obtenue 

par ce modèle est en bon accord avec celle obtenue par le modèle PF (Phase-Field) et le 

modèle DNN (Dendritic Needle Network). En particulier, pour un domaine de simulation de 

même taille, le modèle CAPTN prend moins de temps que le modèle DNN. 
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Since the PTN method is developed to describe dendritic growth and the Cellular 

Automaton (CA) method aims at modeling grain structures and can be coupled with large 

scale solution for heat and mass transfers, their complementary advantages have motivated 

their coupling in the so-called Cellular Automaton – Parabolic Thick Needle (CAPTN) 

method. This coupling was firstly proposed by Fleurisson in his thesis [14]. Section 4.1 is a 

recall of it. Section 4.2 and 4.3 will focus on the adaptations of the CA and PTN methods for 

building the CAPTN method. Then the validation of the three-dimensional method will be 

presented in Sections 4.4 and 4.5. 

4.1 Review on the coupling of the PTN and the CA methods 

4.1.1 The CA method adapted to the PTN coupling 

In the CA method, dendritic grains are approximated as orthodiagonal quadrilaterals in 

two dimensions or orthodiagonal octahedrons in three dimensions, called envelopes, at the 

scale of automaton cells (see Fig. 4.1).  

 

Fig. 4.1  Illustration of the principle of the CAPTN method. The red orthodiagonal 

quadrilateral is the envelope associated to the square edge CA cell. Its center is denoted 

as 𝑪, and its four apices are denoted as 𝑺𝟎, 𝑺𝟏, 𝑺𝟐, and 𝑺𝟑 . Suppose it is created by 

upward capture. 𝑪𝑺𝟎 is its principal branch, 𝑪𝑺𝟏 is its opposite branch, and 𝑪𝑺𝟐 and 

𝑪𝑺𝟑 are its side branches. The principal branch associates a truncated parabola in blue. 

The opposite branch has a gray parabola but never grows. Side branches have green 

parabolas. 

For an envelope associated to a CA cell, its center 𝐶 and apices 𝑆𝑖, 𝑖 ∈ [0, 3] consist of the 

principal growing directions of the grain. The segments between the center and the apex 

𝐶𝑆𝑖, 𝑖 ∈ [0, 3] are called envelope branches. The orientations of the branches correspond to 

the crystallographic directions 〈1 0〉. Grain growth is thus modeled by the growth of envelope 

branches that eventually capture neighboring cells. In the classical CA method, a CA cell in 

the liquid state will be captured if its cell center is contained within an envelope (mentioned in 

Subsection 1.2.5). In the CAPTN method, however, this rule has been adjusted. Many 

parabolas are not created (for example, the branches towards the solid do not associate 

parabolas. This will be mentioned in Subsection 4.1.2), therefore the envelope will not grow 

in all directions. It will be impossible to contain the centers of all its adjacent cells in the 

liquid state within the envelope. Moreover, with the strong solute interaction added by the 
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PTN method, the advance of the apices in the adjacent cells may be more constrained, such as 

the secondary branches with slower growth. To limit these problems, the capture is facilitated: 

in the two-dimensional CAPTN model, a CA cell in liquid state will be captured if its 

circumscribed circle is intersected by the envelope. The capture method is illustrated in Fig. 

4.2. In Fig. 4.2a, a red envelope associated to the red cell grows. Other white cells are in 

liquid state. As it grows, the envelope will intersect with the blue circle that circumscribes the 

blue cell located above the red cell (Fig. 4.2b). The blue cell is then captured, inducing the 

creation of its own envelope with the same orientation of the branches as the capturing 

envelope. Then the two envelopes continue to grow (Fig. 4.2b). Later, the red envelope also 

reaches the green circle, hence capturing the green cell located on its right, and a similar state 

change of the green cell and initialization of a green envelope take place (Fig. 4.2c). A CA 

cell can be captured only once. Even later the blue envelope enters into the green circle but 

will not capture the green cell again. 

 

Fig. 4.2  Illustration of the capture algorithm, the state change, and the selection of side 

branches in the CAPTN method. Cells in colors are in mushy state, and cells in white 

are in liquid state. (a) At the beginning the red cell in mushy state has its envelope 

drawn in red. (b) The red envelope grows and intersect with the blue circle, so the blue 

cell is captured, inducing the blue envelope. (c) The red and blue envelopes continue to 

grow. The red envelope first reaches the green circle, therefore the green cell is 

captured by it. The four envelope branches of the red envelope are named from 𝑺𝟎 to 

𝑺𝟑. 𝑺𝟎 and 𝑺𝟑 are the capturing branches for the blue and green envelope, respectively. 

The distance between the upward branch of the red and green envelope is defined as 𝒅. 

The length of the rightward branch of the green envelope is defined as 𝑳𝟎. 
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The way that the capturing envelope enters in the circumscribed circle permits to identify 

a capturing branch (𝑆0  for the blue envelope and 𝑆3  for the green envelope in Fig. 4.2c), 

which is propagated by the new envelope. The corresponding branch of the new envelope is 

called “principal branch”. Its opposite branch is called “opposite branch” and the other 

branches are called “side branches”. The positions of side branches are imposed by the 

capture methodology. Take the green envelope in Fig. 4.2c as an example. Imagine that this is 

the moment when the green cell is captured and the green envelope is created. The length of 

its principal branch, which is the rightward branch, denoted as 𝐿0, is equal to half of the 

length of the edge 𝑆1𝑆3 of the red envelope [15]. One has to note that the envelope center can 

be out of its corresponding cell, such as the blue and green envelopes in Fig. 4.2c.  

4.1.2 Branches growth velocity 

The principle of the CAPTN method is to compute the growth velocity of envelope 

branches by using the PTN method. Fig. 4.1 is an illustration in two dimensions. This CA cell 

is in mushy state, so it has a growing envelope. Envelope branches are regarded as dendritic 

arms. Each envelope branch associates a parabola (maybe truncated, according to the 

thickness of the parabola, such as the upward branch in Fig. 4.1): the branch is just the axis of 

its parabola, and the branch and the parabola (maybe truncated) have the same length. The tip 

of the parabola is at the apex of the envelope. Thus, the description of the morphology of a 

parabola necessitates the center of the envelope, the apex of the envelope, and its tip radius.  

The CA method stores all the information about envelopes, such as coordinates of centers 

and apices. The PTN method owns tip radius and velocity for each parabola. The envelope 

information is transferred to the PTN method for building parabolas on the PTN mesh for all 

branches growing on the CA grid. Dirichlet condition is imposed to them in order to compute 

the composition field in the liquid. Then the velocity of each tip is calculated from solute flux 

in the PTN method. This velocity returns to the CA method as the growing velocity of its 

corresponding apex. 

For envelopes created by the capture of a cell, the principal branch is the continuity of the 

already existing capturing branch. As the opposite branch is towards the existing capturing 

branch, it cannot grow. Thus, no parabola is associated to this branch and its growth velocity 

is imposed to zero. The initial length of side branches is limited to the thickness of the 

principal branch parabola. In order to avoid perturbation of the growth of the principal branch 

due to the growth of side branches, the growth of the side branches is allowed only when the 

principal branch reaches a sufficient length. This length will be defined later in Subsection 

4.2.1. 

4.1.3 Deactivation of parabolas 

As the grain propagates on the CA grid, the number of parabolas will become large. This 

will increase the complexity of computation, especially in the current PTN meshing strategy 

because a fine-mesh box is used for each parabola. It is certain that all these parabolas are not 

useful for calculation. As mentioned before, the opposite branch of an envelope is never built. 

Due to the facilitation on the capture, a geometric estimation of the maximum length that a 
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branch will definitively capture neighboring cell is selected. Branches are limited to this 

maximal length: if the length of a branch exceeds twice of the diagonal of the CA cell 

(2√2𝑙CA in two dimensions, 2√3𝑙CA in three dimensions), this branch is stopped so no more 

parabola is associated to it. Moreover, once a CA cell is deallocated for all its neighboring 

cells are captured, its envelope information will be discarded, hence any parabola will no 

longer be associated with it. 

4.2 Improvements on the CA method for adapting to the CAPTN method 

For the coupling of the CA method and the PTN method, some basic managements on 

both methods have been done by Fleurisson [14]. Nevertheless, further investigations and 

applications showed shortcomings. The CA method is improved as follows for better adapting 

to the CAPTN method.  

4.2.1 Activation of side branches 

Let’s consider the two envelopes in Fig. 4.3. The red envelope belongs to Cell 𝜇, and its 

branches are named as 𝑆0
𝜇

, 𝑆1
𝜇

, 𝑆2
𝜇

, and 𝑆3
𝜇

. Each branch is associated with a parabola (maybe 

truncated). This envelope captured Cell 𝜈 , inducing the creation of the green envelope 

belonging to Cell 𝜈. The branches of the green envelope are named as 𝑆0
𝜈, 𝑆1

𝜈, 𝑆2
𝜈, and 𝑆3

𝜈. 𝑆0
𝜈 

and 𝑆0
𝜇

 are defined by the same apex, and their associated parabolas have the same tip radius 

and tip velocity. 𝑆1
𝜈 is the opposite branch, so it has no associated parabola. 𝑆2

𝜈 and 𝑆3
𝜈 are side 

branches. They could be regarded as tertiary branches of the primary branches 𝑆2
𝜇

 and 𝑆3
𝜇

. The 

growth of tertiary branches is allowed only when the distance from them to their primary 

branch is greater than 2𝑟cyl. 𝑆2
𝜈 and 𝑆3

𝜈 will thus be eliminated if the distance from them to 𝑆2
𝜇

 

and 𝑆3
𝜇

, denoted as 𝑑  in Fig. 4.3, is not greater than 2𝑟cyl  (𝑟cyl  is the radius of truncating 

cylinder). This is achieved in order to avoid that the branch along 𝑆2
𝜈 (or 𝑆3

𝜈) will overlap the 

branch along 𝑆2
𝜇

 (or 𝑆3
𝜇
) unphysically in the future. This is also illustrated in Fig. 4.2c.  

 

Fig. 4.3  Illustration of two envelopes associated with parabolas in the CAPTN method. The red 

envelope belongs to CA Cell 𝝁, and its apices are named as 𝑺𝟎
𝝁
, 𝑺𝟏

𝝁
, 𝑺𝟐

𝝁
, and 𝑺𝟑

𝝁
. Each 

branch is associated with a red parabola (maybe truncated). This envelope captured 

the CA Cell 𝝂, inducing the creation of the green envelope belonging to Cell 𝝂. The 

apices of the green envelope are named as 𝑺𝟎
𝝂, 𝑺𝟏

𝝂, 𝑺𝟐
𝝂, and 𝑺𝟑

𝝂. 𝑺𝟎
𝝂 and 𝑺𝟎

𝝁
 are the same 

point, and their associated parabolas have the same tip radius and tip velocity. 𝑺𝟏
𝝂 is the 

opposite branch, so it has no associated parabola. 𝑺𝟐
𝝂  and 𝑺𝟑

𝝂  are side branches, 

associating their own parabola. The distance between 𝑺𝟐
𝝁

 (or 𝑺𝟑
𝝁

) and 𝑺𝟐
𝝂  (or 𝑺𝟑

𝝂 ) is 

denoted as 𝒅. The length of 𝑺𝟎
𝝂 is denoted as 𝑳𝟎

𝝂. 
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Other side branches are permitted to grow with some delay after the time of capture, 

because on the one hand the formation of secondary branches behind the primary tip only 

occurs from a sufficient distance to have enough supersaturation due to the solute rejected by 

the primary tip [18, 57], and on the other hand this avoid hindering the growth of the principal 

branch. In the CAPTN model, when the length of the principal branch is greater than 3𝑟cyl or 

the maximal length (twice of the diagonal of the CA cell), side branches may start to grow. As 

illustrated in Fig. 4.3, the length of the principal branch of the green envelope is denoted as 

𝐿0
𝜈 . If 𝐿0

𝜈 > min(3𝑟cyl, 2√2𝑙CA)  in two dimensions or 𝐿0
𝜈 > min(3𝑟cyl, 2√3𝑙CA)  in three 

dimensions, 𝑆2
𝜈 and 𝑆3

𝜈 may start to grow. 

It is also possible to allow only part of the side branches to grow, with the help of a 

random number in the current code. Each side branch is associated with a random number 

between 0 and 1. If its random number is smaller than a chosen threshold 𝑠𝑏 1, then this side 

branch will grow when the length of its principal branch satisfies the condition; otherwise it 

never grows. In this way, 𝑠𝑏% or so of the side branches will grow in the simulation. This 

part activation of the side branches operation saves computational resources by reducing the 

number of branches. This will be demonstrated in Subsection 4.4.2. 

One should note that the CAPTN model does not aim at simulating the secondary 

dendrite arm spacing but only the primary dendrite arm spacing, so the number of secondary 

branches must be large enough to simulate branching. 

4.2.2 Selection of growth law based on the physical length of branch 

As mentioned above, the PTN method necessitates an integration area for calculating the 

solute flux. Thus, a branch must be at least longer than its integration distance 𝑎 (currently it 

is a constant) to employ the PTN method as its growth law. In the CAPTN simulations there 

may be branches shorter than 𝑎 , such as seeds or new-born side branches. To select 

appropriate growth law for a certain branch, a first idea is to test its length. If a branch is 

longer than 1.3𝑎, it will employ the PTN method as growth law; otherwise, it will grow 

following another growth law (e.g., the Ivantsov – Solvability solution). 

At the beginning of this thesis, the only available length for describing a branch was the 

envelope branch length that is the distance from the apex to the center of the envelope. This 

length is however not relevant to be used for the test. Indeed, a dendritic branch may be 

described by several super-imposed envelope branches due to the discretization of CA cells 

and the capture algorithm. This is found in Fig. 4.2b when considering the upward branches. 

Envelopes with associated upward parabolas are illustrated in Fig. 4.4. The blue envelope was 

born from capture. According to the definition of envelope branch in the CAPTN method, the 

blue envelope has its own upward branch, called “blue branch”. The upward branch of the red 

envelope is called “red branch”. These two branches share the same tip position, the same 

growing direction, and the same radius. They differ by their lengths (because their roots are 

different). Evidently the blue branch that does not exist physically is a part of the red branch. 

                                                 

1 𝑠𝑏 ∈ [0, 1], so in the following 𝑠𝑏% ∈ [0, 100]. 
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The envelope branch length of the blue branch is 𝐿1 and the envelope branch length of the red 

branch is 𝐿2. If they are used for selecting the growth law, there might be a conflict. Suppose 

that 𝐿1 > 1.3𝑎 and 𝐿2 < 1.3𝑎. The kinetics of the red branch will be calculated by the PTN 

method whereas the kinetics of the blue branch will be calculated by another law, hence the 

two physically same tips will have different radii and velocities!  

 

Fig. 4.4  CA envelopes from Fig. 4.2b associated with upward branches. The blue (resp. red) 

truncated parabola with length 𝑳𝟏  (resp. 𝑳𝟐 ) associates with the upward envelope 

branch of the blue (resp. red) envelope. They correspond to the same physical dendritic 

branch.   

In order to reconcile this conflict, a new parameter 𝐿phy is introduced. It is the physical 

length of a branch, i.e., the distance from the tip to the root of a physical branch. The blue 

branch and the red branch therefore have the same physical length 𝐿phy. In Fig. 4.4, if the red 

envelope is a seed, then 𝐿phy will just be 𝐿1. In terms of implementation, during the capture, 

𝐿phy of the principal branch is inherited from that of the capturing branch.  

Now the selection criterion for the PTN method can be established with the help of 𝐿phy: 

for a dendritic branch in the CAPTN method, if 𝐿phy > 1.3𝑎 , the PTN method will be 

employed as its growth law; otherwise it is a short branch and there are two cases. 

• For a new seed, such as an equiaxed grain, all its branches can grow. Tip radius and tip 

velocity of each branch are initialized by the Ivantsov – Solvability solution (see 

Subsection 1.1.3) based on the CA cell temperature. Every branch keeps this tip radius 
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and tip velocity for growing, until their physical lengths exceed 1.3𝑎. Then the PTN 

method is employed as the growth law.  

• For an envelope born from capture, when side branches start to grow, their tip radii 

and tip velocities are initialized by those of the principal branch at this time, and their 

tip positions are just at the solid/liquid interface of the principal branch. They keep this 

kinetics for growing until their physical lengths exceed 1.3𝑎, then the PTN method is 

used. 

In both cases, once a dendritic branch starts to grow, its associated parabola will be 

created, and composition Dirichlet boundary condition will be imposed to the parabola. 

During its growth before the employment of the PTN method, the composition field in the 

liquid of its surroundings evolves as well, ensuring the composition field in the vicinity of the 

tip will be derivable when the PTN method is used for the first time. 

4.3 Improvements on the PTN algorithm for adapting to the CAPTN method 

The CAPTN method can be applied for modeling more complex cases than the PTN 

method (presented in Chapter 2 and Chapter 3), such as dendritic growth with side branches 

under non-uniform temperature. Non-uniform temperature field will complicate the 

composition Dirichlet condition on branches. More branches will challenge the remeshing 

strategy mentioned above that is valid for a single branch. In attempts to adapt the PTN 

method to the CA method for modeling these cases, its algorithms necessitate adjustments. 

4.3.1 Dirichlet Condition using local temperature 

The Dirichlet Condition algorithm introduced in Subsection 2.2.3 determines the 

solid/liquid interfacial composition by the temperature of the tip and impose it to all nodes 

belonging to the corresponding branch. It is suitable for CAPTN simulation under isothermal 

condition. For the CAPTN simulations under non-isothermal condition, this algorithm is not 

relevant.  

A dendritic branch may contain several same-direction envelope branches due to the 

capture algorithm, as illustrated in Fig. 4.4. Moreover, non-growing envelopes can remain in 

the simulation because of the fact that all its neighboring cells are not captured. Since in the 

previous algorithm (Fig. 2.13) the interfacial composition is determined by the tip 

temperature, this yields discontinuous solid/liquid interfacial composition along the growing 

direction of the branch. Fig. 4.5a is the composition field of a single branch of succinonitrile-

0.4 wt.% acetone under upward temperature gradient. The white grid is the CA grid, and the 

thicker white contour is the branch depicted by the PTN mesh. The discontinuity of 

composition in the solid is not physical and, as Dirichlet boundary condition, will influence 

the composition field in the liquid.  

To solve this problem, the Dirichlet Condition algorithm is improved for the CAPTN 

method: the solid/liquid interfacial composition at each node in the solid is determined by the 

local temperature of the node. There is already a nodal temperature field on the PTN mesh, so 

this improvement does not bring in extra complicated implementation work. In addition, there 
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is no more need to interpolate the temperature at the tip position. The improved algorithm is 

explained in Fig. 4.6. Here the length of parabola 𝑗 , denoted as 𝐿𝑗 , is the length of the 

envelope branch. The difference with the algorithm in Fig. 2.13 starts at Line 18.  

 

Fig. 4.5  Composition field in the solid and liquid in a two-dimensional CAPTN simulation of a 

single branch of succinonitrile-0.4 wt.% acetone growing under upward temperature 

gradient. The white grid is the CA grid. The truncated parabola is enclosed by the 

thicker white contour. Its nodes are imposed to interfacial composition by (a) the 

previous Dirichlet Condition algorithm using tip temperature and (b) the new Dirichlet 

Condition algorithm using local temperature. 

Fig. 4.5b presents the composition field of the same case calculated by the new Dirichlet 

Condition algorithm. The composition field in the solid (the part enclosed by thicker white 

curve) is now continuous. The composition field in the liquid is better calculated.  
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Fig. 4.6  Improved Dirichlet Condition algorithm using local temperature. As inputs, 𝑻 is the 

nodal temperature field on the PTN mesh, and “parabolas” means the tip coordinates, 

root coordinates, and radius of each parabola. As outputs, 𝜹∈𝐩𝐚𝐫𝐚𝐛𝐨𝐥𝐚 is a nodal field 

identifying that nodes belong to parabolas, and 𝒘𝐏𝐓𝐍
𝐥𝐬  is the composition of nodes 

belonging to parabolas. From Line 18, it is different from the algorithm in Fig. 2.13 

where the solid/liquid interfacial composition is computed by tip temperature: now the 

local temperature of nodes in the solid is involved for computing its solid/liquid 

interfacial composition directly. See Fig. 2.12 for schematic illustration. 

  



Chapter 4 Improvements and evaluations of the CAPTN model 

84 

 

4.3.2 Remeshing criteria for multi-branch dendritic grain 

In the CAPTN simulation there are generally more than one dendritic branch, so the 

remeshing criteria for a single branch proposed in Subsection 2.2.2 must be generalized.  

If a branch is created for the first time, for example a side branch is determined to grow, 

then the mesh near this branch will be reconstructed locally. This operation is performed by 

the local remeshing function equipped in the finite element library, which allows the mesh 

generator to act on part of the mesh. The local remeshing area is defined the same way as the 

fine-mesh box but with different arguments. It includes the transitional areas of this branch, so 

the fine-mesh box and transitional areas of this branch will be reconstructed during local 

remeshing.  

If the radius of integration area of a branch is greater than 0.95𝐻 (𝐻 is the half-height of 

the fine-mesh box), then the local remeshing will also be applied for this branch: its fine-mesh 

box and transitional areas will be reconstructed based on its current position and morphology.  

During the simulation, at each time step, the maximum velocity among all tips is stored as 

max(𝑣𝑡𝑖𝑝). The mesh will be totally reconstructed (called total remeshing) if the accumulated 

distance of max(𝑣𝑡𝑖𝑝) ∆𝑡  since last total remeshing is greater than 𝑙R  ( 𝑙R  is a parameter 

defined in the simulation. It is introduced in Subsection 2.2.2). This criterion is stricter than 

the one of the PTN method; it is adopted for the simplicity of implementation because 

max(𝑣𝑡𝑖𝑝) is an already existing output. It is however less economical on computation. A 

potential improvement might be to introduce a variable for each branch to record the distance 

passed since its last local remeshing. If this distance is greater than 𝑙R, the local remeshing 

around this branch will be launched.  

4.4 Application of the three-dimensional CAPTN model at steady state 

The first application of the three-dimensional CAPTN model aims at modeling an 

equiaxed dendritic Al-7 wt.% Si alloy grain growing in a melt maintained at constant 

temperature with supersaturation 𝛺 = 0.062 (the same thermal condition as that of a single 

branch in the PTN model in Section 3.3). The tip radius, tip velocity, and diffusion length of 

Ivantsov – Solvability condition are 𝜌tipIv = 5.27 × 10−3 m, 𝑣tipIv = 2 × 10−2 mm/s, and 

𝛿dIv = 1.87 × 10
−2 mm, respectively. This dendritic grain has six primary branches, and may 

be with or without side branches. Simulations are run on 64 CPU cores. The cubic simulation 

domain is of 63 mm3 ≈ (320𝛿dIv)
3
 with minimum coordinates (0, 0, 0) mm and maximum 

coordinates (6, 6, 6) mm. The simulation time is set to 100 s. The CA cell size is 0.2 mm. 

The CA grid is aligned with the domain and begins from (0, 0, 0) mm, therefore the center of 

the domain, (3, 3, 3) mm, is just at the corner of the CA cells. The grain with six branches of 

0.02 mm ≈ 1.07𝛿dIv initial length is placed at position (3.1, 3.1, 3.1) mm. The grain does not 

locate in the center of the domain because it should not be on the face or corner of the CA cell 

in this model. The initial composition in the liquid is the nominal composition 𝑤0 = 7 wt.%. 

Other simulation parameters are listed in Table 4.1. The velocities of the primary branches at 

steady state are investigated. They are normalized by the Ivantsov – Solvability solution.  
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Table 4.1  Simulation parameters of three-dimensional CAPTN simulation for Al-7 wt.% Si alloy 

equiaxed grain with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐. 

Variable Name Unit Value 

Minimum PTN mesh size ℎmin 𝜌tipIv  1 or 1.5 

PTN mesh size in TA1 ℎ1 ℎmin 2 

PTN mesh size in TA2 ℎ2 ℎmin 5 

PTN mesh size in solid ℎsolid ℎmin 5 

Maximum PTN mesh size ℎmax ℎmin 20 

Integration distance (Eq. (3.4) for 𝛿dIv) 𝑎 𝛿dIv 3 

Radius of truncating cylinder (Eq. (3.18) for 𝑟cyl
min) 𝑟cyl 𝑟cyl

min 2 

Time step ∆𝑡 ℎmin/𝑣tipIv  1 

Distance from the tip to the center of the box with ℎmin at its creation 𝑙 𝛿dIv 10 

Distance from the tip to the end of the box with ℎmin at its creation 𝑙b 𝑎 1.2 

Half height of the rectangle with ℎmin (Eq. (2.2) for 𝑅integ
c ) 𝐻 𝑅integ

c  1.5 

Distance passed by the tip between two Remeshings 𝑙R 𝑙 1.6 

TA1 thickness 𝑒1 𝑙 1 

TA2 thickness 𝑒2 𝑙 1 

4.4.1 Equiaxed grain without side branches 

First only the six primary branches are allowed to grow and any other side branch does 

not grow, controlled by letting 𝑠𝑏 = 0. In this case the CA cell size does not influence the 

steady-state kinetics. The minimum mesh size is set equal to the tip radius of the Ivantsov – 

Solvability solution ℎmin = 𝜌tipIv . The orientation of the grain is defined by Euler angles. 

First the Euler angles are equal to (0°, 0°, 0°). This simulation takes 308 minutes. Fig. 4.7a is 

the computed structure at 𝑡 = 100 s. Branches are presented by red elements contained in the 

truncated parabola using cylinder of radius 𝑟cyl. The solid part near the tips is depicted by 

elements with minimum mesh size ℎmin. The other solid part is depicted by elements with 

larger mesh size ℎsolid, so its description is less precise. Captured CA cells are shown by 

yellow wireframe. Primary branches are denoted by their crystal directions [1 0 0], [1̅ 0 0], 

[0 1 0], [0 1̅ 0], [0 0 1], and [0 0 1̅]. The composition field on the crystal plane (1 0 0)  at the 

same time is shown in Fig. 4.7b by wireframe. It can be observed clearly that there is a fine-

mesh box near each tip. The normalized velocities of the six primary branches are plotted in 

Fig. 4.8a. The six primary branches have nearly the same velocity due to the symmetry of the 

system. Fig. 4.8b displays the minimum and maximum velocities among the six primary 

branches at each time step, which are indeed the envelope of the curves in Fig. 4.8a. The 

black dashed line with the gray zone is the average with standard deviation of the 

dimensionless velocity of a single dendritic branch growing under the same condition 

calculated by the PTN method with the same parameters in Table 4.1, between 60 s and 100 s, 

corresponding to the results in Fig. 3.15.  
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Fig. 4.7  (a) Three-dimensional view of dendritic microstructure and (b) composition field on the 

cross section for three-dimensional CAPTN simulation of an equiaxed Al-7 wt.% Si 

alloy grain with Euler angles (𝟎°, 𝟎°, 𝟎°)  growing under constant temperature with 

supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐, at 𝒕 = 𝟏𝟎𝟎 𝐬. Simulation parameters are 𝜶 = 𝟏/𝟑, 𝜷 = 𝟐, 

𝜸 = 𝟏, and 𝝉 = 𝟏. In (a) the dendritic branches are presented by red elements and the 

captured CA cells are presented by yellow wireframe. Primary branches are denoted 

by crystal directions [𝟏 𝟎 𝟎], [�̅� 𝟎 𝟎], [𝟎 𝟏 𝟎], [𝟎 �̅� 𝟎], [𝟎 𝟎 𝟏] , and [𝟎 𝟎 �̅�]. (b) is the 

composition field by wireframe on the crystal plane (𝟏 𝟎 𝟎). 

 

Fig. 4.8  Dimensionless velocities of the six primary branches of an equiaxed Al-7 wt.% Si alloy 

grain with Euler angles (𝟎°, 𝟎°, 𝟎°)  growing under constant temperature with 

supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐. Simulation parameters are 𝜶 = 𝟏/𝟑 , 𝜷 = 𝟐 , 𝜸 = 𝟏 , and 

𝝉 = 𝟏 . (a) Velocities of six primary branches are plotted. (b) The maximum and 

minimum velocity of each time step among the six primary branches are plotted. The 

velocity between 𝟔𝟎 𝐬 and 𝟏𝟎𝟎 𝐬 of a single branch growing in the same condition with 

the same simulation parameters is also plotted: the black dashed line is its mean value 

and the gray zone represents its standard deviation, corresponding to the results in Fig. 

3.15.   

 As mentioned above, the dimensionless velocity equals unity for initialization. The initial 

length of branch is about 0.37𝑎, so its velocity remains 𝑣tipIv until its physical branch length 

𝐿phy  exceeds 1.3𝑎 . At 𝑡 = 2.75s  𝐿phy > 1.3𝑎 , the PTN method begins to be used. The 

composition field in the vicinity of a tip is influenced by other branches, so its velocity falls 

down. As the branches grow, the influence of other primary branches becomes weaker and 
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weaker. After some time the velocities tend towards steady state. The velocity between 60 s 

and 100 s of this six-branch CAPTN simulation is nearly the same as the velocity between 

60 s and 100 s of the single-branch PTN simulation. This shows that the three-dimensional 

CAPTN model retrieves expected results for the growth conditions, with the same deviation 

from the Ivantsov – Solvability solution.  

The influence of the orientation of the grain is then investigated. An equiaxed grain with a 

misorientation of (20°, 20°, 20°) in Euler angles is modeled. Fig. 4.9a shows its branches (in 

red) and captured CA cells (in yellow wireframe) at 𝑡 = 100 s. Primary branches are also 

denoted by crystal directions. The composition field on the crystal plane (1 0 0) at the same 

time is depicted in Fig. 4.9b by wireframe. Normalized velocities of the six primary branches 

and their extreme values at every time step are plotted in Fig. 4.10. Compared with Fig. 4.8, 

there is no noticeable difference on the velocities of primary branches, demonstrating that the 

CAPTN model is good at computing dendritic growth of any orientation. However, the 

number of captured CA cells in the simulation with misorientation is greater compared with 

the number of captured CA cells without misorientation, as illustrated in Fig. 4.7a and Fig. 

4.9a. In terms of computational time, the simulation with misorientation takes 328 minutes, 

only a little (6.5%) longer than the simulation without misorientation. 

 

Fig. 4.9  (a) Three-dimensional view of dendritic microstructure and (b) composition field on the 

cross section for three-dimensional CAPTN simulation of an equiaxed Al-7 wt.% Si 

alloy grain with a misorientation of (𝟐𝟎°, 𝟐𝟎°, 𝟐𝟎°)  in Euler angles growing under 

constant temperature with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐 , at 𝒕 = 𝟏𝟎𝟎 𝐬 . Simulation 

parameters are 𝜶 = 𝟏/𝟑, 𝜷 = 𝟐, 𝜸 = 𝟏, and 𝝉 = 𝟏. In (a) the dendritic branches are 

presented by red elements and the captured CA cells are presented by yellow 

wireframe. Primary branches are denoted by crystal directions [𝟏 𝟎 𝟎], [�̅� 𝟎 𝟎], [𝟎 𝟏 𝟎], 
[𝟎 �̅� 𝟎], [𝟎 𝟎 𝟏], and [𝟎 𝟎 �̅�]. (b) is the composition field by wireframe on the crystal 

plane (𝟏 𝟎 𝟎). 
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Fig. 4.10  Dimensionless velocities of primary branches of an equiaxed Al-7 wt.% Si alloy grain 

with a misorientation of (𝟐𝟎°, 𝟐𝟎°, 𝟐𝟎°) in Euler angles with cellular grids growing 

under constant temperature with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐. Simulation parameters 

are 𝜶 = 𝟏/𝟑 , 𝜷 = 𝟐 , 𝜸 = 𝟏 , and 𝝉 = 𝟏 . (a) Velocities of six primary branches are 

plotted. (b) The maximum and minimum velocity of each time step among the six 

primary branches are plotted. The velocity between 𝟔𝟎 𝐬 and 𝟏𝟎𝟎 𝐬 of a single branch 

growing in the same condition with the same simulation parameters is also plotted: the 

black dashed line is its mean value and the gray zone represents its standard deviation, 

corresponding to the results in Fig. 3.15. 

4.4.2 Equiaxed grain growth with side branches 

In this part, the simulation of an equiaxed dendritic Al-7 wt.% Si alloy grain growing with 

supersaturation 𝛺 = 0.062 presented previously in Subsection 4.4.1 is retaken but the growth 

of side branches is allowed. The minimum mesh size is set to 1.5𝜌tipIv  for the sake of a trade-

off between precision and consumption of computational resource. The percentage of 

activated side branches is set to 𝑠𝑏% ∈  {0%, 20%, 50%, 100%}.  

The dendritic microstructure and the composition field on the crystal plane (1 0 0) at 𝑡 =

100 s are exhibited in Fig. 4.11 and Fig. 4.12, respectively. When no side branch is activated, 

i.e., 𝑠𝑏% = 0%, as shown in Fig. 4.11a, the branches are not fully depicted by red elements. 

Compared to Fig. 4.7a, part of the primary branches is vanished because larger mesh size is 

used. This effect can be also seen in Fig. 4.12a. The solid part near the tips is well depicted, 

guaranteeing the calculation of kinetics. When more side branches are activated, the 

description of branches becomes better, and more CA cells are captured (yellow wireframe in 

Fig. 4.11). When all side branches are activated, i.e., 𝑠𝑏% = 100%, there is discontinuity of 

description of branches by red elements in the center of the grain in Fig. 4.11d. This is due to 

the deallocation of CA cells. Fig. 4.13 is the two-dimensional view of CA cells on the crystal 

plane (1 0 0) at 𝑡 = 100 s. Blue CA cells are in liquid state. Red CA cells are in mushy state. 

White CA cells are in solid state and deallocated since all their neighboring cells are captured 

by other branches and in mushy or solid state. One should note that the three-dimensional 

Moore neighborhood (see Subsection 1.2.5) is applied for deallocation. In the two-

dimensional view it seems that some red cells should be deallocated, but all their neighboring 

cells are not captured in the three-dimensional view.  



Chapter 4 Improvements and evaluations of the CAPTN model 

89 

 

The computational time and number of elements at 𝑡 = 100 s  for simulations with 

different 𝑠𝑏% are listed in Table 4.2. The requiring computational resources increase with the 

number of activated side branches. 

Table 4.2  Computational time and number of elements at 𝒕 = 𝟏𝟎𝟎 𝐬  for three-dimensional 

CAPTN simulation of an equiaxed Al-7 wt.% Si alloy grain along cellular grids 

growing under constant temperature with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐, with different 

percentage of side branches activated (𝒔𝒃%). Simulations are run on 64 CPU cores. 

𝑠𝑏% Computational time (min) Number of elements 

0% 91 2.20 × 106 

20% 1470 2.07 × 107 

50% 3995 3.30 × 107 

100% 5064 5.76 × 107 

 

 

Fig. 4.11  Three-dimensional view of dendritic microstructure for three-dimensional CAPTN 

simulation of an equiaxed Al-7 wt.% Si alloy grain with Euler angles (𝟎°, 𝟎°, 𝟎°) 
growing under constant temperature with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐, at 𝒕 = 𝟏𝟎𝟎 𝐬, 

with different percentage of side branches activated: (a) 𝒔𝒃% = 𝟎%, (b) 𝒔𝒃% = 𝟐𝟎%, 

(c) 𝒔𝒃% = 𝟓𝟎% , (d) 𝒔𝒃% = 𝟏𝟎𝟎%. Simulation parameters are 𝜶 = 𝟏/𝟑, 𝜷 = 𝟐 , 𝜸 =
𝟏. 𝟓, and 𝝉 = 𝟏. The dendritic branches are presented by red elements and the captured 

CA cells are presented by yellow wireframe. Primary branches are denoted by crystal 

directions [𝟏 𝟎 𝟎], [�̅� 𝟎 𝟎], [𝟎 𝟏 𝟎], [𝟎 �̅� 𝟎], [𝟎 𝟎 𝟏], and [𝟎 𝟎 �̅�]. 
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Fig. 4.12  Composition field by wireframe on the crystal plane (𝟏 𝟎 𝟎)  for three-dimensional 

CAPTN simulation of an equiaxed Al-7 wt.% Si alloy grain with Euler angles 

(𝟎°, 𝟎°, 𝟎°) growing under constant temperature with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐, at 

𝒕 = 𝟏𝟎𝟎 𝐬, with different percentage of side branches activated: (a) 𝒔𝒃% = 𝟎%, (b) 

𝒔𝒃% = 𝟐𝟎%, (c) 𝒔𝒃% = 𝟓𝟎%, (d) 𝒔𝒃% = 𝟏𝟎𝟎%. Simulation parameters are 𝜶 = 𝟏/𝟑, 

𝜷 = 𝟐, 𝜸 = 𝟏. 𝟓, and 𝝉 = 𝟏. 

 

Fig. 4.13  CA cells on the crystal plane (𝟏 𝟎 𝟎) for three-dimensional CAPTN simulation of an 

equiaxed Al-7 wt.% Si alloy grain with Euler angles (𝟎°, 𝟎°, 𝟎°) growing under constant 

temperature with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐 , at 𝒕 = 𝟏𝟎𝟎 𝐬 , with all side branches 

activated (𝒔𝒃% = 𝟏𝟎𝟎%). Simulation parameters are 𝜶 = 𝟏/𝟑, 𝜷 = 𝟐, 𝜸 = 𝟏. 𝟓, and 

𝝉 = 𝟏.  Corresponding to Fig. 4.11d and Fig. 4.12d. Blue CA cells are in liquid state. 

Red CA cells are in mushy state. White CA cells in the center are in solid state and 

deallocated, so no envelope or parabola is associated with them.  
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The composition field in the liquid evolves with the number of activated side branches. 

As shown in Fig. 4.12, the more side branches are activated, the weaker the gradient is in the 

vicinity of the tip of the primary branches. This evolution yields an evolution of kinetics of 

the primary branches. The normalized velocities of the six primary branches and their 

maximum and minimum values at each time step of these simulations are plotted in Fig. 4.14. 

It is observed that there is slight decrease on the velocity between 60 s and 100 s with the 

increase of the activated side branches, which is consistent with the fact that side branches 

may slow down the growth of the primary branches by influencing the composition field at 

their surroundings. 
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Fig. 4.14  Dimensionless velocities of primary branches of an equiaxed Al-7 wt.% Si alloy grain 

with Euler angles (𝟎°, 𝟎°, 𝟎°) growing under constant temperature with supersaturation 

𝜴 = 𝟎. 𝟎𝟔𝟐, with different percentage of side branches activated: (a, b) 𝒔𝒃% = 𝟎%, (c, 

d) 𝒔𝒃% = 𝟐𝟎%, (e, f) 𝒔𝒃% = 𝟓𝟎%, (g, h) 𝒔𝒃% = 𝟏𝟎𝟎%. Simulation parameters are 

𝜶 = 𝟏/𝟑, 𝜷 = 𝟐, 𝜸 = 𝟏. 𝟓, and 𝝉 = 𝟏.  In the left figures (a, c, e, g) velocities of six 

primary branches are plotted. In the right figures (b, d, f, h) the maximum and 

minimum velocity of each time step among the six primary branches are plotted, which 

are the envelopes of the curves in their corresponding left figures.  

The influence of the orientation of the grain is investigated as well. An equiaxed grain 

with 100%  side branches and orientation (20°, 20°, 20°)  in Euler angles is modeled. 

Simulation parameters are the same as those in Table 4.1 with ℎmin = 1.5𝜌tipIv . Fig. 4.15a 

shows its branches (in red) and captured CA cells (in yellow wireframe) at 𝑡 = 100 s . 

Primary branches are also denoted by crystal directions. The composition field on the crystal 

plane (1 0 0) at the same time is depicted in Fig. 4.15b by wireframe. Normalized velocities 

of the six primary branches and their extreme values at every time step are plotted in Fig. 

4.16. The kinetics of the six branches are very similar. There is no noticeable difference on 

the steady-state velocities of primary branches between Fig. 4.14h and Fig. 4.16b, 
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demonstrating once again that the CAPTN model is relevant to computing dendritic growth of 

any orientation due to its finite element implementation with unstructured tetrahedral mesh.  

 

Fig. 4.15  (a) Three-dimensional view of dendritic microstructure and (b) composition field on the 

cross section for three-dimensional CAPTN simulation of an equiaxed Al-7 wt.% Si 

alloy grain with a misorientation of (𝟐𝟎°, 𝟐𝟎°, 𝟐𝟎°) in Euler angles, whose side branches 

are all activated, growing under constant temperature with supersaturation 𝜴 =
𝟎. 𝟎𝟔𝟐, at 𝒕 = 𝟏𝟎𝟎 𝐬. Simulation parameters are 𝜶 = 𝟏/𝟑, 𝜷 = 𝟐, 𝜸 = 𝟏. 𝟓, and 𝝉 = 𝟏. 

In (a) the dendritic branches are presented by red elements and the captured CA cells 

are presented by yellow wireframe. Primary branches are denoted by crystal directions 

[𝟏 𝟎 𝟎], [�̅� 𝟎 𝟎], [𝟎 𝟏 𝟎], [𝟎 �̅� 𝟎], [𝟎 𝟎 𝟏], and [𝟎 𝟎 �̅�]. (b) is the composition field by 

wireframe on the crystal plane (𝟏 𝟎 𝟎). 

 

Fig. 4.16  Dimensionless velocities of primary branches of an equiaxed Al-7 wt.% Si alloy grain 

with a misorientation of (𝟐𝟎°, 𝟐𝟎°, 𝟐𝟎°) in Euler angles, whose side branches are all 

activated, growing under constant temperature with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐 . 

Simulation parameters are 𝜶 = 𝟏/𝟑, 𝜷 = 𝟐, 𝜸 = 𝟏. 𝟓, and 𝝉 = 𝟏. (a) Velocities of six 

primary branches are plotted. (b) The maximum and minimum velocity of each time 

step among the six primary branches are plotted. 

However, there are more captured CA cells in the misoriented case than in the well-

oriented case, leading to an increase of side branches since each captured CA cell may 

produce a set of (4 in three dimensions) side branches. At 𝑡 = 100 s, there are 989 active 
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branches that have non-zero velocity in the misoriented simulation, whereas 370 active 

branches in the well-oriented simulation. The computational time is of large difference: the 

misoriented simulation takes 12617 minutes and the well-oriented simulation takes 5064 

minutes for running while using the same hardware.  

4.5 Application of the three-dimensional CAPTN model at unsteady state 

The CAPTN model is now evaluated by comparing its prediction of equiaxed grain 

growth to the DNN simulations and PF simulations [58]. Both the DNN model and the PF 

model are implemented by the finite difference method on an isotropic homogeneous cubic 

grid. 

In the DNN and PF simulations, an equiaxed dendritic grain grows under supersaturation 

of 0.05 and 0.25 in a cubic domain with nominal composition in the liquid. Its growth is 

unsteady at the beginning, then reaches or closely approaches steady state, and becomes 

unsteady at the end with smaller velocity due to the effect of the boundary of the simulation 

domain. Parameters are all nondimensionalized by physical parameters such as 𝜌tipIv  and 

𝑣tipIv. The solvability constant 𝜎 used in the DNN model is obtained from the PF studies: 𝜎 =

0.0165 for 𝛺 = 0.05 and 𝜎 = 0.0135 for 𝛺 = 0.25. In the DNN simulations, the growth of 

side branches is not allowed. The DNN and PF results were shared by Thomas Isensee and 

Damien Tourret.  

The CAPTN model is employed for modeling the same cases. An equiaxed grain with six 

primary branches without side branches is placed at the center of a cubic domain along 

domain edges. The temperature is uniform and fixed, corresponding to the supersaturation. 

The initial branch lengths in the DNN simulations are not identical for different mesh sizes 

for a given supersaturation; in the CAPTN simulations the initial branch length is imposed 

identically as the largest initial branch length in the DNN simulations for the same 

supersaturation. It satisfies 𝐿phy > 1.3𝑎 and allows the PTN method to be used from the first 

time step. The initial composition in the liquid is the nominal composition 𝑤0 = 7%. The CA 

cell size does not influence the kinetics. It is chosen as 0.3 mm for 𝛺 = 0.05 and 0.01 mm 

for 𝛺 = 0.25. The CAPTN model employs the adaptive heterogeneous meshing strategy, so 

its mesh size is characterized by the minimum mesh size ℎmin . The same dimensionless 

parameters for the DNN model are used except for the edge length of the simulation domain. 

The PF and DNN simulations model only 1/8  of the domain with symmetric boundary 

condition on the three faces comprising the grain center and non-flux boundary condition on 

the other three faces, whereas the CAPTN simulations model the entire domain with only 

non-flux boundary condition on its six faces, so the edge length of the CAPTN simulation 

domain 𝐿D  is twice the edge length of PF and DNN simulation domains. In the CAPTN 

simulation the six branches have very similar kinetics, so in the following analyses only the 

branch of +𝑥 direction is investigated.  

The material properties of Al-7 wt.% Si alloy are used for defining all dimensional 

parameters in the CAPTN simulations. For 𝛺 = 0.05, parameters are listed in Table 4.3.  
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Table 4.3  Parameters of simulation of an equiaxed grain without side branch growing under 

constant temperature with supersaturation 𝛀 = 𝟎. 𝟎𝟓. 

Variable Name Unit Value 

Solvability constant 𝜎 1 0.0165 

Tip radius from Ivantsov – Solvability solution 𝜌tipIv  mm 1.097 × 10−2 

Tip velocity from Ivantsov – Solvability solution 𝑣tipIv  mm/s 7.155 × 10−3 

Diffusion length from Ivantsov – Solvability solution 𝛿dIv mm 4.193 × 10−2 

Minimum PTN mesh size ℎmin 𝜌tipIv  0.35 or 0. 55 or 1 

Integration distance (Eq. (3.4) for 𝛿dIv) 𝑎 𝛿dIv 0.566 

Radius of truncating cylinder (Eq. (3.18) for 𝑟cyl
min) 𝑟cyl 𝑟cyl

min 2 

Edge length of simulation domain 𝐿D mm 2.10 

Simulation time 𝑡end s 150 

Time step ∆𝑡 s 0.5 

PTN mesh size in TA1 ℎ1 ℎmin 2 

PTN mesh size in TA2 ℎ2 ℎmin 5 

PTN mesh size in solid ℎsolid ℎmin 5 

Maximum PTN mesh size ℎmax ℎmin 10 

Distance from the tip to the center of the box with 

ℎmin at its creation 
𝑙 𝛿dIv 5 

Distance from the tip to the end of the box with ℎmin at 

its creation 
𝑙b 𝑎 1.2 

Half height of the rectangle with ℎmin (Eq. (2.2) for 

𝑅integ
c ) 

𝐻 𝑅integ
c  1.5 

Distance passed by the tip between two Remeshings 𝑙R 𝑙 1.6 

TA1 thickness 𝑒1 𝑙 1 

TA2 thickness 𝑒2 𝑙 1 

The evolution of tip velocity with tip length is plotted in Fig. 4.17. The tip velocity is 

always normalized by 𝑣tipIv, the tip velocity of Ivantsov – Solvability condition, under the 

same supersaturation. The tip position is normalized by half the domain edge length of the 

CAPTN model. PF results are identical in all subfigures. Fig. 4.17a (Fig. 4.17b, Fig. 4.17c, 

resp.) shows the DNN results with mesh size equal to 0.35𝜌tipIv  (0.55𝜌tipIv, 𝜌tipIv , resp.) and 

the CAPTN results using adaptive heterogeneous mesh with minimum mesh size equal to 

0.35𝜌tipIv  (0.55𝜌tipIv , 𝜌tipIv , resp.). Vertical dotted lines indicate the moments when the 

adaptive heterogeneous mesh is reconstructed in the CAPTN model. The impact of 

reconstructing the mesh on tip velocity is observed to be very small. The CAPTN results are 

in good agreement with the DNN results, and they both reproduce similar kinetics with the PF 

result when their characteristic mesh size is equal to 0.35𝜌tipIv  or 0.55𝜌tipIv. For mesh size 

equal to 𝜌tipIv, the CAPTN and DNN results are more fluctuating than those with smaller 

mesh size. They follow the tendency of the PF result but are significantly smaller than it. One 
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should note that the transient kinetics at the early-stage growth and the solute interaction in 

the end are well predicted by all the models. With the classical CA model this is unfeasible: 

the tip velocity will keep 𝑣tipIv during the simulation. 
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Fig. 4.17  Evolution of tip velocity with tip position for an equiaxed grain growing under 

supersaturation 𝜴 = 𝟎. 𝟎𝟓 from the PF, DNN, and CAPTN models. The tip velocity is 

normalized by 𝒗𝐭𝐢𝐩𝐈𝐯. The tip position is normalized by half of the domain edge length of 

the CAPTN model. PF results in the four figures are the same, while DNN and CAPTN 

results are from different meshes. The mesh size in the DNN model and the minimum 

mesh size in the CAPTN model equal (a) 𝟎. 𝟑𝟓𝝆𝐭𝐢𝐩𝐈𝐯 , (b) 𝟎. 𝟓𝟓𝝆𝐭𝐢𝐩𝐈𝐯 , and (c) 𝝆𝐭𝐢𝐩𝐈𝐯 . 

Vertical dotted lines indicate the moments when the adaptive heterogeneous mesh is 

reconstructed in the CAPTN model. In (d) the CAPTN model uses an homogeneous 

mesh, whose mesh size is the same as the mesh size in the DNN model, equal to 𝝆𝐭𝐢𝐩𝐈𝐯 . 

To demonstrate the effect of the adaptive heterogeneous meshing strategy on improving 

computational efficiency, another CAPTN simulation using isotropic homogeneous mesh 

with mesh size equal to 𝜌tipIv is accomplished as well. Its result is presented by green hollow 

circles in Fig. 4.17d. The PTN mesh does not need to be reconstructed during the simulation. 

There is no significant difference from the CAPTN results using adaptive mesh (Fig. 4.17c). 

The composition fields at 𝑡 = 75 s on the cross section passing the grain center for the two 

meshes are shown by wireframe in Fig. 4.18. Fields are similar but their numbers of elements 

are not in the same order of magnitude. Computational time and number of elements for 

different CAPTN simulations are listed in Table 4.4. They are all launched on a CPU with 32 

cores. It is exciting that the computational time of the CAPTN simulation with adaptive 

heterogeneous meshing strategy is less than 1%  of that of the CAPTN simulation with 

isotropic homogeneous mesh 1.  

The CAPTN simulations with adaptive heterogeneous meshing strategy take 13 minutes 

for ℎmin = 𝜌tipIv and 60 minutes for ℎmin = 0.55𝜌tipIv . As comparison, the DNN simulation 

with constant mesh size equal to 𝜌tipIv takes less than 4 minutes, and the one with constant 

mesh size equal to 0.55𝜌tipIv takes 50 minutes, on a single GPU GeForce RTX 2080 Ti with 

4352 cores. One should remind that the simulation domains of the CAPTN simulations are 

eight times bigger than the simulation domains of the DNN simulations. So in short, the 

                                                 

1  The homogeneous mesh is prepared before the simulation, so the mesh preparation time is not 

included in the computational time. 
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CAPTN simulation with ℎmin = 𝜌tipIv takes 13/(8 × 4) = 41% of the computational time of 

the DNN simulation, and the CAPTN simulation with ℎmin = 0.55𝜌tipIv  takes 60/

(8 × 50) = 15% of the computational time of the DNN simulation. 

 

Fig. 4.18  Composition field on the center cross section presented by wireframe, for the three-

dimensional CAPTN simulation of an equiaxed grain without side branches growing 

under supersaturation 𝜴 = 𝟎. 𝟎𝟓 , by using (a) adaptive heterogeneous mesh with 

𝒉𝐦𝐢𝐧 = 𝝆𝐭𝐢𝐩𝐈𝐯  and (b) isotropic homogeneous mesh with mesh size 𝒉 = 𝝆𝐭𝐢𝐩𝐈𝐯 . Their 

results are the blue hollow circles in Fig. 4.17c and Fig. 4.17d.  

 

Table 4.4  Computational time and number of elements at 𝒕 = 𝟕𝟓 𝐬 for three-dimensional CAPTN 

simulation of an equiaxed grain along cellular grids growing under supersaturation 

𝜴 = 𝟎. 𝟎𝟔𝟐, with different meshes. Simulations are run on 32 CPU cores. 

CAPTN simulation Computational time (min) Number of elements 

Adaptive heterogeneous mesh with ℎmin = 0.35𝜌tipIv 251 6.80 × 106 

Adaptive heterogeneous mesh with ℎmin = 0.55𝜌tipIv 60 1.71 × 106 

Adaptive heterogeneous mesh with ℎmin = 𝜌tipIv  13 2.53 × 105 

Isotropic homogeneous mesh with ℎ = 𝜌tipIv  1451 9.70 × 107 

 

The simulations for Ω = 0.25 are analyzed in a similar way. Parameters are listed in 

Table 4.5. Fig. 4.19a exhibits the DNN results with mesh size equal to 0.2𝜌tipIv  and the 

CAPTN results using adaptive heterogeneous mesh with minimum mesh size equal to 

0.2𝜌tipIv . Fig. 4.19b exhibits the DNN results with mesh size equal to 0.3𝜌tipIv  and the 

CAPTN results using adaptive heterogeneous mesh with minimum mesh size equal to 

0.3𝜌tipIv.Vertical dotted lines indicate the moments when the adaptive heterogeneous mesh is 
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reconstructed in the CAPTN model. The PF result is regarded as reference. It is observed that 

the CAPTN model and the DNN model both reproduce better kinetics with smaller mesh size.  

 

Table 4.5  Parameters of simulation of an equiaxed grain without side branch growing under 

constant temperature with supersaturation 𝛀 = 𝟎. 𝟐𝟓. 

Variable Name Unit Value 

Solvability constant 𝜎 1 0.0135 

Tip radius from Ivantsov – Solvability solution 𝜌tipIv  mm 9.923 × 10−4 

Tip velocity from Ivantsov – Solvability solution 𝑣tipIv  mm/s 8.743 × 10−1 

Diffusion length from Ivantsov – Solvability solution 𝛿dIv mm 1.716 × 10−3 

Minimum PTN mesh size ℎmin 𝜌tipIv  0.2 or 0. 3 

Integration distance (Eq. (3.4) for 𝛿dIv) 𝑎 𝛿dIv 0.979 

Radius of truncating cylinder (Eq. (3.18) for 𝑟cyl
min) 𝑟cyl 𝑟cyl

min 2 

Edge length of simulation domain 𝐿D mm 0.068 

Simulation time 𝑡end s 0.054 

Time step ∆𝑡 s 4.5 × 10−5 

PTN mesh size in TA1 ℎ1 ℎmin 2 

PTN mesh size in TA2 ℎ2 ℎmin 5 

PTN mesh size in solid ℎsolid ℎmin 5 

Maximum PTN mesh size ℎmax ℎmin 10 

Distance from the tip to the center of the box with 

ℎmin at its creation 
𝑙 𝛿dIv 5 

Distance from the tip to the end of the box with ℎmin at 

its creation 
𝑙b 𝑎 1.2 

Half height of the rectangle with ℎmin (Eq. (2.2) for 

𝑅integ
c ) 

𝐻 𝑅integ
c  1.5 

Distance passed by the tip between two Remeshings 𝑙R 𝑙 1.6 

TA1 thickness 𝑒1 𝑙 1 

TA2 thickness 𝑒2 𝑙 1 

 

Although the CAPTN model and the DNN model have similar method for calculating the 

kinetics, the CAPTN model gives slightly less precise results than the DNN model. This may 

be caused by their differences on mesh simplex. Indeed, the CAPTN model employs linear 

tetrahedral elements while the DNN model employs linear hexahedral elements. It is known 

from literature that linear tetrahedral elements yield less precise results than linear hexahedral 

elements of the same mesh size [59–62].  
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Fig. 4.19  Evolution of tip velocity with tip position for an equiaxed grain growing under 

supersaturation 𝜴 = 𝟎. 𝟐𝟓 from the PF, DNN, and CAPTN models. The tip velocity is 

normalized by 𝒗𝐭𝐢𝐩𝐈𝐯. The tip position is normalized by half of the domain edge length of 

the CAPTN model. PF results in the two figures are the same, while DNN and CAPTN 

results are from different meshes. The mesh size in the DNN model and the minimum 

mesh size in the CAPTN model equal (a) 𝟎. 𝟐𝝆𝐭𝐢𝐩𝐈𝐯  and (b) 𝟎. 𝟑𝝆𝐭𝐢𝐩𝐈𝐯 . Vertical dotted 

lines indicate the moments when the adaptive heterogeneous mesh is reconstructed in 

the CAPTN model. 

4.6 Conclusion  

This chapter is dedicated to the multi-scale coupling CAPTN model and its application to 

three-dimensional configurations of dendritic growth. The first-time implementation of this 

model by Fleurisson [14] was reviewed. In this thesis, the adaptation of both the CA method 

and the PTN method to the CAPTN method has been improved. The CAPTN method has 

been actually able to choose appropriate tip growth law depending on the physical branch 

length, to eliminate tertiary branches overlapping its primary branch, to activate a percentage 

of side branches, to impose composition Dirichlet condition depending on node’s local 
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temperature, and to apply the adaptive heterogeneous PTN meshing strategy mentioned in 

Subsection 2.2.2. All of these improvements are usable in both two dimensions and three 

dimensions.  

The three-dimensional CAPTN model has been evaluated by modeling an equiaxed alloy 

grain growing at constant supersaturation, at steady state with the PTN method, and at 

unsteady state with the DNN method and the PF method. Thanks to the finite element 

implementation of the PTN method, grain orientation does not affect the kinetics of primary 

branches. Side branches do have small impact on the kinetics of primary branches. For the 

simulation domain with the same size, the CAPTN model takes less time than the DNN 

model.  

Until now the evaluation of the CAPTN model under isothermal condition has been 

accomplished. In the next chapter the two-dimensional CAPTN model will be applied on 

predicting columnar dendritic grain structures under temperature gradient. 
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Chapter 5 Application of the two-dimensional CAPTN model 

 

This chapter focuses on the application of the two-dimensional CAPTN model on 

investigating the primary dendrite arm spacing of a single crystal and the grain 

boundary orientation of a bi-crystal under directional solidification. It is in the format 

of an article and is to be submitted. 

 

Résumé en français 

Ce chapitre est rédigé sous la forme d’un article qui a été soumis à un journal pour 

publication. Cet article présente les avancées et les optimisations de calcul sur le modèle 

CAPTN qui couple les méthodes de l'automate cellulaire (CA) et de réseau d'aiguilles 

paraboliques (PTN). Ce modèle CAPTN bidimensionnel optimisé est évalué sur sa capacité à 

reproduire l'espacement des bras dendritiques primaires et l'angle d'orientation des joints de 

grains entre deux grains d'orientations différentes, développés dans la croissance 

directionnelle avec un gradient de la température constant 𝐺  et une vitesse isotherme 

constante 𝑣𝐿. Il est montré que le modèle CAPTN peut reproduire la sélection de grains entre 

les branches primaires et la création de nouvelles branches à partir des branches tertiaires 

tant que la taille des cellules est suffisamment petite pour modéliser les interactions de soluté 

entre les branches. Dans ces conditions, les simulations convergent vers une distribution des 

branches primaires qui dépend de l'histoire des branches dendritiques, en accord avec les 

résultats expérimentaux et la théorie. Contrairement au modèle CA classique, l'angle 

d'orientation des joints de grains obtenu dans les simulations CAPTN est stable avec la taille 

des cellules et en bon accord avec les études PF précédentes pour différents gradients de la 

température. De plus, l'angle d'orientation des joints de grains suit une loi exponentielle avec 

le rapport 𝐺/𝑣𝐿. 
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Abstract

This article presents advances and computing optimizations on the CAPTN model which

couples the Cellular Automaton (CA) and the Parabolic Thick Needle (PTN) methods.

This optimized CAPTN model is evaluated on its ability to reproduce two physical quan-

tities developed during directional growth in a constant temperature gradient G with

isotherm velocity vL: the interdendritic primary spacing and the grain boundary orien-

tation angle between two grains of different orientations. It is shown that the CAPTN

model can reproduce the grain selection between primary branches and creation of new

branches from tertiary branches as long as cell size is sufficiently small to model solute

interactions between branches. In these conditions, simulations converge toward a dis-

tribution of primary branches which depends on the history of the branching events, in

agreement with experimental results and the theoretical G−bv−c
L power law. Contrary to

the classical CA model, the grain boundary orientation angle obtained in CAPTN simu-

lations is stable with cell size and in good agreement with previous phase field studies for

various gradients. Moreover, the grain boundary orientation angle is found to follow an

exponential law with the ratio G/vL.

Keywords: dendritic growth; modeling; CAPTN model; primary dendrite arm spacing;

grain boundary orientation

1. Introduction

The numerical prediction of the dendritic grain structure developed in solidification10

processes is of scientific and industrial interest [1]. To be predictive, models have to

∗Corresponding author
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reproduce physical phenomena involved in dendritic grain growth on wide range of spatial

scale. However, such detailed models require heavy computation resources and are limited

to small simulation domains.

The Dendritic Needle Network (DNN) and the Parabolic Thick Needle (PTN) methods15

aim to overtake these numerical limits by approximating dendritic branches to parabolas

truncated by cylinders [2, 3, 4]. Solute diffusion and convection are solved in the liquid

phase and dendrite tip growth velocities are computed from the integration of the solute

composition gradient in the vicinity of dendrite tips. With the original methodologies,

the DNN method is implemented on Graphics Processing Units (GPUs) using the finite20

difference method. Simulation domains can reach up to 100 mm3 [5]. However, the solid

fraction generated during grain growth was not modeled with this method and so the

coupling of the microstructure evolution with thermal resolution was not achieved.

The Cellular Automaton (CA) method goes a step further in the approximation by

limiting the modeling to the grain envelopes [6, 7]. The simulation domain is covered by25

a regular lattice of cubic cells named CA grid. The grain envelopes develop on the CA

grid. Within each CA cell, the dendritic microstructure is simplified by an orthodiago-

nal quadrilateral (orthodiagonal octahedron in 3D), with half diagonals representing the

length of the dendrite arms. Their lengths are aligned with the < 1 0 > (resp. < 1 0 0 >)

in 2D (resp. 3D) directions [8]. The growth is computed using analytical laws and the30

local temperature and composition fields, based on theoretical stationary dendrite tip

kinetics models. This approach therefore does not consider solute interactions between

grains. The implementation of microsegregation laws in the model permits to compute

the solid fraction generated during grain growth and so to couple the modeling of the mi-

crostructure evolution to Finite Element (FE) resolution of the energy on the simulation35

domain [7, 9, 10]. This coupling is called the CAFE method and permits the modeling of

grain structures developed in several liters components [9].

The complementary advantages of the CA and PTN methods have motivated their

coupling in the so called CAPTN model [11]. The PTN method is used to compute the

dendrite tip velocity at the apices of the polygons (polyhedrons in 3D) located in each CA40

cell. A first coupling has been performed with a FE implementation of the PTN model

using adaptive mesh. It has been shown that this CAPTN method gives a description of

equiaxed grain growth with a higher precision than the classical CAFE model. However,

the strategy developed for the PTN implementation requires much heavier computational

resources.45
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In this article, a new strategy is presented in Section 2 that limits the frequency of

remeshing and so reduces drastically the computation time of the CAPTN model. A

parametric study is performed in Section 3.1 to analyze the convergence of the model

toward the theoretical kinetics in stationary state for an isolated dendrite tip. The model

is then evaluated on its ability to reproduce two physical quantities developed during50

directional growth in a constant temperature gradient with a constant isotherm velocity:

the primary dendrite arm spacing in Section 3.2 and the grain boundary orientation angle

between two grains of different orientations in Section 3.3. Results are compared with

CA simulations and with Phase-Field (PF) results [12].

2. Model description55

The CAPTN model uses a FE implementation of the PTN method with an adaptive

mesh keeping track of the growing parabolic dendrite tips. However, this mesh is updated

very frequently, which is numerically time consuming. In this paper, a new remeshing

strategy is proposed. It is described in Section 2.1.2. The CAPTN model is first applied

using a frozen temperature approximation. Section 2.2 presents the coupling between the60

CA and PTN methods and its improvements compared to the previous implementation.

2.1. PTN finite element implementation

2.1.1. PTN theory and implementation

The PTN method [2, 3] is based on the approximation of dendrite branches as parabo-

las of curvature radius ρtip truncated by cylinders of radius rcyl (represented in light green65

in Fig 1). To compute the growth velocity of tips, vtip, solute diffusion is solved in the

liquid around tips to obtain the liquid composition field, wl
PTN . For this, the compo-

sition at solid/liquid interfaces is imposed to the liquid composition wls corresponding

to the temperature of the tip, Ttip, i.e., w
ls = (Ttip − TM)/m, where TM is the melting

temperature for the solvent, and m is the liquidus slope.70

Equations (1a) and (1b) give the relations between ρtip and vtip:

ρ2tipvtip =
Dld0
σ

(1a)

ρtipv
2
tip =

2 Dl2F2

d0
(1b)

where Dl is the interdiffusion coefficient in the liquid, d0 = −Γ ls/m(1−k)wls is the solute

capillary length, Γ ls is the Gibbs-Thomson coefficient of the interface, and k is the segre-
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Figure 1: Sketch of the FE implementation of the PTN method. The truncated parabola (light green)
moves in a liquid with solute isocomposition lines in pink. The integration area (surface Σ in yellow with
its contour Γ in red) is a truncated disk of radius Rinteg defined by the a parameter. The adaptive mesh
generated for this branch is presented as a gray wireframe. The minimum mesh area with its dimensional
parameters (lb, l, and H) is delimited by the blue dashed box. The edge of the two transitional areas
TA1 and TA2 of parameters e1 and e2 is marked with green dashed lines. The mesh size parameters
hmin, hsolid, h1, h2, and hmax in each zone are written in black.

gation coefficient. The constant σ is the dendrite tip selection parameter. The quantity F
in Eq. (1b) is called Flux Intensity Factor (FIF). To compute this quantity, an integration

area of surface Σ (in yellow in Fig 1) and contour Γ (in red in Fig 1), parameterized with75

parameter a, which is the distance along the axis of the branch between the dendrite tip

and the intersection of the contour Γ with the parabola, is defined in front of the tip. This

integration area is a disk truncated by the parabola with its tip located at the center of

the disk. Its radius Rinteg is therefore Rinteg =
√
a2 + 2 ρtip a. The FIF is thus computed

at each time step using Eq. (2) where vtip in the equation is taken at previous time step.80

F ≈ −1

4
√

a/d0(1− k)wls

(∫
Γ

∇wl
PTN · ndΓ +

1

Dl

∫∫
Σ

vtip · ∇wl
PTNdΣ

)
(2)

Values of integration parameter a are discussed in Section 3.1. A first FE implementation

with adaptive mesh (called PTN mesh) has been described in Ref [11]. In this imple-

mentation, a minimum mesh size hmin was imposed at the solid/liquid interface, and the
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mesh in the liquid was adapted to the solute composition gradient. This meshing strat-

egy is efficient to compute (ρtip, vtip) while limiting the number of elements in the mesh.85

However, it necessitates to remesh very frequently, which is numerical time consuming

(see section 3.1). In this article, a new mesh strategy is proposed to limit the remeshing

frequency without degrading the precision on the growth velocity.

2.1.2. Finite element metric and improved remeshing strategy

As for the first finite element implementation [11], the mesh size in the liquid far90

from parabolas is set to a maximum value hmax, because there is no need to compute the

composition gradient ∇wl
PTN with high resolution in this region. In addition, the mesh

size in areas corresponding to the internal part of parabolas is set to a value hsolid (see Fig

1). In order to limit the remeshing frequency and to ensure a fine mesh in the integration

area at each time step, a rectangular box is defined in front of each parabola using the95

orthogonal query method [13, 14]. This box, which is aligned with the predefined parabola

trajectory, will be crossed by the growing branch and recreated as soon as the integration

area reaches its edge. Parameters defining the dimensions and position of the box (half-

height H, minimum length behind the tip lb, total box length 2l+2lb) are reported in Fig

1. These parameters are defined according to the dimensions of the integration area of the100

parabola at the time of creation of the box, identified by a c exponent in the followings.

In simulations presented in Section 3, these parameters are scaled as H = 1.5Rc
integ,

lb = 1.2ac, and l = 10δdIv where δdIv is the diffusion length along the growth direction at

stationary state. The definition of δdIv is given in Appendix 4. The mesh in this box has

minimum mesh size hmin.105

To facilitate the transitional from hmax to hmin at the creation of the box, two transition

areas TA1 and TA2 of thickness e1 and e2 and mesh size h1 and h2 are defined (Fig 1).

The choice of values of mesh size in the various regions of the simulation domain (hmin,

hmax, hsolid, h1 and h2) is a compromise between the precision and the necessity to limit

the number of elements in the simulation domain. This study will be detailed in Section110

3 as part of a convergence study.

2.2. CAPTN method

This section is a recall of the CAPTN coupling and the adaptation of the CA model

to this coupling [11]. Some improvements are also presented.
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2.2.1. CA model adapted to the PTN coupling115

The CA model aims at predicting the grain structure generated during solidification

processes. This method is based on the approximation of dendritic grains as orthodiagonal

quadrilaterals (resp. orthodiagonal octahedrons) in 2D (resp. in 3D) at the scale of CA

cells (see Fig 2). The diagonals of the polygon are aligned with the dendrite branches.

Grain growth is thus modeled by the growth of the branches which eventually capture120

neighboring cells by entering in their circumscribed circle. A new polygon attached to

the captured cell is therefore created with the same diagonal orientation as the capturing

polygon. The way the capturing polygon enters in the circumscribed circle of the captured

neighboring cell permits to identify a capturing branch (Sµ
0 for the green cell ν and Sµ

2

for the blue cell ζ in Fig 2), which is propagated by the new polygon. This branch of125

the new polygon is called “principal branch” (Sν
0 for the green envelope, and Sζ

0 for the

blue envelope). The branch opposite to this branch is called “opposite branch” (Sν
1 for

the green envelope, and Sζ
1 for the blue envelope) and the two other branches are called

“side branches” (Sν
2 and Sν

3 for the green envelope, and Sζ
2 and Sζ

3 for the blue envelope).

One should note that the center of the polygon can be out of its corresponding cell.130

2.2.2. Branches growth velocity

The principle of the CAPTN model is to compute the growth velocity of polygon

branches by using the PTN method. A parabola truncated by a cylinder is thus defined on

the PTN mesh for each branch growing on the CA grid (see Fig 2). For polygons created

by the capture of a cell, the principal branch is the continuity of the already existing135

capturing branch. Therefore, its parabola is the same as the one of the capturing branch.

Opposite branches are towards the existing branches, they can not grow, hence there is

no parabola associated to the opposite branches. The initial length of side branches is

limited to the thickness of the principal branch parabola. As shown in Fig 2, for the green

polygon, the initial length of Sν
2 and Sν

3 are limited to the thickness of Sν
0 . In order to avoid140

perturbation of the growth of the principal branch due to the growth of side branches,

the growth of side branches is permitted only when the length of the principal branch

Lν
0 is such that Lν

0 > min(3 rcyl, 2
√
2 lCA). Their initial velocity is set to the velocity of

the principal branch at this time. However, the PTN method can be applied to compute

the growth velocity of a branch only if this branch is longer than the integration distance145

a. In this model, the PTN method is used to compute the velocity of a branch if its

length is greater than 1.3 a. Before this, its kinetics is equal to the one at last time step.

Nevertheless, this methodology can lead to the creation of branches which are very close
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Figure 2: Process of grain propagation on the CA grid. The Sµ
0 branch of the red polygon (resp. Sµ

2 )
associated to the red cell µ enters in the circumscribed circle of the green (resp. blue) cell ν (resp. ζ),
leading to the creation of the green (resp. green) polygon and the switch of the cell state from liquid to
containing growing dendritic branches. The length of the principal branch of the green polygon, Sν

0 , is
denoted as Lν

0 . The distance between the principle branch of the red polygon Sν
0 and side branch of the

blue polygon Sζ
3 is defined as d. A parabola is associated to each branch except for the opposite branches

(Sν
1 for the green envelope, and Sζ

1 for the blue envelope) and the eliminated side branches (Sζ
2 and Sζ

3

for the blue envelope, if d < 2 rcyl).
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to already existing branches growing in the same direction (an example is given in Fig 2

with branches identified by the distance d). In order to avoid such non-physical events,150

branches at a distance lower than 2 rcyl from an already existing branch growing in the

same direction are not allowed to grow. In Fig 2, d < 2 rcyl, so Sζ
2 and Sζ

3 of the blue

polygon cannot grow, so they do not have associated parabolas.

When a polygon associated to a cell has captured all its neighboring cells, the polygon

associated to the cell is suppressed. In this case, the PTN mesh is coarsened to a mesh155

size equal to hmax.

3. Applications

The capacity of the CAPTN model to capture physical quantities of the columnar

growth of dendrites is studied. For this, the growth of dendritic grains in a constant

temperature gradient G = G · ẑ with isotherms moving at constant velocity vL = vL · ẑ160

is modeled, where ẑ is the unit vector in the vertical direction. As the model precision

depends on the choice of numerical parameters, in particular those involved in the FE

implementation of the PTN model, this section starts with a study of the convergence of

the PTN model to theoretical kinetics in Section 3.1. The CAPTN model is then evaluated

on its ability to reproduce primary dendrite arm spacing in Section 3.2 and grain boundary165

orientation angle in Section 3.3. This study is performed on a succinonitrile - 1.3wt.%

acetone alloy whose properties are given in Table 1.

Table 1: Properties of the succinonitrile - 1.3wt.% acetone alloy

Quantity Variable Value Unit Ref
Nominal composition w0 1.3 wt.%
Interdiffusion coefficient in liquid Dl 1.270× 10−9 m2 · s−1 [15]
Segregation coefficient k 0.1 [15]
Liquidus slope m −3.02 K · wt%−1 [16]
Liquidus temperature TL 327.314 K [16]
Gibbs-Thomson coefficient Γls 6.4× 10−5 K ·mm [17]
Selection parameter σ 0.057 [12]

For all simulations, the initial temperature at the bottom of the simulation domain

is equal to the liquidus temperature TL (Table 1). At any time t and position z, the

temperature is computed as T (t, z) = TL +G(z − z0)−G · vL(t− t0), with z0 and t0 the170

lowest coordinate of the simulation domain and the initial time, respectively.
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3.1. Analyze of numerical parameters

As seen in Section 2.1, the FE implementation of the PTN model necessitates to

calibrate numerical variables. Simulations presented in Sections 3.2 and 3.3 analyse the

growth of columnar dendritic grains. In theory, the steady state of an isolated dendrite175

tip aligned with the temperature gradient is such that its velocity is equal to vL and its

curvature radius corresponds to the solution of Eq. (1a) with wls corresponding to the

Ivantsov solution wls
Iv [18, 11]. In this configuration, the radius of curvature is written as

ρtipIv and the tip undercooling ∆Ttip is equal to ∆TIv = −m(wls
Iv − w0).

In order to calibrate numerical parameters for simulations, a single parabolic branch180

is placed in a box of 20 × 20 mm2. It is aligned with a temperature gradient G =

0.475 K ·mm−1 and a constant isotherm velocity vL = 0.086 mm · s−1. In these condi-

tions, the theoretical curvature radius and undercooling of the tip are given in Table 2

for three values of the velocity.

185

Table 2: Ivantsov solutions for different isotherm velocities using the material parameters listed in Table
1

vL (mm · s−1) Ω ρtipIv (mm) δdIv (mm) ∆TIv (K)
0.043 0.2988 2.620× 10−3 0.0176 1.4441
0.086 0.3386 1.805× 10−3 0.0099 1.7208
0.172 0.3811 1.242× 10−3 0.0056 2.0496

The Numerical parameters influencing the kinetics of the tip and analyzed in this

section are the integration parameter a, the minimum mesh size hmin and the time step

∆t. Other parameters are scaled using parameters given in Table 3. The integration

parameter a has to be big enough to compute the solute gradient in front of the tip with

a good precision. It is therefore scaled as a =
δdIv
α

where α is a dimensionless constant

and

δdIv = 2ΩDl/vL (3)

the diffusion length along the growth direction of the Ivanstov solution. Ω is the super-

saturation, defined as Ω = [wls
Iv − w0]/[(1 − k)wls

Iv]. The minimum mesh size hmin has

to be small enough to describe the parabolic branch tip and the solute composition field

around the tip. Similarly, the time step ∆t has to be small enough to keep track of the

solute composition field. These quantities are thus scaled such that hmin = γ ρtipIv and190

∆t = τ hmin

vL
with γ and τ being dimensionless parameters.
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Fig 3 presents the average undercooling ∆Ttip and curvature radius ρtip computed

at steady state for different values of parameters α, γ and τ . Error bars represent the

standard deviation of ∆Ttip and ρtip at steady state. For each curve, other parameters

are set to the value 0.5. It is observed that whereas the parameter τ has almost no195

influence on results, the variation of the minimum mesh size with γ has a large effect

on the precision of the simulation. It is also observed that numerical parameters have a

higher influence on the precision of the undercooling than on the curvature radius.

Taking the same simulation domain and parameters α = 0.5, γ = 1 and τ = 1, the

simulation using the PTN mesh described in Ref [11] takes 14 hours on 8 CPU processors200

to displace the tip by 9.25 mm, with 2714 times of remeshing, whereas it only takes 2

hours for the same number of processors to displace it by the same distance with the

new meshing strategy, with only 93 times of remeshing. The simulation time is therefore

drastically reduced with the new mesh strategy.

For a balance between accuracy and the efficiency of computation, dimensionless pa-205

rameters are set to α = 0.5, γ = 1.5 and τ = 1 for simulations in Sections 3.2 and 3.3. The

undercooling of this selection of parameters is 1.928K in average with standard deviation

6.551×10−4K, and the curvature radius of this selection of parameters is 1.775×10−3mm

in average with standard deviation 2.484 × 10−5mm. These results are the same as the

results of α = 0.5, γ = 1.5 and τ = 0.5 in Fig 3, which are 1.924K in average with210

standard deviation 4.972× 10−4K for undercooling, and 1.776× 10−3mm in average with

standard deviation 2.624 × 10−5mm for radius curvature. Other numerical parameters

are set to values given in Table 3. The minimum value of the steady state radius of trun-

cating cylinder is rmin
cyl =

√
2 a ρtipIv . If the radius of truncating cylinder rcyl is greater

than rmin
cyl , the kinetics of the branch is not influenced by the truncation [3, 11]. Thus, in215

our application, rcyl is fixed as rcyl = 2 rmin
cyl .

3.2. Primary dendritic arm spacing for a single crystal

The spacing developed between primary branches during directional growth is a com-

plex phenomenon. Experimental studies on various alloys [16, 19, 20] have shown that

for a given temperature gradient and isotherms velocity, this spacing is not unique and220

can vary along the solidification front, giving a λ1 distribution limited by two values λmin
1

and λmax
1 . This result has been retrieved in simulations using cellular automaton [21] and

DNN methods [22]. This possible range of λ1 values has been proved theoretically by

Warren and Langer [23] who have shown that the spacing between primary branches is

history dependent. Analytical studies using more restrictive assumptions [24, 25] predict225
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Figure 3: Evolution of steady state quantities (a) ∆Ttip and ∆Ttip/∆TIv and (b) ρtipIv
and ρtip/ρtipIv

according to numerical parameters (red) α, (blue) γ, and (green) τ for a single parabolic branch aligned
with a constant temperature gradient G = 0.475 K ·mm−1 and a constant isotherm velocity vL =
0.086 mm · s−1. Black dashed lines correspond to Ivantsov solutions presented in Table 2. For each
curve, only one parameter is varied, while the others are maintained to their minimum value, 0.5.
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Table 3: Simulation parameters used in Sections 3.2 and 3.3

Variable Name Unit Value
Minimum PTN mesh size hmin ρtipIv

1.5
PTN mesh size in TA1 h1 hmin 3
PTN mesh size in TA2 h2 hmin 10
PTN mesh size in solid hsolid hmin 10

Maximum PTN mesh size hmax hmin 50
Integration distance a δdIv

2
Distance from the tip to the center of the fine mesh rectangle at its creation l δdIv

10
Distance from the tip to the end of the fine mesh rectangle at its creation lb a 1.2

Half height of the fine mesh rectangle H Rc
integ 1.5

TA1 thickness e1 l 1
TA2 thickness e2 l 1

that for isotherms velocities higher than a transition rate vtr = GDl/[(1/k − 1)mw0], the

primary spacing should evolve as λ1 ∝ v
−1/4
L G−1/2. In experimental studies, dependencies

according to λ1 ∝ v−b
L G−c with scattered values of coefficients b and c have been found.

The CAPTN model is now used to demonstrate its capability to model the branching

of dendrites and the solute interaction between dendrite branches, hence yielding a stable230

selection of the primary dendrite arm spacing during directional growth. To analyze this,

a single seed with 5 µm branch length aligned with the temperature gradient is placed at

the bottom center of a box of 10×17 mm2 in width and height. During the simulation, the

grain captures neighboring CA cells and propagates on the whole width of the domain,

forming a network of dendrite branches which then grow vertically, leading to a selection235

of primary branches. An example of the dendrite network generated during a CAPTN

simulation is presented in Fig 4. The spreading of the grain on the simulation domain

through secondary branches can clearly be observed on the bottom part of the domain.

Elimination and creation of tertiary branches can also be spotted during grain growth.

Fig 5 shows the solidification front at t = 135 s for the same simulation. CA cells240

containing a growing polygon, i.e., with at least one liquid neighboring cell, are presented

in white empty squares and the solute composition field is presented as wireframe on

the PTN mesh. The area with fine mesh defined in Section 2.1 can be observed in front

of each parabolic tip with a liquid composition close to the alloy nominal composition

(in blue). Inside branches, the composition is imposed by the Dirichlet condition to the245

liquidus composition corresponding to the local temperature. One can also observe the

coarse mesh on the lower part of the image, as CA cells are deallocated.

To measure primary dendrite arm spacing in simulations, a thickness δy of the solidi-

fication front is defined from the position of the highest primary branch. This thickness
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Figure 4: Dendrite needle network at different times (t = 75 s, t = 90 s, t = 105 s, and t = 135 s) in
a CAPTN simulation for G = 0.475 K ·mm−1, vL = 0.086 mm · s−1 and lCA = 0.1 mm. The domain
width is 10mm.
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Figure 5: Wireframe of solute composition field in the liquid phase at the solidification front at t = 135 s
in a CAPTN simulation for G = 0.475 K ·mm−1, vL = 0.086 mm · s−1 and lCA = 0.1 mm. CA cells
containing a growing polygon are represented as white squares. The domain width is 10mm.

is taken as δy = 1/2λ̄1, where λ̄1 is the average value of λ1 measured in the simulation.250

The spacing between branches with tip aligned with the gradient located in this thickness

is then measured. This measurement is recursive until the λ̄1 used for δy is the same as

the λ̄1 measured at this time. Fig 6 (a) shows the distribution of measured λ1 for various

cell size and Fig 7 (a) shows the evolution of the average λ1, and of the maximum and

minimum value of λ1 with lCA for G = 0.475 K ·mm−1 and vL = 0.086 mm · s−1. It255

can be observed on Figures 4 and 5 for lCA = 0.1 mm that the primary spacing around

the central branch corresponding to the initial position of the seed is quite large. This

spacing is the highest measured value in Fig 6 (a). This large spacing can be related to

the solute distribution around secondary branches in Fig 5 at the beginning of the simula-

tion preventing the growth of tertiary branches and so limiting the filling by new tertiary260

branches. Furthermore, the spacing between primary branches far from the center of the

simulation domain (edge branches set apart) is quite small and close to λ1 ≈ 0.2 mm.

These side areas have similar histories with almost no elimination of branches during

growth.

It is observed in Fig 6 (a) and Fig 7 (a) that the distribution of λ1 converges toward265

a distribution with an average value λ̄1 around 0.26 mm with the decrease of cell size. As

this value is lower than 0.4, it seems logical that the simulation using lCA = 0.4 mm is not

capable to predict this spacing as the spacing between branches is artificially constrained

with this parameter value.

Figures 6 (b) and (c) show the evolution of the distribution of λ1 with the temperature270

gradient and isotherm velocity respectively. In addition, Figures 7 (b) and (c) present the

evolution of λmin
1 , λ̄1 and λmax

1 according to these two values. These studies use a CA cell

size lCA = 0.1 mm.
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Figure 6: Distribution of λ1 according to (a) cell size for G = 0.475 K ·mm−1 and vL = 0.086 mm · s−1,
(b) temperature gradient for lCA = 0.1 mm and vL = 0.086 mm · s−1 (c) isotherm velocity for lCA =
0.1 mm and G = 0.475 K ·mm−1

It can be observed that the average value of λ1 tends to decrease with both G and vL.

Moreover, theoretical laws proportional to G−1/2 and v
−1/4
L are respectively reported in275

Figures 7 (b) and (c). It can be observed that whereas the v
−1/4
L dependency fits quite well

the evolution of λ̄1 with vL, the G
−1/2 dependency seems to overestimate the variation of

λ̄1 with the temperature gradient. It is also observed that the variation of temperature

gradient has a stronger effect on the range of λ1 values compared to the velocity, with an

enhanced variation between λmax
1 and λmin

1 at low G compared to high G.280

3.3. Diverging grain boundary orientation angle for a bi-crystal

The inclination of the grain boundary between two grains with different inclinations

growing in a constant temperature gradient G with a constant isotherm velocity vL has
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Figure 7: λmin
1 , λ̄1 and λmax

1 according to (a) cell size for G = 0.475 K ·mm−1 and vL = 0.086 mm · s−1,
(b) temperature gradient for lCA = 0.1 mm and vL = 0.086 mm · s−1 (c) isotherm velocity for

lCA = 0.1 mm and G = 0.475 K ·mm−1. Black lines are theoretical laws with G−0.5 (b) and v
−1/4
L

(c) dependencies fitted on λ̄1 simulation values.
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been studied using PF and CA methods [7, 12, 26, 27, 28]. It has been shown that the

value of the angle of the grain boundary is contained between two theoretical limits: the285

Favorably Oriented Grain (FOG) [12, 28, 29] and the Geometrical Limit (GL) [12, 28].

The angle θD of the grain boundary formed by the diverging primary directions of two

grains with inclinations α1 = 30◦ for the left grain and α2 = 10◦ for the right grain with

the direction of temperature gradient has been analyzed in more details using PF and CA

simulations [12]. In Fig 8 the blue line corresponds to the value given by the GL model and290

the red line corresponds to the value given by the FOGmodel. The central line of Figures 8

(West, Center and East) present the diverging grain boundary angle obtained with these

two numerical methods as a function of the CA cell size and for vL = 0.086 mm · s−1

and three values of the temperature gradient: (West) G = 0.2375 K ·mm−1, (Center)

G = 0.475 K ·mm−1, and (East) G = 1.9 K ·mm−1. The angle given by the PF method295

(dashed line) is constant, with a reported variation only for the center configuration

(gray window), G = 0.475 K ·mm−1. The angle given by the CA model (purple dots)

varies continuously from the GL to the FOG value as cell size increases. This result

has been explained by the fact that angle θD is linked to the secondary dendrite arm

spacing preceding tertiary branching forming the grain boundary Λ̄. Therefore, whereas300

this distance is correctly reproduced in PF simulations, it is cell size dependant in CA

simulations, and values given by CA simulations are equal to the ones obtained with PF

simulations if the cell size is equal to this physical spacing.

Simulations are reproduced using the CAPTN model. For this, two seeds with 5 µm

initial branch length are placed at the bottom of a rectangular domain, the [1 0] branch305

of the left one (resp. right one) making an angle α1 = 30◦ with the temperature

gradient (resp. α2 = 10◦). Fig 9 shows the solidification front at a given time for

G = 0.475 K ·mm−1, vL = 0.086 mm · s−1 and a cell size lCA = 0.2 mm. The solute

composition field in the liquid is presented as wireframe on the PTN mesh. As for Fig 5,

a rectangular zone with fine mesh can be observed in front of each parabolic tip with an310

inclination corresponding to the growth direction of the tip. A coarser mesh is observed

in the liquid located far from the solidification front and in the area where cells have been

deallocated, i.e., with no remaining liquid neighboring cell. CA cells containing a growing

polygon appear as black squares for the left grain and red squares for the right grain.

Fig 10 shows the needle network formed at the end of this simulation (a) and the315

corresponding cell structure (b). Black (resp. red) lines and cells are associated to the

left grain (resp. right grain). The distance between highest tips of the two grains is

125



Figure 8: Evolution of the diverging grain boundary orientation angle θD according to lCA. The blue
and red lines are respectively the GL and the FOG models. Results of CAPTN simulations are presented
as green squares and CA results [12] are presented as purple circles. The black dashed line is the
phase field result, with variations reported as a gray zone [12]. The dashed orange line corresponds
to the secondary dendrite arm spacing preceding tertiary branching. (Center) G = 0.475 K ·mm−1 and
vL = 0.086 mm · s−1 (West) G = 0.2375 K ·mm−1 and vL = 0.086 mm · s−1 (East) G = 1.9 K ·mm−1 and
vL = 0.086 mm · s−1 (North) G = 0.475 K ·mm−1 and vL = 0.043 mm · s−1 (South) G = 0.475 K ·mm−1

and vL = 0.172 mm · s−1.

126



Figure 9: Wireframe of solute composition field in the liquid phase at the solidification front t = 300 s
for the bi-crystal CAPTN simulation with G = 0.475 K ·mm−1, vL = 0.086 mm · s−1 and lCA = 0.2 mm.
CA cells containing a growing polygon are represented as black squares for the left grain and red squares
for the right grain. The domain width is 10mm.

noted δ. This distance increases at the beginning of the simulation to reach a steady

state value δst. The evolution of this distance is theoretically computed using velocities

given by the Ivantsov growth law described in Section 3.1. It is obtained that the δ value320

reaches 99%δst at tst ≈ 100 s. The position of the solidification front at tst is indicated

as a horizontal orange dot line in Fig 10 and is located at a distance dst from the bottom

of the simulation domain. The angle of inclination between the grain boundary and the

temperature gradient, θD, is measured by the inclination of the line between the position

of the interface at dst and at the end of the simulation (green dashed line on Fig 10). Two325

extreme angles are also measured for interfaces located above 2 dst (see the cyan lines on

Fig 10).

Angles measured with the CAPTN method as a function of the CA cell size and

for various couples (G, vL) are reported in Fig 8 as green squares. In Fig 8 Center, it

is observed that, contrary to CA simulations, the angle θD computed with the CAPTN

model is not dependent on cell size, even for lCA much higher than the one corresponding to

the secondary dendrite arm spacing preceding tertiary branching. It is however observed

that if cell size is too large to correctly reproduce solute interactions between branches,

the CAPTN model retrieves the FOG limit (see Fig 8 Center). For cell size lower than

this upper limit, values obtained are in good agreement with the one of the PF method

no matter the value of lCA. This result indicates that the CAPTN model reproduces the
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Figure 10: (a) Needle Network and (b) cell structure at the end of the CAPTN simulation t = 300 s for
G = 0.475 K ·mm−1, vL = 0.086 mm · s−1 and lCA = 0.2 mm. The width of the domain is 10mm. The
black color is associated to the left grain and the red color to the right grain. The CA cells containing
a growing polygon, drawn in Fig 9, are represented in full opacity, and other CA cells at the grain and
domain boundaries are represented in lower opacity. The white area contained within the contour defined
by the black (resp. red) cell belong to the left (resp. right) grain, while the white area at the top of the
domain is liquid. In (a), the branches belonging to the CA cells containing a growing polygon are drawn
in full opacity, and other branches are drawn in lower opacity.
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Λ̄ spacing, even for CA cell values much higher than this spacing. The minimum and

maximum values of θD for a cell size lower than the Λ̄ spacing are in excellent agreement

with the range of values predicted by the PF simulations as they coincide with the range

of the gray window. In addition, both models predict a decrease of θD as the temperature

gradient increases for vL = 0.086 mm · s−1. This is verified in Fig 8 West, Center, and

East. CAPTN simulations also predict an increase of θD as the isotherm velocity increases,

as shown in Fig 8 North, Center, and South. These two tendencies lead to the profile of

θD according to G/vL displayed in Fig 11 (a) where the average θD value decreases from

θD ≃ 15◦ at low G/vL values to reach the FOG limit at G/vL ≃ 10 K · s ·mm−2. The

relation between θD and G/vL can be approximated as

θD − θFOG

θGL − θFOG

∝ exp(−β
G

vL
) (4)

where θGL and θFOG are the GL and FOG limits, respectively, and β > 0. The value

β = 0.183 is used in Fig 11 (a).

The step between stationary primary dendrite tips of two grains at steady state, δst,330

was identified as a main parameter for the control of the grain boundary orientation in

Ref [28]. However, it can be observed on Fig 11 (a) that two identical values of G/vL give

similar values of θD but different values of δst (see Fig 11 (b)). Therefore, it seems that

θD is a function of G/vL rather than an function of δst, explaining the form chosen for

Eq. 4. Possible relations between θD and Λ̄ should be the topic of further investigations,335

following the findings reported in Ref [12].

4. Conclusions

This article presents advances on the CAPTN model which couples the cellular au-

tomation (CA) and the Parabolic Thick Needle (PTN) methods. Optimizations on the

meshing strategy are presented which permit to reduce drastically computation time. A340

numerical parametric study is performed which shows that the model converges toward

theoretical growth solutions as the thinness of the mesh and the size of the integration area

are increased. This optimized CAPTN model is then evaluated on its ability to reproduce

two physical quantities developed during directional growth in a constant temperature

gradient G with a constant isotherm velocity vL: the primary dendrite arm spacing λ1345

and the diverging grain boundary orientation angle θD between two grains of different

orientations. The grain selection between primary branches and creation of new branches
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Figure 11: Evolution of (a) θD computed in CAPTN simulations and (b) δst computed by the Ivantsov
growth law with G/vL. In (a), the GL and FOG limits are indicated as blue and red lines respectively.
The trend of θD is fitted by the mathematical formula (θD − θFOG)/(θGL − θFOG) ∝ exp(−β G/vL),
where θGL and θFOG are the GL and FOG limits, respectively, and β > 0.

from secondary and tertiary branches is well simulated as long as cell size is sufficiently

small to model solute interactions between branches. In these conditions, simulations

converge toward a distribution of primary branches which depends on the history of den-350

drite branches. This result is in agreement with the theory of Warren and Langer [23]

and experimental results. Gradient and velocity dependencies on average values of these

distributions have been compared with Hunt [24] and Kurz-Fisher [25] theories and are

coherent with G−b and v−c
L power laws. The study on the grain boundary orientation an-

gle has revealed that, contrary to the classical CA model, the angle obtained in CAPTN355

simulations does not depend on cell size for a large range of cell size. This angle has been

computed for various gradients and isotherm velocities and is in good agreement with pre-

vious phase field studies [12]. Moreover, the diverging grain boundary orientation angle

is found to be a monotonously decreasing function of the ratio G/vL, and the trend can
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be expressed by an exponential law. These promising validations and mesh optimizations360

will permit to extend the model to 3D simulations.
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Appendix A. Diffusion length365

A parabola of radius ρtip and velocity vtip moves at steady state in the x direction in

an infinite 2D domain. Cartesian (x, y) coordinates are defined in Fig A.12 along with

(ξ, η) parabolic coordinates.

Figure A.12: Parabolic and Cartesian coordinates used for the calculation of the diffusion length

The relations between these two systems of coordinates is the following:

Parabolic ρtipξ
2 = x+

√
x2 + y2 ρtipη

2 = −x+
√
x2 + y2

Cartesian x =
ρtip
2

(ξ2 − η2) y = ρtipξη
(A.1)

In these steady state conditions, the composition field in the liquid is given by the Ivantsov

solution [18]:

wl(ξ) = w0 + (1− k)wls
√
π Pe · ePe · erfc(ξ

√
Pe) (A.2)
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with Pe =ρtipvtip/2D
l.

The diffusion length at the dendrite tip along its growing direction is defined as twice the

intersection of the tangent of the composition along the x axis at the solid/liquid interface

and the nominal composition w0. From Eq. (A.2), the expression of the composition field

on the x axis is derived:

wl(x) = w0 + (1− k)wls
√
πPe · ePe · erfc(

√
Pe · 2x/ρtip) (A.3)

From Eq. (A.3), it is deduced that:

dwl

dx

∣∣∣∣
x=

ρtip
2

= −2(1− k)wls Pe/ρtip (A.4)

Therefore, the diffusion length becomes

δdIv =
w0 − wls

−(1− k)wls Pe/ρtip
(A.5)

using the definition of the supersaturation Ω given in section 3.1, we obtain

δdIv =
2Ω Dl

vtip
(A.6)
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Conclusion and perspective 

Due to the influence of the microstructure on the properties of materials, numerical 

models aiming at predicting microstructures formed during solidification processes are always 

of academic and industrial interest and under development. The Columnar-to-Equiaxed 

Transition in SOLidification processing (CETSOL) project, which was launched in 1999, has 

for objective to improve our understanding of the Columnar-to-Equiaxed Transition (CET) in 

directionally solidified alloys under microgravity [6].  

The Cellular Automaton – Finite Element (CAFE) model [48] was developed to predict 

the grain structure during solidification process in consideration of the resolution of energy 

and solute mass. However, it has appeared that as solute interaction between dendritic 

branches is approximate, the CAFE model is limited to qualitative prediction on the CET 

position in samples [7]. Therefore, its prediction on competitive dendritic growth should be 

improved [63, 64].  

To overcome this limitation, in the frame of the CETSOL-5 phase, the coupling Cellular 

Automaton – Parabolic Thick Needle (CAPTN) method with resolution of energy and solute 

mass was performed by Fleurisson [14, 15] relying on the CAFE method [45]. The Parabolic 

Thick Needle (PTN) method [13] models the tip of a dendritic branch as a parabola in two 

dimensions or a paraboloid in three dimensions and calculates its morphology and kinetics 

based on the composition field in its vicinity and the solvability condition [20, 21]. It is 

relevant to predicting dendritic growth at both steady and unsteady state. The two-

dimensional PTN method was implemented in a finite element library, and studies were 

dedicated to the influence of the PTN method parameters, as well as coupling the PTN 

method with the CAFE model [14, 15].  

In the frame of the CETSOL-6 phase, this thesis aims to improve the efficiency of the 

CAPTN method, apply it for investigating the microstructures under directional solidification, 

and develop the three-dimensional CAPTN method.  

Firstly, the computation efficiency of the PTN finite element implementation has been 

improved greatly. A new adaptive heterogeneous meshing strategy has been proposed for 

reducing the frequency of reconstruction of the mesh. The octree structure and orthogonal 

query method have been employed for seeking the nodes of mesh in a certain domain in an 

efficient way during the simulation. These numerical methods have been applied to the 

construction of the mesh, the setting of Dirichlet condition on the composition field, and the 

calculation of tip radius and velocity. The improved algorithms save tremendous amount of 

computational time, encouraging the application of the CAPTN method and its three-

dimensional development.  

Secondly, parametric studies on the PTN model have been carried out. By comparing the 

dendrite tip kinetics calculated by the original algorithms and the kinetics calculated by the 

improved algorithms in two dimensions, it has been proved that the improved PTN algorithms 

have no influence on the calculation of kinetics. It has however been observed that when the 
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integration distance is too large the kinetics is divergent. This phenomenon has been 

explained by mathematical deduction. For the three-dimensional PTN model, parametric 

studies on integration distance, minimum mesh size, time step, and radius of truncating 

cylinder have been carried out as well. Their conclusion is similar to that of two-dimensional 

model: in certain range, larger integration distance and smaller minimum mesh size improve 

the kinetics precision, time step has tiny influence on steady-state kinetics, and the truncating 

cylinder should not intersect with the integration area.  

Thirdly, the CAPTN model has been improved and the three-dimensional CAPTN model 

has been evaluated in both steady and unsteady regimes. The improvements on the CAPTN 

model have acted on two aspects. In terms of the CA method, the activation of side branches 

has become more physical and more flexible: tertiary branches overlapping its primary branch 

have been eliminated, and it is possible to active a percentage of side branches. The physical 

branch length has been introduced into the CA method for selecting appropriate dendritic 

growth law. In terms of the PTN method, the interfacial liquidus composition in Dirichlet 

condition now depends on the local temperature of the node, and the criteria for 

reconstructing the mesh have been generalized for cases with multi-branches. The three-

dimensional CAPTN model has been used to model an equiaxed grain growing at constant 

supersaturation. Grain orientation has no noticeable impact on the kinetics of primary 

branches. Side branches do have small impact on the kinetics of primary branches. The 

increase on the number of side branches yields larger requirement on computation resources 

and longer computational time. The three-dimensional CAPTN model has been evaluated by 

comparing its results with the results from the PTN method, the Dendritic Needle Network 

(DNN) method, and the Phase-Field (PF) method. For the simulation domain of the same size, 

the CAPTN model takes less time than the DNN model. 

 Fourthly, the two-dimensional CAPTN model has been applied for investigating the 

primary dendrite arm spacing of a single crystal and the grain boundary of bi-crystal under 

directional solidification with a constant temperature gradient 𝐺  and a constant isotherm 

velocity 𝑣iso. It has been shown that the CAPTN model can reproduce the grain selection 

between primary branches and creation of new branches from tertiary branches as long as the 

CA cell size is sufficiently small to model solute interactions between branches. For the single 

crystal, the CAPTN model has reproduced a distribution of primary dendrite arm spacing 

depending on the history of dendritic branches, and the average values of these distributions 

are coherent with the 𝐺−𝑏𝑣iso
−𝑐  theoretical law. For the bi-crystal, for a large range of CA cell 

size, the diverging grain boundary orientation angles obtained by the CAPTN model are less 

dependent on the CA cell size than the classical CA method, and are in good agreement with 

previous PF studies [64]. It has also been found that this angle decreases with 𝐺/𝑣iso. 

Despite the various efforts performed during the thesis to improve and optimize the two-

dimensional and three-dimensional implementations of the CAPTN model, some difficulties 

remain to allow the prediction on grain structures of experiments of the CETSOL project and 

to study the CET. 
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• The orthogonal query could be more efficiency in the PTN method by reducing the 

orthogonal query range. Now the orthogonal query range is a square in two 

dimensions or a cube in three dimensions. Its creation is with the help of a circle in 

two dimensions or a sphere in three dimensions. Because a circle or a sphere is 

isotropic, it is simple to define its axis-parallel circumscribing square or cube as the 

orthogonal query range. The orthogonal query range can be certainly reduced to a 

more compact axis-parallel rectangle or cuboid by optimizing the algorithm, then 

less nodes will be reported as the results of orthogonal query, and the efficiency will 

be improved further.  

• The criteria for reconstructing the PTN mesh (the finite element mesh used for the 

PTN method) could be optimized in the CAPTN method. There are two types of 

PTN mesh reconstruction. Local remeshing means to reconstruct only the mesh near 

the branch; total remeshing means to reconstruct the entire mesh of the domain. The 

idea is to use more local remeshings instead of total remeshings. In the multi-branch 

case, branches have different growing velocities. A variable could be introduced to 

each branch for recording the distance passed since its last local remeshing. If this 

distance is greater than a certain threshold, the local remeshing around this branch 

will be performed.  

• In the PTN finite element implementation, the minimum mesh size ℎmin , the 

integration distance 𝑎, and the radius of truncating cylinder 𝑟cyl are all fixed for all 

branches. In the CAPTN model, branches have different morphologies and kinetics, 

and the difference may become greater in the cases with temperature gradient. It will 

be more relevant if the above-mentioned parameters are linked with physical 

characteristics. For example, ℎmin can be calculated based on the tip radius of each 

branch, which ensures good accuracy for calculation and avoids the use of very fine 

mesh for all branches. In this thesis, the integration distance is defined by the 

diffusion length at dendrite tip under Ivantsov solution, with the supersaturation 

corresponding to the steady-state growth. More generally, the integration distance 

could be defined by the diffusion length at dendrite tip under Ivantsov solution of the 

supersaturation of the tip. The definition of 𝑟cyl is related to tip radius and integration 

distance, so it could be calculated for each branch as well. 

With the technical improvements mentioned above, the CAPTN model can be further 

evaluated.  

• The evaluation of the three-dimensional CAPTN model could be extended to 

columnar grains. The three-dimensional PF and DNN methods have produced results 

on columnar growth [58], which could be used as benchmarks.  

• A first coupling of the two-dimensional CAPTN model to the resolution of energy 

and mass solute (called the CAPTN – FE model) has been performed [14, 15] before 

the improvements and developments presented in this thesis. This coupling should 

therefore be updated to take these improvements and developments into account. In 
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particular, a three-dimensional CAPTN – FE model is still to be developed in order 

to quantitatively predict the CET position in the samples solidified in the CETSOL 

project. 

In spite of these limitations, we have shown that the CAPTN model is relevant to 

predicting dendritic grain structures both in two and three dimensions. The improvements in 

this thesis on the CAPTN method are encouraging for its further developments.  

 

 



 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 
 

Numerical methods for modeling microstructures formed during solidification are of great academic and industrial 

interest. The Cellular Automaton – Parabolic Thick Needle (CAPTN) method is a multiscale numerical method, 

which couples the Cellular Automaton (CA) and the Parabolic Thick Needle (PTN) methods, to simulate the growth 

of dendritic grains while accounting for non-steady diffusion fields.  

This thesis presents advances and computing optimizations on the multiscale CAPTN method. An adaptive 

heterogeneous meshing strategy and the orthogonal query method with the octree structure are therefore 

employed on the finite element implementation of the PTN method for increasing computational efficiency. The 

three-dimensional implementation of the PTN method is performed and evaluated through the analyses of 

convergence of simulation results to theoretical solutions depending on numerical parameters. Algorithmic 

improvements on the PTN method and the CAPTN coupling are also performed. The optimized three-dimensional 

CAPTN model is evaluated by modeling an equiaxed grain growing under constant supersaturation. The kinetics 

obtained by the CAPTN model is in good agreement with the kinetics obtained by Phase-Field (PF) and Dendritic 

Needle Network (DNN) methods. The optimized two-dimensional CAPTN model is evaluated on its ability to 

reproduce two physical quantities developed during directional growth in a constant temperature gradient with 

constant isotherm velocity: the primary dendritic arm spacing and the grain boundary orientation angle between 

two grains of different orientations. Simulations converge toward a distribution of primary branches which depends 

on the history of the branching events, in agreement with experimental results and theory. Contrary to the classical 

CA model, the grain boundary orientation angle obtained in CAPTN simulations is stable with cell size and in good 

agreement with previous PF studies for various temperature gradients. 

 

MOTS CLÉS 
 

Solidification, modélisation, multi-échelle, automate cellulaire, réseau d’aiguilles paraboliques, microstructure 

dendritique 

RÉSUMÉ 
 

Les méthodes numériques de modélisation des microstructures formées lors de la solidification présentent un 

grand intérêt pour la recherche et les industries. La méthode Cellular Automaton – Parabolic Thick Needle 

(CAPTN) est une méthode numérique multi-échelle, qui couple la méthode automate cellulaire (CA) et la méthode 

Parabolic Thick Needle (PTN), pour simuler la croissance des grains dendritiques tout en tenant compte du champ 

de diffusion non stationnaire.  

Cette thèse présente des avancées et des optimisations sur la méthode CAPTN. Une stratégie de maillage 

hétérogène adaptatif et la méthode de requête orthogonale avec la structure octree sont employées sur 

l’implémentation d’éléments finis de la méthode PTN pour augmenter l'efficacité de calcul. L’implémentation 

tridimensionnelle de la méthode PTN est réalisée et évaluée à travers les analyses de convergence des résultats 

de simulation vers des solutions théoriques en fonction de paramètres numériques. Les algorithmes de la méthode 

PTN et du couplage CAPTN sont aussi améliorés. Le modèle CAPTN tridimensionnel optimisé est évalué en 

modélisant un grain équiaxe croissant dans un domaine à une sursaturation constante. La cinétique obtenue par 

le modèle CAPTN est en bon accord avec la cinétique obtenue par le modèle Phase-Field (PF) et le modèle 

Dendritic Needle Network (DNN). Le modèle CAPTN bidimensionnel optimisé est évalué sur sa capacité à 

reproduire l'espacement des bras dendritiques primaires et l'angle d'orientation des joints de grains entre deux 

grains d'orientations différentes, développés en croissance directionnelle dans un gradient de température 

constant et une vitesse isotherme constante. Les simulations convergent vers une distribution des branches 

primaires qui dépend de l'histoire des branches dendritiques, en accord avec les observations expérimentales et 

la théorie. Contrairement au modèle CA classique, l'angle d'orientation des joints de grains obtenu dans les 

simulations CAPTN est stable avec la taille des cellules et en bon accord avec les études PF précédentes pour 

différents gradients de température. 
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