Genome-Wide Mapping of Human DNA Replication by Optical Replication Mapping Supports a Stochastic Model of Eukaryotic Replication - PASTEL - Thèses en ligne de ParisTech Accéder directement au contenu
Thèse Année : 2021

Genome-Wide Mapping of Human DNA Replication by Optical Replication Mapping Supports a Stochastic Model of Eukaryotic Replication

La cartographie génomique de la réplication de l'ADN de cellules humaines par la cartographie de réplication optique soutiennent un modèle stochastique de réplication chez eucaryote

Résumé

DNA replication is regulated by the location and timing of replication initiation. Therefore, much effort has been invested in identifying and analyzing the sites of human replication initiation. However, the heterogeneous nature of eukaryotic replication kinetics and the low efficiency of individual initiation site utilization in metazoans has made mapping the location and timing of replication initiation in human cells difficult. A potential solution to the problem of human replication mapping is single-molecule analysis. However, current approaches do not provide the throughput required for genome-wide experiments. To address this challenge, we have developed Optical Replication Mapping (ORM), a high-throughput single-molecule approach to map newly replicated DNA and used it to map early initiation events in human cells. The single-molecule nature of our data, and a total of more than 2000-fold coverage of the human genome on 27 million fibers averaging ~300 kb in length, allow us to identify initiation sites and their firing probability with high confidence. In particular, for the first time, we are able to measure genome-wide the absolute efficiency of human replication initiation. We find that the distribution of human replication initiation is consistent with inefficient, stochastic initiation of heterogeneously distributed potential initiation complexes enriched in accessible chromatin. In particular, we find sites of human replication initiation are not confined to well-defined replication origins but are instead distributed across broad initiation zones consisting of many initiation sites. Furthermore, we find no correlation of initiation events between neighboring initiation zones. Although most early initiation events occur in early-replicating regions of the genome, a significant number occur in late replicating regions. The fact that initiation sites in typically late-replicating regions. The fact that initiation sites in typically late-replicating regions have some probability of firing in early S phase suggests that the major difference between initiation events in early and late replicating regions is their intrinsic probability of firing, as opposed to a qualitative difference in their firing-time distributions. Moreover, modeling of replication kinetics demonstrates that measuring the efficiency of initiation-zone firing in early S phase suffices to predict the average firing time of such initiation zones throughout S phase, further suggesting that the differences between the firing times of early and late initiation zones are quantitative, rather than qualitative. These observations are consistent with stochastic models of initiation-timing regulation and suggest that stochastic regulation of replication kinetics is a fundamental feature of eukaryotic replication, conserved from yeast to humans.
La réplication de l'ADN est régulée par l'emplacement et le moment de l'initiation de la réplication. Par conséquent, beaucoup d'efforts ont été investis dans l'identification et l'analyse des sites d'initiation de la réplication dans les cellules humaines. Cependant, la nature hétérogène de la cinétique de réplication eucaryote et la faible efficacité de l'utilisation du site d'initiation individuelle chez les métazoaires a rendu difficile la cartographie de l'emplacement et du moment de l'initiation de la réplication dans les cellules humaines. Une solution potentielle au problème de la cartographie de la réplication humaine est l'analyse dans les molécules uniques. Cependant, les approches actuelles ne fournissent pas le débit requis pour les expériences à l'échelle du génome humaine. Pour relever ce défi, nous avons développé la cartographie de réplication optique (Optical Replicaiton Mapping - ORM), une approche de molécule unique à haut débit pour cartographier l'ADN nouvellement répliqué, et l'avons utilisée pour cartographier les événements d'initiation précoce dans les cellules humaines. La nature de molécule unique de nos données, et une couverture totale de plus de 2000 fois du génome humain sur 27 millions de fibres d'une longueur moyenne d'environ 300 kb, nous permettent d'identifier les sites d'initiation et leur probabilité d’initiation avec une grande confiance. En particulier, pour la première fois, nous sommes en mesure de mesurer à l'échelle du génome humain l'efficacité absolue de l'initiation de la réplication. Nous constatons que la distribution de l'initiation de la réplication humaine est cohérente avec l'initiation inefficace et stochastique de complexes d'initiation potentiels distribués de manière hétérogène enrichis en chromatine accessible. En particulier, nous constatons que les sites d'initiation de la réplication humaine ne sont pas limités à des origines de réplication bien définies, mais sont plutôt répartis sur de larges zones d'initiation constituées de nombreux sites d'initiation. De plus, nous ne trouvons aucune corrélation des événements d'initiation entre les zones d'initiation voisines. Bien que la plupart des événements d'initiation précoce se produisent dans les régions à réplication précoce du génome, un nombre significatif se produit dans les régions tardives. Le fait que les sites d'initiation dans les régions tardive aient une certaine probabilité d’initiation au début de la phase S suggère que la principale différence entre les événements d'initiation dans les régions à réplication précoce et tardive est leur probabilité intrinsèque d’initiation, et n’est pas due à une différence qualitative dans leur distribution de temps d’initiation. De plus, la modélisation de la cinétique de réplication démontre que la mesure de l'efficacité d’initiation de la zone d'initiation au début de la phase S suffit pour prédire le temps d’initiation moyen de ces zones tout au long de la phase S, ce qui suggère en outre que les différences entre les temps d’initiation des zones d'initiation précoce et tardive sont quantitatives plutôt que qualitatives. Ces observations sont cohérentes avec les modèles stochastiques de la régulation de l'initiation et suggèrent que la régulation stochastique de la cinétique de réplication est une caractéristique fondamentale de la réplication chez eucaryotes, conservée de la levure à l'homme.
Fichier principal
Vignette du fichier
InstitutCurie_WeitaoWANG_2021.pdf (10.93 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03343203 , version 1 (14-09-2021)

Identifiants

  • HAL Id : tel-03343203 , version 1

Citer

Weitao Wang. Genome-Wide Mapping of Human DNA Replication by Optical Replication Mapping Supports a Stochastic Model of Eukaryotic Replication. Biotechnology. Université Paris sciences et lettres, 2021. English. ⟨NNT : 2021UPSLS048⟩. ⟨tel-03343203⟩
142 Consultations
212 Téléchargements

Partager

Gmail Facebook X LinkedIn More