Fast Algorithms for Towers of Finite Fields and Isogenies - Archive ouverte HAL Access content directly
Theses Year : 2010

Fast Algorithms for Towers of Finite Fields and Isogenies

Algorithmes Rapides pour les Tours de Corps Finis et les Isogénies

(1, 2)
1
2

Abstract

In this thesis we apply techniques from computer algebra and language theory to speed up the elementary operations in some specific towers of finite fields. We apply our construction to the problem of computing isogenies between elliptic curves and obtain faster (both asymptotically and in practice) variants of Couveignes' algorithm. The document is divided in four parts. In Part I we recall some basic notions from algebra and complexity theory. Part II deals with the transposition principle: in it we generalize ideas of Bostan, Schost and Lecerf, and show that it is possible to automatically transpose computer programs without losses in time complexity and with a small loss in space complexity. Part III combines the results on the transposition principle with classical techniques from elimination theory; we apply these ideas to obtain asymptotically optimal algorithms for the arithmetic of Artin-Schreier towers of finite fields. We also describe an implementations of these algorithms. Finally, in Part IV we use the previous results to speed up Couveignes' algorithm and compare the result with the other state of the art algorithms for isogeny computation. We also present a new generalization of Couveignes' algorithm that computes isogenies of unknown degree.
Dans cette thèse nous appliquons des techniques provenant du calcul formel et de la théorie des langages afin d'améliorer les opérations élémentaires dans certaines tours de corps finis. Nous appliquons notre construction au problème du calcul d'isogénies entre courbes elliptiques et obtenons une variante plus rapide (à la fois en théorie et en pratique) de l'algorithme de Couveignes. Le document est divisé en quatre parties. Dans la partie I nous faisons des rappels d'algèbre et de théorie de la complexité. La partie II traite du principe de transposition : nous généralisons des idées de Bostan, Schost et Lecerf et nous montrons qu'il est possible de transposer automatiquement des programmes sans pertes en complexité-temps et avec une petite perte en complexité-espace. La partie III combine les résultats sur le principe de transposition avec des techniques classiques en théorie de l'élimination ; nous appliquons ces idées pour obtenir des algorithmes asymptotiquement optimaux pour l'arithmétique des tours d'Artin-Schreier de corps finis. Nous décrivons aussi une implantation de ces algorithmes. Enfin, dans la partie IV nous utilisons les résultats précédents afin d'accélérer l'algorithme de Couveignes et de comparer le résultat avec les autres algorithmes pour le calcul d'isogénies qui font l'état de l'art. Nous présentons aussi une nouvelle généralisation de l'algorithme de Couveignes qui calcule des isogénies de degré inconnu.
Fichier principal
Vignette du fichier
these.pdf (2.59 Mo) Télécharger le fichier
Vignette du fichier
soutenance-13-12-10.pdf (1.03 Mo) Télécharger le fichier
Format : Other
Loading...

Dates and versions

tel-00547034 , version 1 (15-12-2010)
tel-00547034 , version 2 (08-03-2011)
tel-00547034 , version 3 (30-03-2011)

Identifiers

  • HAL Id : tel-00547034 , version 3

Cite

Luca de Feo. Fast Algorithms for Towers of Finite Fields and Isogenies. Mathematics [math]. Ecole Polytechnique X, 2010. English. ⟨NNT : ⟩. ⟨tel-00547034v3⟩
1124 View
2446 Download

Share

Gmail Facebook Twitter LinkedIn More