Robust feature correspondence and pattern detection for façade analysis - Archive ouverte HAL Access content directly
Theses Year : 2013

Robust feature correspondence and pattern detection for façade analysis

Mise en correspondance robuste et détection de modèles visuels appliquées à l'analyse de façades

(1, 2)
1
2

Abstract

For a few years, with the emergence of large image database such as Google Street View, designing efficient, scalable, robust and accurate strategies have now become a critical issue to process very large data, which are also massively contaminated by false positives and massively ambiguous. Indeed, this is of particular interest for property management and diagnosing the health of building fac{c}ades. Scientifically speaking, this issue puts into question the current state-of-the-art methods in fundamental computer vision problems. More particularly, we address the following problems: (1) robust and scalable feature correspondence and (2) façade image parsing. First, we propose a mathematical formalization of the geometry consistency which plays a key role for a robust feature correspondence. From such a formalization, we derive a novel match propagation method. Our method is experimentally shown to be robust, efficient, scalable and accurate for highly contaminated and massively ambiguous sets of correspondences. Our experiments show that our method performs well in deformable object matching and large-scale and accurate matching problem instances arising in camera calibration. We build a novel repetitive pattern search upon our feature correspondence method. Our pattern search method is shown to be effective for accurate window localization and robust to the potentially great appearance variability of repeated patterns and occlusions. Furthermore, our pattern search method makes very few hallucinations. Finally, we propose methodological contributions that exploit our repeated pattern detection results, which results in a substantially more robust and more accurate façade image parsing
Depuis quelques années, avec l'émergence de larges bases d'images comme Google Street View, la capacité à traiter massivement et automatiquement des données, souvent très contaminées par les faux positifs et massivement ambiguës, devient un enjeu stratégique notamment pour la gestion de patrimoine et le diagnostic de l'état de façades de bâtiment. Sur le plan scientifique, ce souci est propre à faire avancer l'état de l'art dans des problèmes fondamentaux de vision par ordinateur. Notamment, nous traitons dans cette thèse les problèmes suivants: la mise en correspondance robuste, algorithmiquement efficace de caractéristiques visuelles et l'analyse d'images de façades par grammaire. L'enjeu est de développer des méthodes qui doivent également être adaptées à des problèmes de grande échelle. Tout d'abord, nous proposons une formalisation mathématique de la cohérence géométrique qui joue un rôle essentiel pour une mise en correspondance robuste de caractéristiques visuelles. A partir de cette formalisation, nous en dérivons un algorithme de mise en correspondance qui est algorithmiquement efficace, précise et robuste aux données fortement contaminées et massivement ambiguës. Expérimentalement, l'algorithme proposé se révèle bien adapté à des problèmes de mise en correspondance d'objets déformés, et à des problèmes de mise en correspondance précise à grande échelle pour la calibration de caméras. En s'appuyant sur notre algorithme de mise en correspondance, nous en dérivons ensuite une méthode de recherche d'éléments répétés, comme les fenêtres. Celle-ci s'avère expérimentalement très efficace et robuste face à des conditions difficiles comme la grande variabilité photométrique des éléments répétés et les occlusions. De plus, elle fait également peu d'hallucinations. Enfin, nous proposons des contributions méthodologiques qui exploitent efficacement les résultats de détections d'éléments répétés pour l'analyse de façades par grammaire, qui devient substantiellement plus précise et robuste
Fichier principal
Vignette du fichier
TH2013PEST1019_complete.pdf (55.84 Mo) Télécharger le fichier
Origin : Version validated by the jury (STAR)
Loading...

Dates and versions

tel-00844049 , version 1 (12-07-2013)
tel-00844049 , version 2 (07-04-2014)

Identifiers

  • HAL Id : tel-00844049 , version 2

Cite

David Ok. Robust feature correspondence and pattern detection for façade analysis. Other [cs.OH]. Université Paris-Est, 2013. English. ⟨NNT : 2013PEST1019⟩. ⟨tel-00844049v2⟩
645 View
555 Download

Share

Gmail Facebook Twitter LinkedIn More